
SoK: Software Debloating Landscape and Future Directions
Mohannad Alhanahnah
mohannad@cs.wisc.edu

University of Wisconsin-Madison
Computer Sciences

USA

Yazan Boshmaf
yboshmaf@hbku.edu.qa

Hamad Bin Khalifa University
Qatar Computing Research Institute

Qatar

Ashish Gehani
ashish.gehani@sri.com

SRI
USA

ABSTRACT
Software debloating seeks to mitigate security risks and improve
performance by eliminating unnecessary code. In recent years, a
plethora of debloating tools have been developed, creating a dense
and varied landscape. Several studies have delved into the liter-
ature, focusing on comparative analysis of these tools. To build
upon these efforts, this paper presents a comprehensive systemati-
zation of knowledge (SoK) of the software debloating landscape.
We conceptualize the software debloating workflow, which serves
as the basis for developing a multilevel taxonomy. This framework
classifies debloating tools according to their input/output artifacts,
debloating strategies, and evaluation criteria. Lastly, we apply the
taxonomy to pinpoint open problems in the field, which, together
with the SoK, provide a foundational reference for researchers aim-
ing to improve software security and efficiency through debloating.
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1 INTRODUCTION
Modern software development is heavily dependent on third-party
libraries to accelerate development and improve functionality [41].
However, this practice introduces significant complexity and in-
creases the attack surface of applications due to the integration of
various components, each with its own set of dependencies and
vulnerabilities [17]. The increased complexity increases security
risks and leads to code bloat, adversely affecting performance.
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Software debloating [39, 52], the process of removing unneces-
sary code from applications, is a promising approach to address
these issues. By eliminating extraneous features, debloating can
significantly reduce the attack surface, enhance performance, and
improve maintainability. This technique complements other se-
curity measures, such as Control-Flow Integrity (CFI) [35] and
Address Space Layout Randomization (ASLR) [53], by minimizing
the amount of code that needs protection. Software debloating has
gained renewed momentum, in part due to cyber defense initiatives,
such as the US Navy’s Total Platform Cyber Protection (TPCP) pro-
gram [2]. Subsequently, numerous debloating tools were introduced,
leading to various studies [10, 12, 23] that examine the literature
on software debloating and perform comparative analyses of the
prototyped tools. While these studies are thorough, their primary
objective is to empirically compare specific aspects, such as result-
ing binary size or gadget count, of particular types of debloating
tools, such as those that target C/C++ programs or containers. The
limited scope restricts the influence of these studies to a subset of de-
bloating tools, rather than providing a systematic, comprehensive,
and wide-ranging examination of the entire debloating domain,
which encompasses a diverse array of tools and evaluation criteria.
As such, there is a significant need to augment previous research
with a holistic and systematic study of the complete software de-
bloating landscape, thereby enabling more extensive and inclusive
conclusions about open issues and challenges in this domain.

To bridge this gap, this paper systematizes the current knowl-
edge on software debloating, providing a multilevel taxonomy that
divides the current landscape into three main categories corre-
sponding to the three main stages of the debloating workflow. We
also highlight open problems in the field, calling for more practi-
cal, usable, and secure debloating solutions that can be integrated
seamlessly into modern development workflows.

2 SOFTWARE DEBLOATINGWORKFLOW

Debloating

Strategy

Bloated Artifact Debloated Artifact

Functionality
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Figure 1: Typical debloating workflow.

Software bloat refers to unnecessary functionalities and their
corresponding software dependencies and components [39, 52].
Figure 1 depicts the typical workflow used by debloating tools. To
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Table 1: Selected publications on software debloating landscape.
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Hacksaw [26] CCS’23 S2B ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗
C2C [22] CCS’22 S2P ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗
Slimium [47] CCS’20 S2B ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗
NA [19] CCS’19 B2B ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
CHISEL [24] CCS’18 S2S ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗
PacJam [43] ASIACCS ’22 S2S ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗
LightBlue [60] USENIX Sec’21 S2B, B2B ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
Temporal Specal. [21] USENIX Sec’20 S2P ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
RAZOR [46] USENIX Sec’19 B2B ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗
Piece-Wise [48] USENIX Sec’18 S2B ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
IRQDebloat [25] S&P’22 B2B ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
LMCAS [8] EuroS&P’22 S2B ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
Saffire [40] EuroS&P’20 S2B ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗
Mininode [30] RAID’20 S2S ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
CONFINE [20] RAID’20 C2P ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗
CARVE [13] FEAST’19 S2S ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗
BinRec [32] FEAST’18 B2B ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
Nibbler [4] ACSAC’19 B2B ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗
JShrink [14] FSE’20 B2B ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗
JReduce [29] FSE’19 B2B ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗
Cimplifier [49] FSE’17 C2C ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗
Picup [58] FSE’23 S2B ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗
Minimon [37] ICSE’24 B2B ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗
Perses [56] ICSE’18 S2S ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗
AutoDebloater [36] ASE’23 B2B ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
DomGad [61] ASE’20 S2S ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
BlankIt [45] PLDI’20 B2B ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗
C-Reduce [51] PLDI’12 S2S ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗
Decker [44] ASPLOS’23 S2B ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗
𝜇Trimmer [66] ASPLOS’22 B2B ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
Trimmer [6] TSE’22 S2B ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
XDebloat [57] TSE’21 B2B ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗
NA [18] TSE’21 S2S ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
BLADE [9] SecDev’23 S2S ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗
JDBL [54] Trans. SE. Meth.’23 S2B ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗
OCCAM [42] Commun. ACM’23 S2B ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗
Ancile [11] CODASPY ’21 S2B ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
JSLIM [63] EISA 2021 S2S ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
PRAT [59] TOSEM’21 S2B ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗
DEPCLEAN [55] Empir SE’21 D2D ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
DECAF [15] ICSE-SEIP’20 B2B ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
NA [31] EuroSec’19 S2B ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
DeepOCCAM [33] MLforSystems’19 S2B ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗
BINTRIMMER [50] LNSC’19 B2B ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
RedDroid [27] ISSRE’18 B2B ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SPEAKER [34] DIMVA’17 C2P ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗
Jred [28] COMPSAC’16 B2B ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗
NA [16] ISLPED ’01 S2S ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓

identify bloat and eliminate it, developers use existing tools that
take a bloated artifact, such as an application, container, or firmware,
often coupled with a deployment context, and then produce a de-
bloated artifact utilizing a particular debloating strategy applied by
the tool. After that, the quality of the output artifact is assessed us-
ing various evaluation criteria. As depicted in Figure 1, in addition
to bloated artifact, debloating strategy may receive additional input
(that is, in the form of annotation or instrumentation) to indicate
the required functionality that should be preserved in the output
artifact. The next section discusses the details of this debloating
workflow in the context of the reviewed literature and our proposed
taxonomy.

3 MULTI-LEVEL TAXONOMY
Our goal is to study and contrast existing software debloating
tools and techniques. To achieve this, we first surveyed related
research covering all papers published in top-tier security confer-
ences, namely IEEE S&P, USENIX Security, ACM CCS, and NDSS
from 2000 toMarch 2024.We also selected papers from top academic
conferences and journals broadly related to software debloating.
This process yielded 48 publications that are summarized in Table 1.

Figure 2 shows the multilevel taxonomy we designed to catego-
rize the software debloating landscape.

In this taxonomy, the top level outlines the three main stages
of the workflow. Lower levels categorize specific aspects of the
debloating landscape, based on the publications listed in Table 1,
under each stage of the workflow.

3.1 Input/Output Artifacts
Debloating tools require an input to generate an output. These
inputs and outputs are referred to as artifacts and can come in
various formats, such as source code, binaries, and containerized
applications. The output resulting from debloating can also take
any of these forms, or might even be a policy. Figure 3 shows the
number of publications with proposed tools that use one or more
of the following type mappings between input and output artifacts:

• Source-to-Source (S2S). In this workflow, the debloating
operation is applied to the given source code, resulting in
a minimized source code output. CHISEL [24] and Minin-
ode [30] execute their debloating procedures for C/C++ and
JavaScript programs, respectively.

• Source-to-Binary (S2B).Theworkflow starts with the source
code and transforms it into an Intermediate Representation
(IR). The debloating process then operates on the IR code. Ul-
timately, the debloated program is produced in binary format.
For instance, LMCAS [8] debloats C/C++ programs by first
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Figure 2: Taxonomy of software debloating landscape.

converting them into LLVM IR, resulting in executable out-
put. Tools utilizing this debloating workflow have been ap-
plied to platforms such as firmware, as seen with PRAT [59].
Other tools in this category focus on trimming shared li-
braries, an approach exemplified by Piece-Wise[48]. Certain
tools implementing this workflow extend beyond trimming
by incorporating additional checks, such as Saffire [40].

• Artifact-to-Policy (S2P or C2P). This workflow generates
a policy (i.e. seccomp()) that limits the program’s behavior at
run-time. As observed in the reviewed literature, the input
artifact for this process can be either source code (S2P) or a
containerized application (C2P), as exemplified in debloating
tools such as temporal-specialization [21] and Confine [20].
Generally, these debloating methods do not involve actual
trimming but focus on minimizing the use of unnecessary
resources, such as syscalls.
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Figure 3: I/O artifacts type mappings across tools.

• Binary-to-Binary (B2B). The workflow begins with a bi-
nary file and results in a debloated program, also in binary
format. Similar to S2B tools that apply additional checks,
certain tools implementing this workflow extend beyond
trimming, such as Razor [46], and incorporate extra checks,
like those of binary control-flow trimming [19], to safeguard
CFI. Consequently, the size of the debloated programs may
increase in some instances. This debloating approach has
been applied to various platforms, including Android (e.g.,
XDebloat [57], RedDroid [27]) and firmware (e.g., IRQDe-
bloat [25], DECAF [15]). A different group of tools focus ex-
clusively on debloating shared libraries, such as BlankIt [4]
and Nibbler [4]. Likewise, tools such as 𝜇Trimmer [66] are
designed to debloat shared libraries, but specifically within
the context of firmware images.

• Container-to-Container/s (C2C). In this workflow, the
debloating operation takes a container as input and produces
a debloated version of the same container or divides it into
multiple containers, each with a portion of the application
from the original container. For instance, Cimplifier [49] can
function in two modes: either by trimming the container or
partitioning it into smaller segments. MMLB [64] builds on
the trimming feature of Cimplifier to empirically investigate
bloat in machine learning (ML) containers.

• Dependency-to-Dependency (D2D). This workflow ac-
cepts inputs consisting of dependency and build manage-
ment files, like the Project Object Model (POM), where de-
velopers outline details about the project, its dependencies,
and the build process. The output is a debloated version of
the dependency management file(s). An example of this is
DepClean [55], which specializes in debloating POM files in
Java projects.
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Figure 4: Strategies to identify functionality across tools.

Some tools adopt a more comprehensive approach to debloat vari-
ous layers of the software stack, thereby combining multiple type
mappings for input/output artifacts. For instance, LightBlue [60]
debloats the Bluetooth stack, specifically focusing on debloating
applications (S2B) and firmware (B2B).

3.2 Debloating Strategies
This stage of the workflow outlines the methods used by developers
to determine unnecessary functionalities, pinpoint their associated
dependencies, and remove them. As shown in Figure 2, this stage
is divided into three main components, as follows:

3.2.1 Functionality. This component presents three strategies to
identify unneeded functionalities at a high level.

• Configuration. In this strategy, the debloating workflow
receives program configurations as input, which are to be
preserved in the debloated output. These configurations may
also specify particular points of interest, such as specific func-
tions and libraries. For example, LMCAS [8] requires con-
figurations via command-line arguments or a configuration
file, mirroring the program’s standard execution approach.
Conversely, tools like OCCAM [42] and Trimmer [5, 6] use a
template format to input the required configurations. Other
tools, like temporal-specialization [21], anticipate the config-
uration in the form of a list of key functions from the input
artifact.

• Test cases. This debloating strategy requires a collection
of test cases to represent the program’s usage profile post-
debloating. Tools like Chisel [24] and Razor [46] use test
cases supplied by the developers as input. Other tools, such
as Ancile [11], employ fuzzing techniques to generate these
test cases. Hacksaw [26] utilizes hardware probing to identify
necessary device drivers to perform kernel debloating.

• Annotation. In this strategy, the input program is aug-
mented with specific logic. This addition is either to gather
particular information during dynamic analysis, such as pro-
filing, or to initiate different actions. For instance, LMCAS [8]

marks specific locations in the program to signal the com-
pletion of the profiling process. Conversely, Slimium [47]
employs binary instrumentation to track functions that are
called during runtime.

Six tools [4, 21, 27, 28, 30, 63] (under the none category in Figure 4)
depend solely on static analysis techniques to pinpoint unneeded
functionalities, eliminating the need for explicit expression of these
functionalities. In particular, all these tools use only static analysis
and identify unused code by performing a reachability analysis
on call graphs [4, 27] or dependency graphs [30]. This indicates
that the functionality can be further classified into two categories:
unreachable content and feature removal, where the latter pertains
to reachable but non-essential content.

3.2.2 Analysis. This component describes program analysis tech-
niques that have been utilized by various software debloating tools.

• Static Analysis. This analysis focuses on building various
types of graphs, such as call graphs, Control Flow Graphs
(CFGs), and dependency graphs, to identify dependencies at
multiple levels of granularity. C2C [22] generates a CFG and
performs data flow analysis during its analysis. Additionally,
an important aspect of static analysis is the optimization and
elimination of unnecessary dependencies. For example, LM-
CAS [8], OCCAM [42], and Trimmer [6] implement LLVM
passes to simplify and remove unneeded code.

• Dynamic Analysis. In this analysis technique, run-time
data is collected to identify essential dependencies that must
be preserved. This technique typically involves instrument-
ing the application before execution. Various tools have been
used to aid in dynamic analysis. For example, LMCAS [8] and
LightBlue [60] employ symbolic execution, whereas other
tools such as Slimium [47] have developed their own dy-
namic analysis methods.

Machine Learning (ML) is often employed in conjunction with pro-
gram analysis. An example of this is Chisel [24], which combines
delta debugging with reinforcement learning. Various tools have
utilized a blend of static and dynamic analyses, sometimes supple-
mented with machine learning (ML). For instance, Confine [20]
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Figure 5: Analysis techniques across tools.

and Piece-Wise [48] employ hybrid analysis techniques for debloat-
ing containers and libraries. BlankIt [45], another hybrid analysis
tool, focuses on debloating shared libraries and incorporates ML,
specifically decision trees, to predict the functions required at a
particular call site during execution. Figure 5 presents the number
of debloating tools that fall under the different analysis categories.

3.2.3 Removal Granularity. Software debloating tools aim to elimi-
nate unnecessary code and dependencies, but they do so at different
levels of granularity. As shown in Figure 2, there are four distinct
levels of removal granularity in the context of software debloating:
(1) instruction or statement, (2) basic block, (3) function or library,
and (4) file, including class or dependency management. Notably,
some tools, such as Confine [20], temporal-specialization [21], and
SPEAKER [34], primarily aim to reduce syscalls rather than directly
removing code elements.

3.3 Evaluation Criteria
In this stage of the workflow, measurable metrics are applied to the
artifact before and after debloating to assess its effectiveness from
multiple perspectives. As shown in Figure 6, the following are the
main evaluation criteria used in the reviewed literature:

• Performance. This metric evaluates the performance of
the debloated program in terms of its memory usage, CPU
utilization, bandwidth, and runtime.

• Security. Tools for software debloating, particularly those
created by the security community, are designed primarily
to improve security and minimize potential attack vectors.
Their security assessment predominantly revolves around
quantifying the count of Common Vulnerability Exposures
(CVEs) and gadgets.

• Robustness. This metric is analyzed from various view-
points: correctness and generality. The latter evaluates how
accurately a debloated program functions with inputs that
were not part of the original usage profile [62]. Methods
like fuzzing and test cases are used to assess the correctness.
Tools like LMCAS [8] and Razor [46] also examine for un-
desirable behaviors, including incorrect operations, infinite
loops, crashes, and missing output.

• Usability. This metric focuses on assessing the resources
needed by the debloating tool (not the debloated artifact),

examined from the perspective of runtime and functionality
requirements. For example, Chisel [24] utilizes reinforcement
learning along with delta debugging, thus increasing the
overhead of running it.

• Integration. BLADE [9] views software debloating as essen-
tial for ecosystems such as clouds, requiring rapid analysis
to support integration with continuous integration and con-
tinuous delivery (CI/CD) infrastructures. Consequently, this
metric evaluates the capacity of debloating tools to integrate
with established ecosystem infrastructures. Despite BLADE’s
vision, its evaluation did not encompass demonstrating inte-
gration capabilities.

• Sustainability.Thismetric evaluates the quality of debloated
programs based on carbon footprint and energy reduction.
We found only one debloating tool [16] that primarily targets
energy reduction and thus focuses on only evaluating this
factor.

4 FUTURE RESEARCH
This section presents open problems in software debloating and
calls for solutions that are practical, usable, and secure.

4.1 Software Robustness
Software debloating tools typically prioritize the preservation of
error-free paths by utilizing test cases that reflect the intended be-
havior or providing accurate configurations. As a result, event han-
dler procedures can be removed from the debloated programs, affect-
ing the reliability and robustness of the application. Ancile [11] in-
cludes the reachable exception handlers in the final binary. Carve [13]
avoids introducing vulnerabilities by replacing debloated code with
replacement code that preserves high-level program properties.
In some cases, during the debloating process, Carve replaces the
switch block with exception handling code that traps execution be-
fore code blocks that become vulnerable after debloating. However,
more work is needed to balance robustness and removal [65].

4.2 SBOM Generation
The generation of Software Bills of Materials (SBOMs) has gained
significant importance as regulatory bodies like the US National
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Figure 6: Evaluation criteria across tools.

Telecommunications and Information Administration (NTIA) man-
date the disclosure of primary and transitive dependencies, thereby
documenting the entire code provenance [3]. MMLB [64] constructs
dependency trees for ML containers to investigate the impact of
debloating on the number of direct and transitive dependencies.
Recent dependency management approaches, such as DepsRAG,
advocate the use of large language models (LLMs) and knowledge
graphs (KGs) to support the generation of SBOMs [7]. Identifying
software dependencies constitutes a fundamental aspect of the de-
bloating process, positioning it as a potential facilitator for SBOM
generation. The intersection highlights the necessity for further
research in this domain.

4.3 ML for Debloating
Our investigation indicates that only a limited number of tools
(7 out of 48) utilize machine learning (ML) to support debloating.
Given the widespread adoption of ML, particularly LLMs, in tasks
such as code generation and program repair, there is a compelling
need to explore how LLMs can enhance the debloating process.

4.4 Debloating Impact on Sustainability
In our literature review, we found only one debloating tool [16]
specifically designed to reduce energy consumption. This under-
scores the need for increased focus and effort in this area. Con-
sequently, we consider this to be an open problem that is worth
investigating, especially if new debloating methods can signifi-
cantly decrease energy use and, as a result, cut down on carbon
emissions. Subsequently, researchers might investigate the creation
of debloating-driven methods aimed at eliminating software depen-
dencies to achieve energy savings.

4.5 CI/CD Integration
Software debloating has often been approached in a siloed manner,
which has limited its widespread adoption in real-world scenarios.
In today’s Software Development Lifecycle (SDLC) and software
supply chains, there is a focus on transparency and automation,
incorporating practices like CI/CD. CI involves regularly merging
code changes from various developers into a central repository,
often multiple times per day. CD ensures that the code in the repos-
itory is always ready for release, having passed automated tests and

quality assessments. Consequently, there are several challenges
to address for integrating software debloating tools into CI/CD
pipelines [9]. For example, key considerations include determining
which test cases should validate a release that includes a debloated
version of the application, as well as deciding the necessary security
analyses.

Software accreditation presents a significant challenge in inte-
grating software debloating into the CI/CD pipeline. For example,
the formal Common Criteria certification process involved indepen-
dent validation of claims about specific properties of each target
of evaluation [1]. Typically, accreditation is performed prior to de-
ployment [38]. Consequently, various approaches can be adopted
for CI/CD integration. If debloating occurs post-deployment, as
in the case of RAZOR [46], the accreditation process must be re-
peated. Conversely, if debloating is performed before the software’s
shipment, accreditation is required only once.

5 CONCLUSION
Software debloating is an essential dependency management ap-
proach for enhancing both security and performance by removing
unnecessary code from applications. Our SoK highlights the diverse
techniques and tools available, identifies significant advancements,
and points out continuing challenges. We provide a foundational
reference, aiming to guide future research and improvements in
software debloating.
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