SoK: Software Debloating Landscape and Future Directions

Mohannad Alhanahnah Yazan Boshmaf Ashish Gehani
mohannad@cs.wisc.edu yboshmaf@hbku.edu.qa ashish.gehani@sri.com
University of Wisconsin-Madison Hamad Bin Khalifa University SRI
Computer Sciences Qatar Computing Research Institute USA
USA Qatar

ABSTRACT

Software debloating seeks to mitigate security risks and improve
performance by eliminating unnecessary code. In recent years, a
plethora of debloating tools have been developed, creating a dense
and varied landscape. Several studies have delved into the liter-
ature, focusing on comparative analysis of these tools. To build
upon these efforts, this paper presents a comprehensive systemati-
zation of knowledge (SoK) of the software debloating landscape.
We conceptualize the software debloating workflow, which serves
as the basis for developing a multilevel taxonomy. This framework
classifies debloating tools according to their input/output artifacts,
debloating strategies, and evaluation criteria. Lastly, we apply the
taxonomy to pinpoint open problems in the field, which, together
with the SoK, provide a foundational reference for researchers aim-
ing to improve software security and efficiency through debloating.

CCS CONCEPTS

« Security and privacy — Software security engineering; Soft-
ware security engineering.

KEYWORDS

Systematization of Knowledge, Software Debloating, Software Se-
curity, Taxonomy, SDLC, SBOM

ACM Reference Format:

Mohannad Alhanahnah, Yazan Boshmaf, and Ashish Gehani. 2024. SoK:
Software Debloating Landscape and Future Directions. In Proceedings of the
2024 Workshop on Forming an Ecosystem Around Software Transformation
(FEAST °24), October 14-18, 2024, Salt Lake City, UT, USA. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/XXXXXX XXXXXX

1 INTRODUCTION

Modern software development is heavily dependent on third-party
libraries to accelerate development and improve functionality [41].
However, this practice introduces significant complexity and in-
creases the attack surface of applications due to the integration of
various components, each with its own set of dependencies and
vulnerabilities [17]. The increased complexity increases security
risks and leads to code bloat, adversely affecting performance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FEAST °24, October 14-18, 2024, Salt Lake City, UT, USA.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1233-3/24/10

https://doi.org/10.1145/XXXXXX XXXXXX

Software debloating [39, 52], the process of removing unneces-
sary code from applications, is a promising approach to address
these issues. By eliminating extraneous features, debloating can
significantly reduce the attack surface, enhance performance, and
improve maintainability. This technique complements other se-
curity measures, such as Control-Flow Integrity (CFI) [35] and
Address Space Layout Randomization (ASLR) [53], by minimizing
the amount of code that needs protection. Software debloating has
gained renewed momentum, in part due to cyber defense initiatives,
such as the US Navy’s Total Platform Cyber Protection (TPCP) pro-
gram [2]. Subsequently, numerous debloating tools were introduced,
leading to various studies [10, 12, 23] that examine the literature
on software debloating and perform comparative analyses of the
prototyped tools. While these studies are thorough, their primary
objective is to empirically compare specific aspects, such as result-
ing binary size or gadget count, of particular types of debloating
tools, such as those that target C/C++ programs or containers. The
limited scope restricts the influence of these studies to a subset of de-
bloating tools, rather than providing a systematic, comprehensive,
and wide-ranging examination of the entire debloating domain,
which encompasses a diverse array of tools and evaluation criteria.
As such, there is a significant need to augment previous research
with a holistic and systematic study of the complete software de-
bloating landscape, thereby enabling more extensive and inclusive
conclusions about open issues and challenges in this domain.

To bridge this gap, this paper systematizes the current knowl-
edge on software debloating, providing a multilevel taxonomy that
divides the current landscape into three main categories corre-
sponding to the three main stages of the debloating workflow. We
also highlight open problems in the field, calling for more practi-
cal, usable, and secure debloating solutions that can be integrated
seamlessly into modern development workflows.

2 SOFTWARE DEBLOATING WORKFLOW

Bloated Artifact Debloated Artifact

Debloating Evaluation
» M
Strateg Criteria

Functionality II

Figure 1: Typical debloating workflow.

Software bloat refers to unnecessary functionalities and their
corresponding software dependencies and components [39, 52].
Figure 1 depicts the typical workflow used by debloating tools. To

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

FEAST ’24, October 14-18, 2024, Salt Lake City, UT, USA.

Alhanahnabh et al.

Table 1: Selected publications on software debloating landscape.

In/Out Removal Granularity Analysis Functionality Evaluation Criteria
Tool Venue Artif:
rtifacts > o & s N &d
< & & & & & N N
& o sl & F ¢ & & & SN SIS &
SIS 8 ||| N | <& > & 5 S & & &
|9 P |F | &L |9 > &« il 3 < < N N <

Hacksaw [26] CCS'23 S2B x 4 x X v % x x % x x % % x x X
C2C [22] CCs’22 S2pP x x x x v x x 4 X v 4 v X v X x
Slimium [47] CCS’20 S2B X v x v v v X X v v X v v v X x
NA [19] CCS’19 B2B X X v v v v v X v v v v v X X X
CHISEL [24] CCS'18 S28 X v 4 4 x 4 4 X 4 x X v v v X X
PacJam [43] ASIACCS *22 S28 v x x v v v X x 4 X 4 v X 4 X x
LightBlue [60] USENIX Sec’21 S2B,B2B | X v v 4 v 4 x 4 X X X v v X X X
Temporal Specal. [21] | USENIX Sec’20 S2p x v x X v X x v X X X v X X X X
RAZOR [46] USENIX Sec’19 B2B x X v x v 4 x X 4 X 4 v v v X x
Piece-Wise [48] USENIX Sec’18 S2B X v x X v v X v X v x v v v X x
IRQDebloat [25] S&P’22 B2B X v X X v v X v X v X v X X X X
LMCAS [8] EuroS&P’22 S2B X v v v v v X v X v X v v v X X
Saffire [40] EuroS&P’20 S2B x v x X v v x x X v 4 v X 4 X x
Mininode [30] RAID’20 S28 v v X X v X X X X X X v v X X X
CONFINE [20] RAID20 C2P x X x x 4 4 X x v X x v %4 X X X
CARVE [13] FEAST’19 s28 X X v 4 v x x 4 X v X v v X X x
BinRec [32] FEAST’18 B2B x v v v v v X v X v v v v X X x
Nibbler [4] ACSAC’19 B2B x 4 x x v x x x X X 4 v X v X X
JShrink [14] FSE’20 B2B v v X v v v X X v v X v v X X X
JReduce [29] FSE'19 B2B v X X X X v X X v X X X X v X X
Cimplifier [49] FSE'17 ca2c v X X x v 4 x X v X X v v v X x
Picup [58] FSE'23 S2B X v X x v v/ v/ v/ v/ v x v v x x x
Minimon [37] ICSE’24 B2B X v X X v v v X X v X X v X X X
Perses [56] ICSE'18 S28 x v v v v v x x v X X X X v X X
AutoDebloater [36] ASE’23 B2B v v X X v v X X v X X X X X X X
DomGad [61] ASE’20 s2s X X v v v v X v X 4 X v v 4 X X
Blanklt [45] PLDI'20 B2B X v X X v v v X X v X v X v X X
C-Reduce [51] PLDI'12 S28 X v v v v X X X v X v X v X X X
Decker [44] ASPLOS’23 S2B x v x X v v x v X v X v X v X x
pTrimmer [66] ASPLOS’22 B2B X v v X v X X X X X X v X X X X
Trimmer [6] TSE’22 S2B x v v v v X X v X v X v 4 v X x
XDebloat [57] TSE’21 B2B v v v v v X X v X v v X v v X X
NA [18] TSE’21 s2s X v v v X v X X v X X X X X X X
BLADE [9] SecDev’23 S28 x v v v v v x X 4 X X v 4 4 X x
JDBL [54] Trans. SE. Meth/23 | S2B v v X X X v X X v v X X v X X X
OCCAM [42] Commun. ACM’23 | S2B x v v v v X X 4 X X x v %4 v X x
Ancile [11] CODASPY 21 S2B X 4 x x v 4 X v X v X v v v X x
JSLIM [63] EISA 2021 S28 x v x X 4 x 4 x X X X v v x X X
PRAT [59] TOSEM’21 S2B X v x 4 v v x 4 4 X X v v X X x
DEPCLEAN [55] Empir SE’21 D2D v x X x v X X v X X X X X X X X
DECAF [15] ICSE-SEIP’20 B2B v X x X v v x v v 4 4 v v X X x
NA [31] EuroSec'19 S2B v v X x v v X v X v X v X X X X
DeepOCCAM [33] MLforSystems’'19 | S2B x v v v v X v 4 X X x v X v X x
BINTRIMMER [50] LNSC’19 B2B X 4 v x v X x x X v X v v v X x
RedDroid [27] ISSRE’18 B2B x v X x v x x x X X X X x X X X
SPEAKER [34] DIMVA'17 C2P x x x x X 4 x x 4 X 4 v X X X X
Jred [28] COMPSAC’16 B2B v v X X v X X X X X v v X v X X
NA [16] ISLPED *01 S28 X v v v v v X v X v X X v 4 X 4

identify bloat and eliminate it, developers use existing tools that
take a bloated artifact, such as an application, container, or firmware,
often coupled with a deployment context, and then produce a de-
bloated artifact utilizing a particular debloating strategy applied by
the tool. After that, the quality of the output artifact is assessed us-
ing various evaluation criteria. As depicted in Figure 1, in addition
to bloated artifact, debloating strategy may receive additional input
(that is, in the form of annotation or instrumentation) to indicate
the required functionality that should be preserved in the output
artifact. The next section discusses the details of this debloating
workflow in the context of the reviewed literature and our proposed
taxonomy.

3 MULTI-LEVEL TAXONOMY

Our goal is to study and contrast existing software debloating
tools and techniques. To achieve this, we first surveyed related
research covering all papers published in top-tier security confer-
ences, namely IEEE S&P, USENIX Security, ACM CCS, and NDSS
from 2000 to March 2024. We also selected papers from top academic
conferences and journals broadly related to software debloating.
This process yielded 48 publications that are summarized in Table 1.

Figure 2 shows the multilevel taxonomy we designed to catego-
rize the software debloating landscape.

In this taxonomy, the top level outlines the three main stages
of the workflow. Lower levels categorize specific aspects of the
debloating landscape, based on the publications listed in Table 1,
under each stage of the workflow.

3.1 Input/Output Artifacts

Debloating tools require an input to generate an output. These
inputs and outputs are referred to as artifacts and can come in
various formats, such as source code, binaries, and containerized
applications. The output resulting from debloating can also take
any of these forms, or might even be a policy. Figure 3 shows the
number of publications with proposed tools that use one or more
of the following type mappings between input and output artifacts:

e Source-to-Source (S28). In this workflow, the debloating
operation is applied to the given source code, resulting in
a minimized source code output. CHISEL [24] and Minin-
ode [30] execute their debloating procedures for C/C++ and
JavaScript programs, respectively.

e Source-to-Binary (S2B). The workflow starts with the source
code and transforms it into an Intermediate Representation
(IR). The debloating process then operates on the IR code. Ul-
timately, the debloated program is produced in binary format.
For instance, LMCAS [8] debloats C/C++ programs by first

SoK: Software Debloating Landscape and Future Directions

pers

(18]
o
~

of Tools,

oON PO

FEAST °24, October 14-18, 2024, Salt Lake City, UT, USA.

Debloating Landscape

+]]
Input/output Debloating Evaluation
Artifacts Strategy Criteria
| . |
v v]
R | — Performance
Input Functionality Analysis Gr:::;I):;ty
Source onfiguration Analysis
4“ Dynamic Basic Block
/| Binary Test cases P Analysi | Robustness
unction
; Container Hybrid R i
Annotation M Analysis Usability
ML-Assisted —’{ Dependency — Integration
- Static/Dynamic
Analysis
— Sustainability

Figure 2: Taxonomy of software debloating landscape.

converting them into LLVM IR, resulting in executable out-
put. Tools utilizing this debloating workflow have been ap-
plied to platforms such as firmware, as seen with PRAT [59].
Other tools in this category focus on trimming shared li-
braries, an approach exemplified by Piece-Wise[48]. Certain
tools implementing this workflow extend beyond trimming
by incorporating additional checks, such as Saffire [40].

o Artifact-to-Policy (S2P or C2P). This workflow generates
a policy (i.e. seccomp()) that limits the program’s behavior at
run-time. As observed in the reviewed literature, the input
artifact for this process can be either source code (S2P) or a
containerized application (C2P), as exemplified in debloating
tools such as temporal-specialization [21] and Confine [20].
Generally, these debloating methods do not involve actual
trimming but focus on minimizing the use of unnecessary
resources, such as syscalls.

e
N B OO
|

10

C2C D2D S2B, C2P S2P S2S S2B B2B
B2B

Figure 3: 1/0 artifacts type mappings across tools.

¢ Binary-to-Binary (B2B). The workflow begins with a bi-
nary file and results in a debloated program, also in binary
format. Similar to S2B tools that apply additional checks,
certain tools implementing this workflow extend beyond
trimming, such as Razor [46], and incorporate extra checks,
like those of binary control-flow trimming [19], to safeguard
CFL Consequently, the size of the debloated programs may
increase in some instances. This debloating approach has
been applied to various platforms, including Android (e.g.,
XDebloat [57], RedDroid [27]) and firmware (e.g., IRQDe-
bloat [25], DECAF [15]). A different group of tools focus ex-
clusively on debloating shared libraries, such as BlankIt [4]
and Nibbler [4]. Likewise, tools such as yTrimmer [66] are
designed to debloat shared libraries, but specifically within
the context of firmware images.

e Container-to-Container/s (C2C). In this workflow, the
debloating operation takes a container as input and produces
a debloated version of the same container or divides it into
multiple containers, each with a portion of the application
from the original container. For instance, Cimplifier [49] can
function in two modes: either by trimming the container or
partitioning it into smaller segments. MMLB [64] builds on
the trimming feature of Cimplifier to empirically investigate
bloat in machine learning (ML) containers.

¢ Dependency-to-Dependency (D2D). This workflow ac-
cepts inputs consisting of dependency and build manage-
ment files, like the Project Object Model (POM), where de-
velopers outline details about the project, its dependencies,
and the build process. The output is a debloated version of
the dependency management file(s). An example of this is
DepClean [55], which specializes in debloating POM files in
Java projects.

FEAST ’24, October 14-18, 2024, Salt Lake City, UT, USA.

e el
oON b

of Tools/papers

O N B O

Alhanahnabh et al.

Figure 4: Strategies to identify functionality across tools.

Some tools adopt a more comprehensive approach to debloat vari-
ous layers of the software stack, thereby combining multiple type
mappings for input/output artifacts. For instance, LightBlue [60]
debloats the Bluetooth stack, specifically focusing on debloating
applications (S2B) and firmware (B2B).

3.2 Debloating Strategies

This stage of the workflow outlines the methods used by developers
to determine unnecessary functionalities, pinpoint their associated
dependencies, and remove them. As shown in Figure 2, this stage
is divided into three main components, as follows:

3.2.1 Functionality. This component presents three strategies to
identify unneeded functionalities at a high level.

o Configuration. In this strategy, the debloating workflow
receives program configurations as input, which are to be
preserved in the debloated output. These configurations may
also specify particular points of interest, such as specific func-
tions and libraries. For example, LMCAS [8] requires con-
figurations via command-line arguments or a configuration
file, mirroring the program’s standard execution approach.
Conversely, tools like OCCAM [42] and Trimmer [5, 6] use a
template format to input the required configurations. Other
tools, like temporal-specialization [21], anticipate the config-
uration in the form of a list of key functions from the input
artifact.

o Test cases. This debloating strategy requires a collection
of test cases to represent the program’s usage profile post-
debloating. Tools like Chisel [24] and Razor [46] use test
cases supplied by the developers as input. Other tools, such
as Ancile [11], employ fuzzing techniques to generate these
test cases. Hacksaw [26] utilizes hardware probing to identify
necessary device drivers to perform kernel debloating.

e Annotation. In this strategy, the input program is aug-
mented with specific logic. This addition is either to gather
particular information during dynamic analysis, such as pro-
filing, or to initiate different actions. For instance, LMCAS [8]

marks specific locations in the program to signal the com-
pletion of the profiling process. Conversely, Slimium [47]
employs binary instrumentation to track functions that are
called during runtime.

Six tools [4, 21, 27, 28, 30, 63] (under the none category in Figure 4)
depend solely on static analysis techniques to pinpoint unneeded
functionalities, eliminating the need for explicit expression of these
functionalities. In particular, all these tools use only static analysis
and identify unused code by performing a reachability analysis
on call graphs [4, 27] or dependency graphs [30]. This indicates
that the functionality can be further classified into two categories:
unreachable content and feature removal, where the latter pertains
to reachable but non-essential content.

3.2.2 Analysis. This component describes program analysis tech-
niques that have been utilized by various software debloating tools.

e Static Analysis. This analysis focuses on building various
types of graphs, such as call graphs, Control Flow Graphs
(CFGs), and dependency graphs, to identify dependencies at
multiple levels of granularity. C2C [22] generates a CFG and
performs data flow analysis during its analysis. Additionally,
an important aspect of static analysis is the optimization and
elimination of unnecessary dependencies. For example, LM-
CAS [8], OCCAM [42], and Trimmer [6] implement LLVM
passes to simplify and remove unneeded code.

e Dynamic Analysis. In this analysis technique, run-time
data is collected to identify essential dependencies that must
be preserved. This technique typically involves instrument-
ing the application before execution. Various tools have been
used to aid in dynamic analysis. For example, LMCAS [8] and
LightBlue [60] employ symbolic execution, whereas other
tools such as Slimium [47] have developed their own dy-
namic analysis methods.

Machine Learning (ML) is often employed in conjunction with pro-
gram analysis. An example of this is Chisel [24], which combines
delta debugging with reinforcement learning. Various tools have
utilized a blend of static and dynamic analyses, sometimes supple-
mented with machine learning (ML). For instance, Confine [20]

SoK: Software Debloating Landscape and Future Directions

=R NN
o v o wu

of Tools/papers

wv
w

FEAST °24, October 14-18, 2024, Salt Lake City, UT, USA.

23

o
-
IN

Figure 5: Analysis techniques across tools.

and Piece-Wise [48] employ hybrid analysis techniques for debloat-
ing containers and libraries. BlankIt [45], another hybrid analysis
tool, focuses on debloating shared libraries and incorporates ML,
specifically decision trees, to predict the functions required at a
particular call site during execution. Figure 5 presents the number
of debloating tools that fall under the different analysis categories.

3.2.3 Removal Granularity. Software debloating tools aim to elimi-
nate unnecessary code and dependencies, but they do so at different
levels of granularity. As shown in Figure 2, there are four distinct
levels of removal granularity in the context of software debloating:
(1) instruction or statement, (2) basic block, (3) function or library,
and (4) file, including class or dependency management. Notably,
some tools, such as Confine [20], temporal-specialization [21], and
SPEAKER [34], primarily aim to reduce syscalls rather than directly
removing code elements.

3.3 Evaluation Criteria

In this stage of the workflow, measurable metrics are applied to the
artifact before and after debloating to assess its effectiveness from
multiple perspectives. As shown in Figure 6, the following are the
main evaluation criteria used in the reviewed literature:

e Performance. This metric evaluates the performance of
the debloated program in terms of its memory usage, CPU
utilization, bandwidth, and runtime.

e Security. Tools for software debloating, particularly those
created by the security community, are designed primarily
to improve security and minimize potential attack vectors.
Their security assessment predominantly revolves around
quantifying the count of Common Vulnerability Exposures
(CVEs) and gadgets.

e Robustness. This metric is analyzed from various view-
points: correctness and generality. The latter evaluates how
accurately a debloated program functions with inputs that
were not part of the original usage profile [62]. Methods
like fuzzing and test cases are used to assess the correctness.
Tools like LMCAS [8] and Razor [46] also examine for un-
desirable behaviors, including incorrect operations, infinite
loops, crashes, and missing output.

o Usability. This metric focuses on assessing the resources
needed by the debloating tool (not the debloated artifact),

examined from the perspective of runtime and functionality
requirements. For example, Chisel [24] utilizes reinforcement
learning along with delta debugging, thus increasing the
overhead of running it.

Integration. BLADE [9] views software debloating as essen-
tial for ecosystems such as clouds, requiring rapid analysis
to support integration with continuous integration and con-
tinuous delivery (CI/CD) infrastructures. Consequently, this
metric evaluates the capacity of debloating tools to integrate
with established ecosystem infrastructures. Despite BLADE’s
vision, its evaluation did not encompass demonstrating inte-
gration capabilities.

Sustainability. This metric evaluates the quality of debloated
programs based on carbon footprint and energy reduction.
We found only one debloating tool [16] that primarily targets
energy reduction and thus focuses on only evaluating this
factor.

4 FUTURE RESEARCH

This section presents open problems in software debloating and
calls for solutions that are practical, usable, and secure.

4.1 Software Robustness

Software debloating tools typically prioritize the preservation of
error-free paths by utilizing test cases that reflect the intended be-
havior or providing accurate configurations. As a result, event han-
dler procedures can be removed from the debloated programs, affect-
ing the reliability and robustness of the application. Ancile [11] in-
cludes the reachable exception handlers in the final binary. Carve [13]
avoids introducing vulnerabilities by replacing debloated code with

replacement code that preserves high-level program properties.
In some cases, during the debloating process, Carve replaces the

switch block with exception handling code that traps execution be-
fore code blocks that become vulnerable after debloating. However,

more work is needed to balance robustness and removal [65].

4.2 SBOM Generation

The generation of Software Bills of Materials (SBOMs) has gained
significant importance as regulatory bodies like the US National

FEAST ’24, October 14-18, 2024, Salt Lake City, UT, USA.

45 -
40 A
35
30
25
20 |
15
10 -

Performance Security Robustness Usability Integration Sustainability
HYes ®mNo

Figure 6: Evaluation criteria across tools.

Telecommunications and Information Administration (NTIA) man-
date the disclosure of primary and transitive dependencies, thereby
documenting the entire code provenance [3]. MMLB [64] constructs
dependency trees for ML containers to investigate the impact of
debloating on the number of direct and transitive dependencies.
Recent dependency management approaches, such as DepsRAG,
advocate the use of large language models (LLMs) and knowledge
graphs (KGs) to support the generation of SBOMs [7]. Identifying
software dependencies constitutes a fundamental aspect of the de-
bloating process, positioning it as a potential facilitator for SBOM
generation. The intersection highlights the necessity for further
research in this domain.

4.3 ML for Debloating

Our investigation indicates that only a limited number of tools
(7 out of 48) utilize machine learning (ML) to support debloating.
Given the widespread adoption of ML, particularly LLMs, in tasks
such as code generation and program repair, there is a compelling
need to explore how LLMs can enhance the debloating process.

4.4 Debloating Impact on Sustainability

In our literature review, we found only one debloating tool [16]
specifically designed to reduce energy consumption. This under-
scores the need for increased focus and effort in this area. Con-
sequently, we consider this to be an open problem that is worth
investigating, especially if new debloating methods can signifi-
cantly decrease energy use and, as a result, cut down on carbon
emissions. Subsequently, researchers might investigate the creation
of debloating-driven methods aimed at eliminating software depen-
dencies to achieve energy savings.

4.5 CI/CD Integration

Software debloating has often been approached in a siloed manner,
which has limited its widespread adoption in real-world scenarios.
In today’s Software Development Lifecycle (SDLC) and software
supply chains, there is a focus on transparency and automation,
incorporating practices like CI/CD. CI involves regularly merging
code changes from various developers into a central repository,
often multiple times per day. CD ensures that the code in the repos-
itory is always ready for release, having passed automated tests and

Alhanahnabh et al.

quality assessments. Consequently, there are several challenges
to address for integrating software debloating tools into CI/CD
pipelines [9]. For example, key considerations include determining
which test cases should validate a release that includes a debloated
version of the application, as well as deciding the necessary security
analyses.

Software accreditation presents a significant challenge in inte-
grating software debloating into the CI/CD pipeline. For example,
the formal Common Criteria certification process involved indepen-
dent validation of claims about specific properties of each target
of evaluation [1]. Typically, accreditation is performed prior to de-
ployment [38]. Consequently, various approaches can be adopted
for CI/CD integration. If debloating occurs post-deployment, as
in the case of RAZOR [46], the accreditation process must be re-
peated. Conversely, if debloating is performed before the software’s
shipment, accreditation is required only once.

5 CONCLUSION

Software debloating is an essential dependency management ap-
proach for enhancing both security and performance by removing
unnecessary code from applications. Our SoK highlights the diverse
techniques and tools available, identifies significant advancements,
and points out continuing challenges. We provide a foundational
reference, aiming to guide future research and improvements in
software debloating.

ACKNOWLEDGMENTS

This material is based on work supported by the National Science
Foundation (NSF) under Grant ACI-1440800 and the Office of Naval
Research (ONR) under Contracts N68335-17-C-0558 and N00014-24-
1-2049. Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or ONR.

REFERENCES

[1] [n.d.]. Common Criteria Publications. https://www.commoncriteriaportal.org/
cc/index.cfm.

[2] 2017. U.S. Navy Program Guide. https://media.defense.gov/2020/May/18/
2002302043/-1/-1/1/NPG17.PDF. [Accessed 15-06-2024].

[3] 2021. The Minimum Elements For a Software Bill of Materials. https://www.ntia.
doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf. [Accessed
15-06-2024].

[4] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Geor-
gios Portokalidis. 2019. Nibbler: Debloating Binary Shared Libraries. In 35th
Annual Computer Security Applications Conference (San Juan, Puerto Rico, USA)
(ACSAC ’19). Association for Computing Machinery, New York, NY, USA, 70-83.
https://doi.org/10.1145/3359789.3359823

[5] Aatira Ahmad, Mubashir Anwar, Hashim Sharif, Ashish Gehani, and Fareed Zaffar.
2022. Trimmer: Context-Specific Code Reduction. 37th IEEE/ACM Conference on
Automated Software Engineering (ASE) (2022).

[6] Aatira Anum Ahmad, Abdul Rafae Noor, Hashim Sharif, Usama Hameed, Shoaib
Asif, Mubashir Anwar, Ashish Gehani, Fareed Zaffar, and Junaid Haroon Sid-
diqui. 2022. Trimmer: An Automated System for Configuration-Based Software
Debloating. IEEE Transactions on Software Engineering 48, 9 (2022), 3485-3505.
https://doi.org/10.1109/TSE.2021.3095716

[7] Mohannad Alhanahnah, Yazan Boshmaf, and Benoit Baudry. 2024. DepesRAG:
Towards Managing Software Dependencies using Large Language Models. arXiv
preprint arXiv:2405.20455 (2024).

[8] Mohannad Alhanahnah, Rithik Jain, Vaibhav Rastogi, Somesh Jha, and Thomas
Reps. 2022. Lightweight, Multi-Stage, Compiler-Assisted Application Specializa-
tion. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P).
251-269. https://doi.org/10.1109/EuroSP53844.2022.00024

https://www.commoncriteriaportal.org/cc/index.cfm
https://www.commoncriteriaportal.org/cc/index.cfm
https://media.defense.gov/2020/May/18/2002302043/-1/-1/1/NPG17.PDF
https://media.defense.gov/2020/May/18/2002302043/-1/-1/1/NPG17.PDF
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://doi.org/10.1145/3359789.3359823
https://doi.org/10.1109/TSE.2021.3095716
https://doi.org/10.1109/EuroSP53844.2022.00024

: Software Debloating Landscape and Future Directions

Muaz Ali, Rumaisa Habib, Ashish Gehani, Sazzadur Rahaman, and Zartash Uzmi.
2023. Blade: Scalable Source Code Debloating Framework. In 2023 IEEE Secure
Development Conference (SecDev).

Muaz Ali, Muhammad Muzammil, Faraz Karim, Ayesha Naeem, Rukhshan Ha-
roon, Muhammad Haris, Huzaifah Nadeem, Waseem Sabir, Fahad Shaon, Fareed
Zaffar, et al. 2023. SoK: A Tale of Reduction, Security, and Correctness-Evaluating
Program Debloating Paradigms and Their Compositions. ESORICS.

Priyam Biswas, Nathan Burow, and Mathias Payer. 2021. Code Specialization
through Dynamic Feature Observation. In 11th ACM Conference on Data and
Application Security and Privacy (Virtual Event, USA) (CODASPY °21). Association
for Computing Machinery, New York, NY, USA, 257-268. https://doi.org/10.
1145/3422337.3447844

Michael D. Brown, Adam Meily, Brian Fairservice, Akshay Sood, Jonathan Dorn,
Eric Kilmer, and Ronald Eytchison. 2024. A Broad Comparative Evaluation of
Software Debloating Tools. In 33rd USENIX Security Symposium (USENIX Security
24). USENIX Association, Philadelphia, PA, 3927-3943. https://www.usenix.org/
conference/usenixsecurity24/presentation/brown

Michael D. Brown and Santosh Pande. 2019. CARVE: Practical Security-Focused
Software Debloating Using Simple Feature Set Mappings. In 3rd ACM Workshop on
Forming an Ecosystem Around Software Transformation (London, United Kingdom)
(FEAST’19). Association for Computing Machinery, New York, NY, USA, 1-7.
https://doi.org/10.1145/3338502.3359764

Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung
Kim. 2020. JShrink: In-Depth Investigation into Debloating Modern Java Appli-
cations. In 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Virtual Event, USA)
(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,
135-146. https://doi.org/10.1145/3368089.3409738

Jake Christensen, Ionut Mugurel Anghel, Rob Taglang, Mihai Chiroiu, and Radu
Sion. 2020. DECAF: Automatic, Adaptive De-bloating and Hardening of COTS
Firmware. In 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, 1713-1730.

Eui-Young Chung, Luca Benini, and Giovanni De Micheli. 2001. Automatic
Source Code Specialization for Energy Reduction. In International Symposium on
Low Power Electronics and Design (Huntington Beach, California, USA) (ISLPED
’01). Association for Computing Machinery, New York, NY, USA, 80-83. https:
//doi.org/10.1145/383082.383099

FEAST °24, October 14-18, 2024, Salt Lake City, UT, USA.

//doi.org/10.1145/3576915.3623208
Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, and Dinghao Wu. 2018. RedDroid:

Android Application Redundancy Customization Based on Static Analysis. In 2018
IEEE 29th International Symposium on Software Reliability Engineering (ISSRE).
189-199. https://doi.org/10.1109/ISSRE.2018.00029

Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. JRed: Program Customization
and Bloatware Mitigation Based on Static Analysis. In 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), Vol. 1. 12-21. https:
//doi.org/10.1109/COMPSAC.2016.146

Christian Gram Kalhauge and Jens Palsberg. 2019. Binary Reduction of Depen-
dency Graphs. In 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Tallinn,
Estonia) (ESEC/FSE 2019). Association for Computing Machinery, New York, N,
USA, 556-566. https://doi.org/10.1145/3338906.3338956

Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing
the Attack Surface of Node.js Applications. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020). USENIX Association,
San Sebastian, 121-134.

Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis. 2019.
Configuration-Driven Software Debloating. In 12th European Workshop on Sys-
tems Security (Dresden, Germany) (EuroSec ’19). Association for Computing
Machinery, New York, NY, USA, Article 9, 6 pages. https://doi.org/10.1145/
3301417.3312501

Taddeus Kroes, Anil Altinay, Joseph Nash, Yeoul Na, Stijn Volckaert, Herbert Bos,
Michael Franz, and Cristiano Giuffrida. 2018. BinRec: Attack Surface Reduction
Through Dynamic Binary Recovery. In Workshop on Forming an Ecosystem Around
Software Transformation (Toronto, Canada) (FEAST ’18). Association for Com-
puting Machinery, New York, NY, USA, 8-13. https://doi.org/10.1145/3273045.
3273050

Nham Le, Ashish Gehani, Arie Gurfinkel, Susmit Jha, and Jorge Navas. 2019.
Reinforcement Learning Guided Software Debloating. 2nd Workshop on Machine
Learning for Systems (2019).

Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, Yuewu Wang, and
Qi Li. 2017. SPEAKER: Split-phase execution of application containers. In Detec-
tion of Intrusions and Malware, and Vulnerability Assessment: 14th International
Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings 14. Springer,
230-251.

J Ligatti, M Abadi, M Bidiu, and U Erlingsson. 2005. Control Flow integrity. In
12th ACM Conference on Computer and communications security.
[36] Jiakun Liu, Xing Hu, Ferdian Thung, Shahar Maoz, Eran Toch, Debin Gao, and

[17] Johannes Diising and Ben Hermann. 2022. Analyzing the Direct and Transitive [35
Impact of Vulnerabilities onto Different Artifact Repositories. Digital Threats 3,

4, Article 38 (feb 2022), 25 pages. https://doi.org/10.1145/3472811

Fabio de A. Farzat, Marcio de O. Barros, and Guilherme H. Travassos. 2021.
Evolving JavaScript Code to Reduce Load Time. IEEE Transactions on Software
Engineering 47, 8 (2021), 1544-1558. https://doi.org/10.1109/TSE.2019.2928293
Masoud Ghaffarinia and Kevin W. Hamlen. 2019. Binary Control-Flow Trimming.
In ACM SIGSAC Conference on Computer and Communications Security (London,
United Kingdom) (CCS ’19). Association for Computing Machinery, New York,
NY, USA, 1009-1022. https://doi.org/10.1145/3319535.3345665

Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. 2020. Confine: Automated System Call Policy Generation for Container
Attack Surface Reduction. In 23rd International Symposium on Research in At-
tacks, Intrusions and Defenses (RAID 2020). USENIX Association, San Sebastian,
443-458.

Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychronakis.
2020. Temporal System Call Specialization for Attack Surface Reduction. In 29th
USENIX Conference on Security Symposium (SEC’20). USENIX Association, USA,
Article 99, 18 pages.

Seyedhamed Ghavamnia, Tapti Palit, and Michalis Polychronakis. 2022. C2C: Fine-
Grained Configuration-Driven System Call Filtering. In ACM SIGSAC Conference
on Computer and Communications Security (Los Angeles, CA, USA) (CCS °22).
Association for Computing Machinery, New York, NY, USA, 1243-1257. https:
//doi.org/10.1145/3548606.3559366

Muhammad Hassan, Talha Tahir, Muhammad Farrukh, Abdullah Naveed, Anas
Naeem, Fahad Shaon, Fareed Zaffar, Ashish Gehani, and Sazzadur Rahaman.
2023. Evaluating Container Debloaters. 8th IEEE Secure Development Conference
(SecDev) (2023). https://doi.org/10.1109/SecDev56634.2023.00023

Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 380-394. https://doi.org/10.
1145/3243734.3243838

Zhenghao Hu and Brendan Dolan-Gavitt. 2022. IRQDebloat: Reducing Driver
Attack Surface in Embedded Devices. In 2022 IEEE Symposium on Security and
Privacy (SP). 1608-1622. https://doi.org/10.1109/SP46214.2022.9833695
Zhenghao Hu, Sangho Lee, and Marcus Peinado. 2023. Hacksaw: Hardware-
Centric Kernel Debloating via Device Inventory and Dependency Analysis. In
ACM SIGSAC Conference on Computer and Communications Security (CCS °23).
Association for Computing Machinery, New York, NY, USA, 1994-2008. https:

David Lo. 2023. AutoDebloater: Automated Android App Debloating. In 2023 38th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 2090-2093.

[37] Jiakun Liu, Zicheng Zhang, Xing Hu, Ferdian Thung, Shahar Maoz, Debin Gao,

Eran Toch, Zhipeng Zhao, and David Lo. 2024. MiniMon: Minimizing Android
Applications with Intelligent Monitoring-Based Debloating. In 2024 IEEE/ACM
46th International Conference on Software Engineering (ICSE). IEEE Computer
Society, 990-990.

Miron Livny, Bart Miller, Jim Basney, Von Welch, Irene Landrum, James A Kupsch,
Josef Burger, Jeffery Peterson, and Abe Megahed. 2020. Continuous Software
Assurance Through a National Marketplace. Final Technical Report, AFRL-RI-
RS-TR-2020-214.

Gregory Malecha, Ashish Gehani, and Natarajan Shankar. 2015. Automated
Software Winnowing. 30th ACM Symposium on Applied Computing (SAC) (2015).
https://doi.org/10.1145/2695664.2695751

Shachee Mishra and Michalis Polychronakis. 2020. Saffire: Context-sensitive Func-
tion Specialization against Code Reuse Attacks. In 2020 IEEE European Symposium
on Security and Privacy (EuroS&P). 17-33. https://doi.org/10.1109/EuroSP48549.
2020.00010

Parastoo Mohagheghi, Reidar Conradi, Ole M Killi, and Henrik Schwarz. 2004. An
empirical study of software reuse vs. defect-density and stability. In Proceedings.
26th International Conference on Software Engineering. IEEE, 282-291.

Jorge A. Navas and Ashish Gehani. 2023. OCCAM-v2: Combining Static and
Dynamic Analysis for Effective and Efficient Whole-Program Specialization.
Commun. ACM 66, 4 (mar 2023), 40-47. https://doi.org/10.1145/3583112
Pardis Pashakhanloo, Aravind Machiry, Hyonyoung Choi, Anthony Canino,
Kihong Heo, Insup Lee, and Mayur Naik. 2022. PacJam: Securing Depen-
dencies Continuously via Package-Oriented Debloating. In ACM Asia Con-
ference on Computer and Communications Security (Nagasaki, Japan) (ASIA
CCS °22). Association for Computing Machinery, New York, NY, USA, 903-916.
https://doi.org/10.1145/3488932.3524054

Chris Porter, Sharjeel Khan, and Santosh Pande. 2023. Decker: Attack Surface Re-
duction via On-Demand Code Mapping. In 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 192-206. https://doi.org/10.1145/3575693.3575734

Chris Porter, Girish Mururu, Prithayan Barua, and Santosh Pande. 2020. BlankIt
Library Debloating: Getting What You Want Instead of Cutting What You Don’t.

https://doi.org/10.1145/3422337.3447844
https://doi.org/10.1145/3422337.3447844
https://www.usenix.org/conference/usenixsecurity24/presentation/brown
https://www.usenix.org/conference/usenixsecurity24/presentation/brown
https://doi.org/10.1145/3338502.3359764
https://doi.org/10.1145/3368089.3409738
https://doi.org/10.1145/383082.383099
https://doi.org/10.1145/383082.383099
https://doi.org/10.1145/3472811
https://doi.org/10.1109/TSE.2019.2928293
https://doi.org/10.1145/3319535.3345665
https://doi.org/10.1145/3548606.3559366
https://doi.org/10.1145/3548606.3559366
https://doi.org/10.1109/SecDev56634.2023.00023
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1109/SP46214.2022.9833695
https://doi.org/10.1145/3576915.3623208
https://doi.org/10.1145/3576915.3623208
https://doi.org/10.1109/ISSRE.2018.00029
https://doi.org/10.1109/COMPSAC.2016.146
https://doi.org/10.1109/COMPSAC.2016.146
https://doi.org/10.1145/3338906.3338956
https://doi.org/10.1145/3301417.3312501
https://doi.org/10.1145/3301417.3312501
https://doi.org/10.1145/3273045.3273050
https://doi.org/10.1145/3273045.3273050
https://doi.org/10.1145/2695664.2695751
https://doi.org/10.1109/EuroSP48549.2020.00010
https://doi.org/10.1109/EuroSP48549.2020.00010
https://doi.org/10.1145/3583112
https://doi.org/10.1145/3488932.3524054
https://doi.org/10.1145/3575693.3575734

FEAST ’24, October 14-18, 2024, Salt Lake City, UT, USA.

In 41st ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (London, UK) (PLDI 2020). Association for Computing Machinery, New
York, NY, USA, 164-180. https://doi.org/10.1145/3385412.3386017

Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim,

and Wenke Lee. 2019. RAZOR: A Framework for Post-deployment Software

Debloating. In 28th USENIX Security Symposium (USENIX Security 19). USENIX

Association, Santa Clara, CA, 1733-1750.

Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee.

2020. Slimium: Debloating the Chromium Browser with Feature Subsetting. In

ACM SIGSAC Conference on Computer and Communications Security (Virtual

Event, USA) (CCS ’20). Association for Computing Machinery, New York, NY,

USA, 461-476. https://doi.org/10.1145/3372297.3417866

[48] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through
Piece-Wise Compilation and Loading. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Baltimore, MD, 869-886.

[49] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. 2017. Cimplifier: Automatically Debloating Containers. In 11th Joint
Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
2017). Association for Computing Machinery, New York, NY, USA, 476-486.
https://doi.org/10.1145/3106237.3106271

[50] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna,
and Christopher Kruegel. 2019. Bintrimmer: Towards static binary debloating
through abstract interpretation. In Detection of Intrusions and Malware, and
Vulnerability Assessment: 16th International Conference, DIMVA 2019, Gothenburg,
Sweden, June 19-20, 2019, Proceedings 16. Springer, 482-501.

[51] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-Case Reduction for C Compiler Bugs. In 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation (Beijing, China)
(PLDI ’12). Association for Computing Machinery, New York, NY, USA, 335-346.
https://doi.org/10.1145/2254064.2254104

[52] Natarajan Shankar and Ashish Gehani. 2012. Static Previrtualization. 12th High
Confidence Software and Systems Conference (HCSS) (2012).

[53] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher

Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time code reuse: On the

effectiveness of fine-grained address space layout randomization. In 2013 IEEE

symposium on security and privacy. IEEE, 574-588.

César Soto-Valero, Thomas Durieux, Nicolas Harrand, and Benoit Baudry. 2023.

Coverage-Based Debloating for Java Bytecode. ACM Trans. Softw. Eng. Methodol.

32, 2, Article 38 (apr 2023), 34 pages. https://doi.org/10.1145/3546948

[55] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. 2021.

A comprehensive study of bloated dependencies in the maven ecosystem. Empir-

ical Software Engineering 26, 3 (2021), 45.

Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.

Perses: Syntax-Guided Program Reduction. In 2018 IEEE/ACM 40th International

[46

[47

[54

[56

[57

[58

[60

[61

(63

(64

[65

[66

Alhanahnabh et al.

Conference on Software Engineering (ICSE). 361-371. https://doi.org/10.1145/
3180155.3180236

Yutian Tang, Hao Zhou, Xiapu Luo, Ting Chen, Haoyu Wang, Zhou Xu, and
Yan Cai. 2022. XDebloat: Towards Automated Feature-Oriented App Debloating.
IEEE Transactions on Software Engineering 48, 11 (2022), 4501-4520. https:
//doi.org/10.1109/TSE.2021.3120213

Xiaoke Wang, Tao Hui, Lei Zhao, and Yueqiang Cheng. 2023. Input-Driven Dy-
namic Program Debloating for Code-Reuse Attack Mitigation. In 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE 2023). Association for Computing Machinery,
New York, NY, USA, 934-946. https://doi.org/10.1145/3611643.3616274

Ryan Williams, Tongwei Ren, Lorenzo De Carli, Long Lu, and Gillian Smith.
2021. Guided Feature Identification and Removal for Resource-Constrained
Firmware. ACM Trans. Softw. Eng. Methodol. 31, 2, Article 28 (dec 2021), 25 pages.
https://doi.org/10.1145/3487568

Jianliang Wu, Ruoyu Wu, Daniele Antonioli, Mathias Payer, Nils Ole Tippen-
hauer, Dongyan Xu, Dave (Jing) Tian, and Antonio Bianchi. 2021. LIGHTBLUE:
Automatic Profile-Aware Debloating of Bluetooth Stacks. In 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, 339-356.

Qi Xin, Myeongsoo Kim, Qirun Zhang, and Alessandro Orso. 2021. Subdomain-
Based Generality-Aware Debloating. In 35th IEEE/ACM International Confer-
ence on Automated Software Engineering (Virtual Event, Australia) (ASE ’20).
Association for Computing Machinery, New York, NY, USA, 224-236. https:
//doi.org/10.1145/3324884.3416644

Qi Xin, Qirun Zhang, and Alessandro Orso. 2023. Studying and Understanding
the Tradeoffs Between Generality and Reduction in Software Debloating. In 37th
IEEE/ACM International Conference on Automated Software Engineering (Rochester,
ML, USA) (ASE °22). Association for Computing Machinery, New York, NY, USA,
Article 99, 13 pages. https://doi.org/10.1145/3551349.3556970

Renjun Ye, Liang Liu, Simin Hu, Fangzhou Zhu, Jingxiu Yang, and Feng Wang.
2021. JSLIM: Reducing the known vulnerabilities of Javascript application by
debloating. In International Symposium on Emerging Information Security and

Applications. Springer, 128-143.
uaifeng Zhang, Mohannad Alhanahnah, Fahmi Abdulgadir Ahmed, Dyako

Fatih, Philipp Leitner, and Ahmed Ali-Eldin. 2024. Machine Learning Systems
are Bloated and Vulnerable. Proc. ACM Meas. Anal. Comput. Syst. 8, 1, Article 6
(feb 2024), 30 pages. https://doi.org/10.1145/3639032

Huaifeng Zhang, Mohannad Alhanahnah, and Ahmed Ali-Eldin. 2023. BLAFS: A
Bloat Aware File System. (2023). arXiv:2305.04641

Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming. 2022. One Size Does
Not Fit All: Security Hardening of MIPS Embedded Systems via Static Binary
Debloating for Shared Libraries. In 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS °22). Association for Computing Machinery, New York,
NY, USA, 255-270. https://doi.org/10.1145/3503222.3507768

https://doi.org/10.1145/3385412.3386017
https://doi.org/10.1145/3372297.3417866
https://doi.org/10.1145/3106237.3106271
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/3546948
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1109/TSE.2021.3120213
https://doi.org/10.1109/TSE.2021.3120213
https://doi.org/10.1145/3611643.3616274
https://doi.org/10.1145/3487568
https://doi.org/10.1145/3324884.3416644
https://doi.org/10.1145/3324884.3416644
https://doi.org/10.1145/3551349.3556970
https://doi.org/10.1145/3639032
https://arxiv.org/abs/2305.04641
https://doi.org/10.1145/3503222.3507768

	Abstract
	1 Introduction
	2 Software Debloating Workflow
	3 Multi-level Taxonomy
	3.1 Input/Output Artifacts
	3.2 Debloating Strategies
	3.3 Evaluation Criteria

	4 Future Research
	4.1 Software Robustness
	4.2 SBOM Generation
	4.3 ML for Debloating
	4.4 Debloating Impact on Sustainability
	4.5 CI/CD Integration

	5 Conclusion
	References

