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ABSTRACT
We describe a number of program transformation and anal-
ysis tools developed at SRI to tackle bloatware from three
angles: slicing binaries to exclude unnecessary components,
transformation of different copies of the same binary to cre-
ate diversity and reduce the potential impact of an attack,
and verification-based super-optimization to prune unreach-
able code and harden vulnerable code.

At the core of these approaches is code transformation:
we must add, remove, or change a binary without altering
its desired behavior (but potentially removing some of its
undesired behavior). The challenge is to ensure that these
transformations are correct. We argue that a formal model
of intermediate code representation (e.g., LLVM or JVM
bytecode) is the right level of abstraction to address this
challenge.
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1. INTRODUCTION
The modern software stack is constantly increasing in

complexity. Web, mobile, cloud, and distributed applica-
tions are often built as layers of frameworks and libraries to
ensure coordination, portability, and scalability in an envi-
ronment where software, platforms, and services are offered
as increasingly complex and opaque layers of services. In-
deed, in 2016, you can build software without writing an
original piece of code. Just plug in to your favorite code
library or package registry, and cut, paste, and compile. As
a result, it is becoming harder to ensure the integrity of
modern software.

A number of recent bugs and security vulnerabilities il-
lustrates how bloatware and lack of visibility into software
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dependencies are making our computing infrastructure in-
creasingly fragile.

Bringing the Internet to its knees. Earlier this year,
one developer broke thousands of web projects and created
a panic because of eleven lines of JavaScript code. Azer
Koculu removed more than 250 of his modules from NPM—
a popular package manager used by JavaScript projects—
because of brand infringement claims from Kik. In this pro-
cess, Koculu removed eleven lines of JavaScript code named
left-pad that pads out the lefthand-side of strings with ze-
ros or spaces. The removal of left-pad almost brought the
Internet to its knees, as it was in the dependencies of Node,
React, Babel, and other popular packages for web develop-
ment. A closer look at the NPM ecosystem reveals an even
worse dependency situation. A fresh install of the Babel
package includes 41,000 files, and jspm/npm-based app tem-
plates now starts with 28,000+ files. This may be a case
of poor package management, but it illustrates how hidden,
unnecessary dependencies plague modern software stacks.

Breaking Web Encryption. FREAK (”Factoring RSA
Export Keys”) exploits a weakness in the SSL/TLS protocols
introduced decades earlier for compliance with U.S. cryptog-
raphy export regulations. These limited exportable software
to use only public key pairs with RSA moduli of 512 bits or
less (so-called RSA_EXPORT keys). By the early 2010s, in-
creases in computing power meant that 512bit RSA keys
could be broken by anyone with access to relatively modest
computing resources, at a cost of less than $100 of cloud
computing services. This meant that a man-in-the-middle
attack, with only a modest amount of computation, could
break the security of any website that allowed the use of 512-
bit export-grade keys. This exploit was publicly revealed in
2015, but the underlying vulnerabilities had been present for
many years, dating back to the 1990s.

Breaking Linux. Last year, researchers have discovered
a potentially catastrophic flaw in one of the Internet’s core
building blocks. This leaves hundreds or thousands of apps
and hardware devices vulnerable to attacks that can take
complete control over them. The vulnerability was intro-
duced in 2008 in the GNU C Library, a collection of open
source code that powers thousands of standalone applica-
tions and most distributions of Linux, including those dis-
tributed with routers and other types of hardware. Function
getaddrinfo that performs domain-name lookups contains a
buffer overflow bug that allows attackers to remotely execute



malicious code. The bug can be exploited when vulnerable
devices or apps make queries to attacker-controlled domain
names or domain name servers, or when they are exposed to
man-in-the-middle attacks. All versions of glibc after 2.9
were vulnerable. The widely used secure shell, sudo, and
curl utilities are all known to be vulnerable, and the list of
other affected apps or code is almost too diverse and numer-
ous to fully enumerate. This bug hit the core bedrock of any
Linux distribution.
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Figure 1: Modern Complex Software Stack

Protect Locally. What makes the scenarios above so
dangerous is that the underlying bugs are found in com-
monly used libraries whose code can be nested deep inside
binaries. In this situation, the user must rely on software
vendors or developers to keep track of components on which
their product depends and update the dependencies when
vulnerabilities are found. With the ever increasing size of
the technology stack inside a single application, this depen-
dency on the integrity of subcomponents becomes a severe
risk.

Even if each vendor of a library reacts immediately once
a new security vulnerability is identified, it takes time to
develop a fix and inform the users that they should upgrade.
As the length of the dependency chain increases, it takes
more and more time to fix all binaries. During this entire
time, users are exposed.

To address this risk, we need means to analyze and trans-
form binaries locally, on our own machine, without relying
on vendor updates. In Section 2, we discuss three angles
from which we try to mitigate this risk: slicing binaries to
exclude components that are not required, transformation
of different copies of the same binary to create diversity and
reduce the potential impact of an attack, and verification-
based super-optimization to prune unreachable code and
harden vulnerable code.

At the core of these approaches is code transformation:
we must add, remove, or change a binary without altering
its desired behavior (but potentially removing some of its
undesired behavior). The challenge is to ensure that these
transformations are correct. For local binaries, we cannot
rely on the programmer to check the result, and we usually
do not have regression tests to reassure us that the trans-
forms preserve the relevant behavior.

2. PROTECT LOCALLY
A straight forward approach to reduce the risk of unknown

zero-day exploits in bloated binaries is to slim down the bi-
nary, exclude unnecessary functionality, and to do some ba-
sic re-writing to make the binary less susceptible to generic
attacks.

In the following, we discuss how we achieve this goal using
three different types of tools that we develop at SRI and how
these approaches can benefit from a shared infrastructure
and what quality assurance mechanisms can be used when
developing these tools.

2.1 Code Winnowing
OCCAM [16] (Object Culling and Concretization for As-

surance Maximization) is a software winnowing tool. Its
goal is to reduce software bloat by automatically removing
unused functionalities. OCCAM is based on LLVM 3.5. It
performs dependency and control-flow analysis to detect and
remove unused functions from software. It can also special-
ize existing software by employing partial evaluation (i.e., fix
some arguments of a function call), which can lead to fur-
ther removal of unused code. OCCAM can work across mul-
tiple LLVM modules by computing and summarizing cross-
module dependencies, applying specialization where appro-
priate, and removing unreachable code.

2.2 Assured Program Transforms
As part of the DARPA CFAR program, in collaboration

with the University of Virginia, we are developing formal
verification techniques for proving that various program trans-
forms and rewriting preserve program semantics [6]. Pro-
gram rewriting introduces artificial code diversity to reduce
vulnerabilities. For example, some program transforms may
randomly relocate code snippets to address that we hope
are not guessable by an adversary. These transforms are in-
tended to make ROP attacks difficult if not impossible. In
CFAR, an additional level of security is obtained by running
several, diverse variants of the code run in parallel and cross-
check each other. This provides a means to detect attacks
(assuming diversity makes it impossible for the same attack
to succeed on all variants).

In this project, SRI is investigating formal verification
methods and tools for proving that code rewriting preserves
functional correctness and for showing that some classes of
attacks are prevented. We rely on SRI’s formal method
tools such as the PVS theorem prover, and the Yices SMT
Solver. We have developed a state-machine model of the
target hardware (namely, the x86 64 processor, and we are
developing proof methods based on so-called translation val-
idation. Our models are executable and can be validated via
testing.

2.3 Verification-based Optimization
Optimization of binaries has two essential steps: identi-

fying and eliminating parts of an application that are not
needed (under some condition), and super-optimizing the
remaining part of the application.

Conditional reachability can be checked using static ver-
ifiers at a higher precision than with the methods that are
built into a compiler. A verifier can augment existing reach-
ability checks while also considering path feasibility and thus
is able to safely prune parts of an application that cannot
be pruned using a compiler.



Synthesis techniques used in formal verification, can be
used to identify optimal sequences of loop-free code. Synthesis-
based super-optimization often outperforms existing approaches
that rely on heuristics because they can guarantee that an
optimal solution will be found.

In the following we describe tools developed by SRI that
implement these two approaches and discuss how they make
use of program transformations and the strategies we use to
ensure the quality of these transformations.

Proving Unreachability. Knowing that code cannot be
reached is an essential part of program optimization. Once
we know that code will not be executed, we can drop it from
an application. This does not only result in performance
and space improvements but also eliminates potential attack
vectors and places where malicious code could hide.

Software verification can be used to identify unreachable
code at a much higher precision than existing complier in-
frastructures and can also check conditional unreachability,
for example, under a given precondition. Such techniques
have been used successfully to identify and eliminate code
that is unstable under certain compiler-optimizations [22]
and to identify unreachable code that may be vulnerable
[17]. Further, these techniques can be used to identify and
eliminate unnecessary error handling which can yield consid-
erable performance improvements [4]. These tools perform a
sound reachability analysis on an over-approximation of the
reachable program states. Soundness guarantees that code
that cannot be reached by this analysis is in fact unreach-
able.

At SRI we work on two static verification based tools
to detect unreachable code: SeaHorn [11] which analyzes
LLVM-IR and Bixie [17] which analyzes Java bytecode. Both
tools use static verification techniques to identify code that is
provably unreachable. The tools have identified unreachable
code (and bugs related to that) in big open-source projects
such as Tomcat.

Synthesizing Super-Optimized Code. Automated
program synthesis refers to the automatic generation of pro-
grams from high-level specifications. Program synthesis has
recently seen renewed interest and tremendous progress. More-
over, its effectiveness has been demonstrated on plethora of
applications, including the Microsoft FlashFill feature in Mi-
crosoft Excel software [9]. We performed some early work
on component-based synthesis [10], where the goal is to gen-
erate a program that uses only the given set of components.
A particular application of the component-based synthesis
paradigm was super-optimization. Here, the unoptimized
code is seen as a “specification”, and the goal is to syn-
thesize code that is equivalent to this specification. The
synthesis procedure assumes a bound on the length of the
program, and uses components from a given library of com-
ponents. We showed that the component-based synthesis
problem can be reduced to an exists-forall constraint, which
can be efficiently solved using an “counter-example guided
inductive synthesis” approach [10]. The approach performs
much better than the brute-force approach of enumerating
all possible programs, which is typically used for performing
super-optimization. Rather than enumerate all candidate
programs, the counter-example guided approach navigates
the search space of programs guided by learning from ear-
lier failures. In fact, our algorithm for component-based
synthesis has recently been used in the super-optimizer for
LLVM IR called Souper [14]. We have also developed a

stand-alone synthesis tool, called Synudic [8, 20], which is
an implementation of an extended version of the original
component-based synthesis procedure. The implementation
uses the SMT solver, Yices [7], as its backend. We note here
that Yices now supports limited reasoning on exists-forall
formulas.

3. HIGHER-LEVEL TRANSFORMATIONS
All defense mechanisms that we discussed in Section 2 rely

on program transformation of low-level code. Such transfor-
mations traditionally are composed of two parts: a decompi-
lation step that lifts the code to a higher level representation
by recovering information about structure and intent (such
as high-level types) of the low-level code, and a re-writing
step that applies the desired transformation to higher-level
code before recompiling it to its original low-level form.

To ensure quality of program transformation we strictly
separate these two steps. Assuring quality of a decompila-
tion step is inherently different than assuring quality of a
re-writing step: for the decompilation, we know that we do
not want to change the behavior of the program. We can,
for example test equivalence of a program and a version of
it after de- and re-compilation, and we could use symbolic
techniques to generate test inputs that compare the IR rep-
resentation with the binary.

Once we have a reliable and testable decompilation step,
re-writing code becomes much simpler and less error prone.
High-level code such as LLVM-IR also comes with much bet-
ter tools support for testing and debugging. However, test-
ing the correctness of re-writing is more complicated since it
may change program behavior and we cannot apply equiva-
lence checking. In the following we discuss SRI’s tools for de-
compilation and program re-writing together with the steps
we take to ensure quality.

3.1 Decompilation
Decompilation is a program transformation by which a

high-level source code for an executable program is discov-
ered. Decompilation techniques were initially used to aid
in the migration of programs from one platform to another.
Since then, decompilation techniques have been used to aid
in the recovery of lost source code, debugging of programs,
locating of viruses, comprehending programs, recovery of
high-level views of programs, and more. The ability to ex-
tract for instance C code from x86 code allows the applica-
tion of a large array of source code analysis tools to a binary.
Indeed, there are more tools for source code analysis than
binary analysis. Decompilation is considered primarily as
a comprehension aid to find bugs, vulnerabilities, malicious
code, and verification. But recent applications [15] extend
to code search and mining repositories of software as well.
Most current decompilers aim at program comprehension
and do not tackles the problem of producing code that com-
piles and can be targeted to different platforms. We at SRI,
have attempted to solve this problem by addressing the main
deficiency of modern decompiler. Namely, the analysis of
data sections to properly account for data types, and avoid
memory segmentation errors when running the decompiled
code.

The most advanced decompiler today is the Hex-Rays de-
compiler [1]. It generates readable C code from a variety of
sources including x86 and ARM binaries. The decompiler
performs the following tasks:



• It first relies on the disassembler to identify code and
data in a binary.

• It identifies function boundaries, and associates with
each assembly function, a corresponding C function.

• For each function, it identifies using stack pointer anal-
ysis the calling convention, the local variables, and ar-
guments.

• For each function assembly code, it generate a single
static assignment representation, and proceeds to sim-
plify the code by eliminating registers and interpreting
low level instructions as C statements using only local
and global variables and function arguments.

Without performing further type analysis, it is possible to
obtain a readable C code using these steps. Since C is pretty
much close to assembly code, it is possible to interpret most
variables and arguments as 32 and 64 bits integers for x86

and x86_64 respectively. However, the data section is of-
ten misinterpreted by Hex-Rays. The SRI OpensDec (Open
Source Decompiler) project [2] implements a series of binary
transformations that allows for the proper decompilation of
code, and the proper interpretation of the data sections so
that the decompiled code can be recompiled without risks
of runtime errors.

Recently, another form of decompilation of binaries is gain-
ing significant ground. The ability of transforming binary
code into the intermediate representation (IR) or LLVM al-
lows the application of a wide range of transformation and
optimization passes. It also allows for the re-targeting of the
code to multiple platforms. The translation is based on the
same principles as with decompilers. That is, using func-
tion boundary, arguments, and local variables to translate
every function into an LLVM IR function. A new promis-
ing approach consists of using Machine Translation [13] to
build decompilation capabilities. It is possible to apply tech-
niques for source to source transformation between different
programming languages to assembly and LLVM IR. The de-
compilers built-in transformations are generated by machine
learning.

3.2 Program Transformations
With the recent trend of performing program analysis di-

rectly on the LLVM bitcode or Java bytecode, this step is
becoming more popular due to the easy availability of trans-
formation toolkits such as Soot [21], Wala [3], Cil [18], and
a variety of tools inside Clang and LLVM.

Analyzing intermediate code has many advantages. For
example, in the case Java, the source code has over 50
different keywords and countless constructs (e.g., try-with-
resources) that are hard to handle. The JVM bytecode still
has way over one hundred different cases that need to be
considered. The Jimple [21] intermediate language, on the
other hand, that is used inside Soot has less than 20 cases
that need to be considered. Further, Jimple already pro-
vides a 3-address representation. Similar simplifications can
be found in other frameworks.

On these 3-address code programs, we take two approaches
to ensure the correctness of transformations: unit fuzzing
and manual verification. In many cases, unit fuzzing is a
low cost approach to ensure correctness of a transforma-
tion. For example, in our JayHorn [12] and Bixie [17] tool,

we employ a transformation that makes exceptional control-
flow explicit (by introducing a global that tracks the last
exception and checking if this global is set).

Verifying such a transformation is hard or even impracti-
cal since we actually do not eliminate all exceptional behav-
ior (e.g. JVM errors may still occur). Formalizing such a
transformation would be too complicated to be useful. Writ-
ing complex formalizations is an error prone process so the
value of the proof will be questionable.

Instead, we systematically test our transformation to re-
duce risk. On a whole program level, this transformation is
behavior preserving but not for individual units (since a pre-
viously exceptional return only updates the global and then
returns a default value). To ensure that such a transforma-
tion works properly, we write a light-weight test driver that
takes a method (or classes), wraps it in a catch-all block and
returns a string representation of the method’s return value
or of the thrown exception. Then we employ a black-box
fuzzer (here Randoop [19]) to generate input-output pairs.
Now we can use these input output pairs to test our trans-
formation.

For other transformations, it is possible, or even worth
it to verify their correctness against a formal model of the
language using an interactive proof assistant such as PVS.
Again, operating on a simplified 3-address code version of
the program is crucial. Getting a formal model for exam-
ple for x86 assembler is very complicated and error prone.
We can partially validate such a model by testing or simula-
tion, but any proof of a transformation based on this model
strongly relies on our confidence in the person that wrote it.
In our experience, LLVM IR is much easier to formalize al-
though not as simple as one might expect. It is usually easier
to reason at a more abstract level, using simpler languages,
where one can be more confident in model correctness.

3.3 LLVM-Based Tools
The LLVM compiler infrastructure and LLVM Interme-

diate Representation (a.k.a., LLVM bitcode) provide an at-
tractive and popular framework for program analysis and
transform. We are developing LLVM-based tools that facil-
itate analysis:

• Many static analysis tools (e.g., Klee [5], llbmc [?], oth-
ers) take LLVM bitcode as input. Unfortunately, pro-
ducing bitcode from software source has become diffi-
cult, as the LLVM developers make arbitrary changes
to their tool chain and to the bitcode syntax and se-
mantics, without much regards to backward compati-
bility.

Whole-Program LLVM (WLLVM) is an open-source
project that help address these issues. The project
provides tools to facilitate the production of LLVM
bitcode for full C/C++ packages. In many cases, WL-
LVM transparently builds bitcode for C or C++ pack-
ages without any modification of the source. This
works for both executables and libraries. SRI has made
significant contributions to WLLVM and is now the
main maintainer of the code.

• LLVM2SMT is a prototype that supports bounded model
checking of LLVM code using SMT solvers. LLVM2SMT
translates straight-line LLVM bitcode into an equiv-
alent logical description in SMTLIB language. The



translation uses the SMTLIB theory of fixed size bitvec-
tors and arrays to enable bit-precise analysis (e.g., it
correctly represents finite-precision arithmetic on 32bit
integers). The resulting SMTLIB specification can
then be checked using SMT solvers such as Yices, Z3,
CVC4, etc. The main applications of this technology
currently include test-generation and bug discovery us-
ing bounded model checking.

4. CONCLUSION
While developing the different tools described previously,

we have made the following observations.

• It is inefficient to work directly at the binary level. In-
struction sets are huge, not always well documented,
and formalizing them precisely is tedious and error
prone. This expensive step must be redone for each
new architecture and instruction set.

• Working at the source code level is also inefficient as
new programming languages emerge frequently, and
existing ones change fast. Also, high-level languages
have complex semantics such as implicit control flow,
which are difficult to formalize.

• Intermediate representations such as LLVM or the JVM
bytecode (or GCC’s GIMPLE) are generally more sta-
ble and do not change as fast. They also allow us to
cover a large set of high-level programming languages.
LLVM, JVM, and GCC each support more than 20
languages. Formalizing the intermediate code repre-
sentations is simpler than either high-level languages
or low-level binary code. These intermediate represen-
tations are designed to support code transformations
(such as compilation and optimization), and come with
well-tested tools and infrastructure.

An assured, formal model of a simple enough IR is then
key to efficiently develop reliable program transformations.
IR is the right level of abstraction to build a formal model
that we can trust and understand, while being expressive
enough to specify useful transformations. Clearly, this is
prerequisite to proving that our code transformations are
correct, and in some case automatically synthesize trans-
forms.

From such an IR model, we can also build static-analysis
tools, symbolic-execution engines, and test-case generators.
This allows us to validate and analyze transformations in
cases where formal proofs are either too expensive or overkill.

We complement this IR model with a high-confidence de-
compilation from binaries to IR. Since all transformations
happen at the IR level, ensuring that the decompilation is
correct becomes a translation-validation problem. In other
words, we prove that de- and re-compilation do not change
the input/output behavior. We are planning on applying
a variety of techniques including fuzzing, machine learning,
and gray-box testing using our formal IR model.

This infrastructure can be reused beyond our immediate
goal. It provides a set of tools and formalisms to quickly
develop verified program transformations that can be used
by developers of program-analysis tools, compiler engineers,
and security experts.
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