
SoK: A Tale of Reduction, Security, and
Correctness - Evaluating Program Debloating

Paradigms and Their Compositions

Muaz Ali1, Muhammad Muzammil2, Faraz Karim3, Ayesha Naeem4,
Rukhshan Haroon5, Muhammad Haris6, Huzaifah Nadeem7, Waseem Sabir6,
Fahad Shaon8, Fareed Zaffar6, Vinod Yegneswaran9, Ashish Gehani9, and

Sazzadur Rahaman1

1 University of Arizona, 2 Stony Brook University, 3 Georgia Institute of Technology,
4 Boston University, 5 Tufts University, 6 LUMS, 7 University of Pittsburgh,

8 Data Security Technologies, 9 SRI International

Abstract. Automated software debloating of program source or binary
code has tremendous potential to improve both application performance
and security. Unfortunately, measuring and comparing the effectiveness
of various debloating methods is challenging due to the absence of a uni-
versal benchmarking platform that can accommodate diverse approaches.
In this paper, we first present DebloatBenchA

1, an extensible and sus-
tainable benchmarking platform that enables comparison of different re-
search techniques. Then, we perform a holistic comparison of the tech-
niques to assess the current progress.
In the current version, we integrated four software debloating research
tools: Chisel, Occam, Razor, and Piece-wise. Each tool is represen-
tative of a different class of debloaters: program source, compiler in-
termediate representation, executable binary, and external library. Our
evaluation revealed interesting insights (i.e., hidden and explicit trade-
offs) about existing techniques, which might inspire future research. For
example, all the binaries produced by Occam and Piece-Wise were cor-
rect, while Chisel significantly outperformed others in binary size and
Gadget class reductions. In a first-of-its-kind composition, we also com-
bined multiple debloaters to debloat a single binary. Our performance
evaluation showed that, in both ASLR-proof and Turing-complete gadget
expressively cases, several compositions (e.g., Chisel-Occam, Chisel-
Occam-Razor) significantly outperformed the best-performing single
tool (i.e., Chisel).

Keywords: Program Debloating, Debloating Comparison, Benchmark

1 Introduction

With the growing success of the software industry, and the availability of several
competing platforms to support, modern software has become bloated [23]. Since
most of the software are monolithic by design, they may contain functionalities

1 Debloating benchmark for applications.

2 Ali et al.

that end-users do not need. This extra functionality can not only cause perfor-
mance issues but also become a security risk [11, 38, 53]. To avoid these issues,
BusyBox [1] offers manually debloated, resource-optimized clones of software
with minimal functionality, which are specially suited for embedded systems.

There has been an extensive research to automate this process [4–9, 13,
16, 17, 22, 26, 29, 31, 35–37, 39–42, 44–46, 50, 52]. Given, a target program
and its deployment context, an automatic program debloating (a.k.a software
specialization) tool debloats the program itself [5–9, 13, 16, 17, 22, 26, 31, 33, 35–
37, 39, 40, 42, 44–46, 52] or its execution environment (e.g., Kernel [4, 29, 41],
Firmware [50], etc.) automatically. While the main goal of all the automated
software debloating tools is to remove as much unnecessary code as possible while
attempting to preserve the intended functionality, it still remains challenging to
properly evaluate the correctness and compare their performance. The primary
reason behind this is – due to the lack of a unified benchmark platform, path to
setting up diverse tools for analysis is unclear and seems expensive [39].

Platform for evaluation. This paper takes the first step towards creating an
extensible and sustainable benchmarking framework named DebloatBenchA,
for automated software debloating. We designed DebloatBenchA to evaluate
program debloaters targeting software written in C/C++, since most of the
efforts in software debloating [5–8, 13, 22, 31, 36, 37, 39, 42, 44–46, 52] are ded-
icated to C/C++ domain. This design choice also enables the broadest impact,
as applications written in C/C++ are more widely used [25], and offer more
attack surface than others [10, 12, 43].

While our DebloatBenchA framework is more general, the current version
integrates a set of software debloating research tools that represent four differ-
ent classes: Chisel [22] (source code), Occam [31, 33] (compiler intermediate
representation), Razor [37] (executable binary) and Piece-wise [39] (exter-
nal library). Our current target program suite contains 10 coreutils programs
from ChiselBench [22], 3 graphical user interface (GUI)-based, and 2 network-
facing programs. Note that, DebloatBenchA is designed to provide an easy-
to-use command-line interface to run the different debloating tools that are
integrated into it. DebloatBenchA can be downloaded and run with as few
as 3 commands. For wide applicability, the ease of adding new tools or enhanc-
ing the target application suite is a core requirement. So among other things,
DebloatBenchA is customizable and extensible by design.

Evaluating program debloating methods. To inform and inspire future
research, we conducted a thorough study with the set of debloaters integrated
with DebloatBenchA. In particular, we examined the correctness, and changes
in memory usage, on-disk size, security-relevant gadgets, and running time of the
binaries produced by the debloaters. We found the tools based on static analysis
(e.g., Occam, Piece-Wise) produced binaries that passed all tests while bina-
ries from debloaters that used dynamic analysis (e.g., Chisel, Razor) failed
an increasing number of tests as the aggressiveness of debloating was raised.
Chisel failed to generate binaries for all non-coreutils programs. Razor failed
on 3 out of 5 non-coreutils binaries too. This indicates a fundamental limita-

Evaluating Program Debloaters 3

tion of test-case-driven debloaters to handle GUI-based or network-facing pro-
grams. Our gadget analysis focused on ASLR-proof attack bootstrapping and
Turing-complete categories of micro-gadget classes [24]. There was an inverse re-
lationship between the average correctness of a tool’s output and its debloating
effectiveness (measured by in-memory and on-disk resource usage) and gadget
reduction in the binaries derived. A surprising finding was that Piece-Wise in-
creases binary size while unable to reduce any gadget classes. Razor increases
binary size in general and could not reduce any gadget classes for non-coreutils
programs. Three of the four tools ran quickly enough that they could be in-
tegrated into a software staging workflow, while the fourth took several orders
of magnitude longer, making it impractical for most use cases. Leveraging this
insight, we created the first-of-its-kind compositions of multiple tools to debloat
a single binary. Our experimental evaluation on 10 coreutils indicates that com-
positions can achieve better reductions of gadget classes than the best single
tool. It is worth noting that, DebloatBenchA is an outcome of several years
of a group of junior and senior researchers’ effort. As part of the development of
DebloatBenchA and evaluation of program debloating tools, we directly fixed
and reported several bugs in Chisel and Occam and invented a new technique
to measure ROP gadgets for Piece-wise.

Our contributions can be summarized as follows:

– We develop a new easy-to-extend framework named DebloatBenchA to
evaluate software debloating techniques. We created a set of 82 different vari-
ants of 10 unix programs/coreutils, 3 GUI-based, and 2 network-facing appli-
cations (total 15) for robust analysis. We integrated four different tools (i.e.,
Chisel, Occam, Razor and Piece-wise) covering four different classes of
debloaters. We are in the process of open-sourcing DebloatBenchA.

– We perform a holistic comparative analysis of these four debloaters under
various metrics. Our evaluation shows that all the binaries produced by Oc-
cam and Piece-Wise were correct. In contrast, Chisel significantly out-
performed others in binary size and Gadget class reductions, while failing to
produce correct binaries for all non-coreutils programs.

– To leverage the strength of multiple debloaters, we performed a novel com-
position analysis in which we created several pipelines to use multiple tools
to debloat a single binary. Our performance evaluation of tool composition
showed that, in both ASLR-proof and Turing-complete gadgets expressively
cases, several compositions (e.g., Chisel-Occam, Chisel-Occam-Razor)
significantly outperformed the best single tool (Chisel).

2 Debloating Methods

DebloatBenchA supports application- and library-level software debloating.
Since, evaluating kernel-level debloating would require a different set of ma-
chinery than application- and library-level debloating, we exclude it from our
benchmark. Table 1 summarizes various application- and library-level program
debloaters highlighting the tools that are included in our benchmark.

4 Ali et al.

Target Type Input Analysis

A
u
to

m
a
te
d
?

O
p
e
n
so

u
rc
e
d
?

Debloating Class Tools

A
p
p
li
c
a
ti
o
n

L
ib
ra

ry

S
o
u
rc
e

L
L
V
M

IR

B
in
a
ry

C
o
n
fi
g
u
ra

ti
o
n

T
e
st
c
a
se
s

A
n
n
o
ta

ti
o
n

S
ta

ti
c

D
y
n
a
m
ic

Chisel [22] ✓ - ✓ - - - ✓ - ✓ - ✓

Source C-Reduce [42] ✓ - ✓ - - - ✓ - ✓ - ✓

Perses [46] ✓ - ✓ - - - ✓ - ✓ - ✓

DomGad [52] ✓ - ✓ - - ✓ - - ✓ - ✓

DeBop [51] ✓ - ✓ - - ✓ - - ✓ - ✓

Occam [31, 33] ✓ ✓* - ✓ ✓ ✓ - - ✓ - ✓

LLVM IR Trimmer [6, 7, 44] ✓ - - ✓ - ✓ - - ✓ - -

LLPE [45] ✓ - - ✓ - ✓ - ✓ ✓ - G# ✓

LMCAS [8] ✓ - - ✓ - ✓ - - ✓ - -

Binary Razor [37] ✓ ✓* - - ✓ - ✓ - - ✓ ✓

Ancile [13] ✓ ✓ - - ✓ ✓ ✓ - - ✓ -

Piece-Wise [39] - ✓ ✓ - - - - - ✓ - ✓

Library BlankIt [36] - ✓ - ✓ - - - - - ✓ -

Nibbler [5] - ✓ - - ✓ - - - ✓ - -

Table 1. Comparison of different classes of program debloaters in terms of their target,
analysis method, level of automation, and the availability. Here, “✓” indicates yes or
supported, “✓*” indicates experimental feature, “-” indicates not supported or no. “ ”
indicates fully automated and “G#” indicates partially automated.

2.1 Application-level program debloating.
Application-level program debloaters can be categorized as follows: source-level [22],
intermediate representation (IR)-level [31, 33] and binary-level [37] debloaters.
Source-level program debloating. Most of the source-level program debloat-
ing methods (e.g., Chisel [22], C-Reduce [42], and Perses [46]) use variants
of the delta-debugging algorithm for debloating. Delta-debugging uses a set of
testcases to encompass the usage profile of the program after debloating, which
has a potential to over-fit [52]. To address this issue, Xin et al. proposed more
conservative methods (e.g., DomGad [52], DeBop [51]) to preserve functional
generality. However, as acknowledged by Xin et al. [52], Chisel [22] represents
the state-of-the-art, in terms of code reduction performance. Therefore, we in-
cluded Chisel in our benchmark as the candidate representative for source-level
program debloating tools.
IR-level program debloating. Existing IR-based program debloating tools
operate on LLVM bitcode and leverages partial evaluation for code reduction. For
example, Occam [31, 33] combines partial evaluation and type thoery to remove
unnecessary code. It supports cross-module analysis with multiple passes – first,
summarizing cross-module dependencies and then using it for specialization.
Similarly,Trimmer [6, 7, 44] , LLPE [45], LMCAS [8] also uses partial evaluation
as the core technique for specialization. As Occam is the only open-sourced tool
supporting automated analysis, we included Occam as the representative for
IR-level program specialization tools.

Evaluating Program Debloaters 5

Binary-level program debloating. Program debloating methods for exe-
cutable binaries rely on execution tracing, triggered by carefully chosen testcases
(e.g., Razor [37]) or fuzzing (e.g., Ancile [13]). For example, Razor first runs
the binary with the given test cases and uses Tracer to collect execution traces.
It then decodes the traces to construct the program’s CFG, which contains only
the executed instructions. In addition to debloating context (i.e., intended func-
tionalities), Ancile [13] requires a set of testcases to seed the fuzzer. Because of
being open source, we included Razor in our benchmark to represent binary-level
program debloaters.

2.2 Library-level program debloating.
Library-level program debloating has three flavors – i) static [5], ii) load-time [39]
and iii) runtime-debloating [36]. Given a set of applications, static debloating
tools (e.g., Nibbler [5]) debloats dynamically linked libraries statically, which
replaces the original set of libraries permanently. Load-time debloaters redact
(e.g., Piece-wise[39]) functions while loading the target library into the mem-
ory. Runtime debloaters load (e.g., BlankIt [36]) certain functions only if they
are required at runtime. For our evaluation, we chose Piece-wise, since its the
only tool whose code is opensourced.

Configurations Target Programs Debloated Programs

Program Debloater

Management Script Measurement Scripts

Report

Manage Boxes

Debloating Tool Boxes

Synchronized Volumes

Inside a Box

Host File System

Adapter Scriptter

Fig. 1. DebloatBenchA framework overview.

3 Components of the DebloatBenchA Framework

In this section, we describe the components of the DebloatBenchA framework.

Framework Overview. Figure 1 provides an overview of ourDebloatBenchA

framework. Our design followed the open-close principle [32] to ensure extensibil-
ity without affecting usability and sustainability. We adopted a container-based
approach to building DebloatBenchA framework to provide isolation of en-
vironments across different debloaters. We created separate containers for each
of them. We use a command-line tool-based management system (known as or-
chestrator) to build and manage the life cycle of these containers. Each input
program in DebloatBenchA has a corresponding configuration file describing
various metadata (e.g., testcase location, build script location, etc.) about the
program. Different program specialization tools use different formats for input
program metadata. Each container has a corresponding adapter script to convert
DebloatBenchA’s input program configuration files into its own format.

6 Ali et al.

Table 2. Target application suite and their deployment contexts considered in
DebloatBenchA. All the cells with different flags represents the set of deployment
contexts named as variants (82 in total). The first 10 applications are coreutils, next 3
applications are GUI-based and the rest of the 2 are network based applications.

Selected Arguments and Combinations #Variants (82)

bzip2 -fc -kc -ksc -ksfc -sc -sfc 6

chown -c -R -Rc -Rv -v 5

mkdir -m a=r -m a=rw -m a=rwx -mp a=r -mp a=rw -mp a=rwx 6

sort -c -cf -cfn -cfr -cn -cr 11

-f -fn -fr -n -r

uniq -c -cd -cdw N -cu -cuw N -cw N 11

-d -dw N -u -uw N -w N

grep -v -E -F -i -m 5

gzip -c -d -f -t 4

tar -cf -tvf -xf 3

date -d -u -r -Rd -ud 5

rm -r -f -rf -i 4

gm negate monochrome flop flip contrast 5

vlc noaudio loop fullscreen starttime novideo 5

gv scale noantialias fullscreen color 4

putty telnet ssh m load 4

nginx -t -s -p -c 4

3.1 Framework Components
There are three major components in DebloatBenchA, i.e., input programs,
debloating tools, orchestrators, and measurement scripts. Input programs, or-
chestrators and measurement scripts reside in the host file system. Debloaters
and their corresponding adapter scripts reside inside isolated containers.

Debloating Tools. Each of the debloaters in DebloatBenchA are built
within an isolated docker container. Container images freeze the execution envi-
ronment. While each tool requires an input program and corresponding metadata
to perform debloating, they use different means to accept those inputs (Table 1).
DebloatBenchA uses a configuration file to collect inputs corresponding to an
input program. We created scripts to parse DebloatBenchA’s configuration
file and generate inputs for individual tools. These scripts are called adapter
scripts. Adapter script of a tool bridges it with DebloatBenchA.
Target Program Suite. In our current version, we selected 10 coreutils/linux
utility programs from ChiselBench [22] on which all the selected tools run cor-
rectly to produce meaningful results. To evaluate their generalizability, we se-
lected 3 GUI-based and 2 network-facing programs. With the goal of capturing
diversity, we chose a diverse of deployment contexts for each of the applications.
We term the combination of a target application and a specific deployment con-
text a variant. Table 2 summarizes the set of 82 variants that constitute the
complete workload.

Testcases. With the target program to debloat, program debloaters also take
testcases (i.e., Chisel, Razor, Piece-wise) or a configuration file (i.e., Oc-

Evaluating Program Debloaters 7

cam) as input. Note that, the number of test cases impacts the training time
for test case-dependent tools, hence it is important to pick quality test cases to
maximize the coverage without impacting the performance. Given the applica-
tion’s running configuration, generating high-quality test-cases is an active area
of research. Since this is an orthogonal problem, such automation is beyond the
scope. Therefore, we relied on manually created test cases. To produce binaries
with Chisel, Razor, and Piece-wise, we created a set of 726 test cases. We
also created a total of 1007 number of testcases to check the correctness2. They
are summarized in Table 8 in Appenfix. While preparing these testcases, we
aimed to capture diverse behavior in order to maximize the coverage.

Measurement Scripts. We measure the performance of program debloaters
with the following five metrics: i) correctness of the debloated binaries ii) de-
crease in binary size, iii) Security analysis in the lens of gadgets reduction and iv)
debloating time. Note that, we did not use CVEs for security evaluation, mostly
because CVEs are correlated with the functionalities. Elimination of them are
more likely to be influenced by the selection of functionalities than a tool.

In-memory gadget counting. Piece-Wise debloats external libraries in the
unit of functions while loading into the memory. We use gdb to find missing
functions in the debloated version loaded in the memory. After collecting that
information, we create a new version of the library by replacing the missing
function bodies with NOPs. Finally, we use this version of the library to collect
ROP gadgets using the ROPgadget tool [3].

4 Experimental Setup in DebloatBenchA

As discussed in Section 2, for performance comparison, we incorporated the fol-
lowing four debloaters into DebloatBenchA, i.e., Chisel [22], Occam [31, 33],
Razor [37] and Piece-wise [39], which covers four different paradigms. Next,
we discuss our experimental setup to evaluate them. We conducted two set of
experiments to measure the performance of i) standalone tools and ii) their com-
position. Finally, we discuss the metrics that we used to compare performance.

4.1 Standalone Mode

Setting up Chisel: From the Chisel authors we learned that CIL [34] was used
to merge the C files for the input programs in the earlier version of Chisel. To
run Chisel successfully, we reused the merged C files for 10 coreutils programs
from ChiselBench. For the other 5 large programs, we leveraged its build
system integration functionality.

Setting up Occam: A wide range of policies is supported by Occam to debloat
binaries. Each policy results in a different debloated binary ranging from aggres-
sive to no specialization. After running a sanity checking experiment to find
the best configuration, we selected the onlyonce for measuring and comparing
Occam’s performance.

2 Some of the test cases are taken from Razor Benchmarks. [37]

8 Ali et al.

Setting up Razor: Razor’s performance is largely dependent on the choice of
heuristic used by the Pathfinder module. Since, Razor is relatively faster than
other tools, for Razor we created multiple version of binaries corresponding to
each of the heuristics and selected the version with maximum correctness for
performance analysis and comparison with other tools.

Setting up Piece-wise: For Piece-wise, we used the pre-built compiler and
loader provided with the Docker container. We used musl-libc v1.1.15 as the
library dependency for each of the input programs in our application suite and
then debloated musl-libc with Piece-wise. To create non-Piece-wise com-
piled binaries, we used the same docker container that Piece-wise repository
provides and downloaded unmodified LLVM and Clang along with musl-libc,
with the exact same versions that Piece-wise used.

4.2 Composition Mode
Since various specialization tools inDebloatBenchA operate on different forms
of application code (i.e., source, IR, binary or library), it is possible to run mul-
tiple tools to debloat a single program. For example, Chisel debloats at the
source code level, and the resulting binary can be further debloated using Ra-
zor, which performs debloating at the binary level. Bulding upon this idea, we
formulate the following 4 unique compositions of tools and use them to debloat
the DebloatBenchA’s input program suite: i) Chisel to Occam, ii) Chisel
to Occam to Razor, iii) Chisel to Razor and iv) Occam to Razor.

As Piece-wise requires both source code and the binary to perform de-
bloating, it can only be composed with Chisel. We also tried Piece-wise to
Chisel pipeline with limited success that we discuss in Section 5.3. For a given
metric, we compare the performance of compositions with the best-performing
individual tools.

5 Evaluation of Debloaters

Research Questions: To understand the utility of software debloating tools,
we considered the following issues. RQ1: Does a debloating approach adversely
impact the correctness of target applications? RQ2: How effective is each de-
bloater at reducing the size of individual programs? RQ3: What is the effect
of debloating on the gadget-related security of target programs? RQ4: How us-
able are each of the debloating approaches in practice? RQ5: Does composing
debloaters offer any further improvement?

We term the combination of a target application and a specific deployment
context a variant. Table 2 summarizes the set of 82 variants that constitute the
complete workload. Each variant gives rise to a different debloated binary. In
the analyses below, a debloater is applied to all variants of a program, with the
average result reported. During our evaluation, we observed that the debloaters
significantly failed to produce results for meaningful comparison on non-coreutils
programs. Hence, we report their results separately for RQ1 to RQ4 and we only
use 10 coreutils programs to answer RQ5.

Evaluating Program Debloaters 9

bzip2chown date grep gzip mkdir rm sort tar uniq
0

20

40

60

80

100

(%
) t
es
ts
 p
as
se
d

Chisel Occam Razor Piecewise

Fig. 2. Each debloater was applied to all variants of a target program. The average
fraction of tests passed for each target is reported here.

5.1 Evaluation results on 10 coreutil programs
RQ1: Tool Correctness. We use testcases to measure the correctness of a
given debloater, which implies that whether a specific debloated binary is correct
is an under-estimate. Figure 2 reports the results of our correctness evaluation.
The debloating approaches that employ static analysis – i.e.,Occam and Piece-
wise – passed 100% of the tests. In contrast, the debloaters that rely on dynamic
analysis did not – Chisel passed 80.4% of the tests, while Razor produced
correct results for 94.8% of the cases. Occam produces the best correctness
results because of its static partial evaluation-based approach that conservatively
retains all the functionality for a given argument.Chisel performs worse because
of its overly-reliance on the provided testscripts.

We undertook the exercise of augmenting the training cases provided with
each debloater for the target applications (Figure 3). Our experience indicated
that a debloated binary created with more training cases retains more behav-
ioral diversity, allowing it to pass more correctness tests. However, the level
of improvement varied significantly from one target application to another. To
quantify this, we report on the fraction of tests that passed for each of the targets
as a function of the number of training cases utilized. The results for Razor and
Chisel are shown in Figure 3. These results are based on one variant of a given
target program that represent the main functionality (e.g. chown’s -c variant)
as opposed to the average of all the variants. The general trend says that more
training cases yielded increased debloating correctness.

RQ2: Size Reduction. A primary goal of debloating a target application is to
reduce its size by eliminating code that will not be used in a particular deploy-
ment. The effect is on the binary size on disk. Chisel andOccam eliminate code
at the source and compiler intermediate representation levels, respectively. This
usually reduces the size of the resulting binaries. In contrast, Razor retains the
original binary and extends it with transformed code, while Piece-wise adds
metadata representing the program’s control flow graph to the binary. These
effects are easily observed in Figure 6(b). Since Occam’s partial evaluation can
increase the number of functions (when both unspecialized and specialized ver-
sions are retained), it occasionally increases code size. We also measure the effect

10 Ali et al.

0 2 4 6 8
No. of train cases

0

20

40

60

80

100

(%
) t
es
ts
 p
as
s

bzip2-ksc-h0
chown-c-h0
date-ud-h4
grep-F-h2
gzip-c-h0
mkdir-m-h0
rm-f-h0
sort-c-h4
tar-cf-h0
uniq-d-h4

(a) Razor

0 2 4 6 8
No. of train cases

0

20

40

60

80

100

(%
) t
es
ts
 p
as
s

bzip2-ksc
chown-c
date-ud
grep-F
gzip-c
mkdir-m
rm-f
sort-c
tar-cf
uniq-d

(b) Chisel
Fig. 3. (a) The correctness of Razor’s debloating is a function of the training cases
used. The variant and heuristic level used is denoted in the legend. h0 indicates no
heuristic used. Note that sort, uniq, rm, mkdir, and chown hit 100% correctness on
two train cases. (b) The correctness of Chisel’s debloating is a function of the training
cases provided to its oracle test script.

on binary size of varying the number of train cases for Razor and Chisel as
shown in Figure 4. We note that increasing the number of train cases can some-
times lead to a relative increase in size reduction for Chisel (gzip, sort).

2 3 4 5 6 7 8 9
No. of train cases

−22.5

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

(%
) d

ec
re
as
e
in
 b
in
ar
y
si(

e

b(i 2-ksc-h0
chown-c-h0
date-ud-h4
grep-F-h2
gzip-c-h0
mkdir-m-h0
rm-f-h0
sort-c-h4
tar-cf-h0
uniq-d-h4

(a) Razor

2 3 4 5 6 7 8 9
No. of train cases

60

65

70

75

80

85

90

(%
) d

ec
re

as
e

in
 b

in
ar

y
siz

e

bzip2-ksc
chown-c
date-ud
grep-F
gzip-c
mkdir-m
rm-f
sort-c
tar-cf
uniq-d

(b) Chisel
Fig. 4. (a) The reduction in binary size on disk by Razor vs. the number of training
cases used. (b) The reduction in binary size on disk by Chisel vs. the number of
training cases used. Note that positive values indicate reductions, while negative ones
are size increases. For this experiment, the same data is used from Figure 3.

RQ3: Gadget Expressivity. Raw ROP gadget count and code size is not a
reliable metric for estimating the vulnerability of a binary [14, 15]. Homescu et
al. [24] argued that gadgets can be categorized into classes (based on the type of
functionality provided), with just a single member from each class sufficing for
the assembly of specific categories of attacks. They constructed classes of “micro-
gadgets” (restricted to maximum lengths of 3 bytes) that provide the basis for
each category. We report on the effect of debloating on the changes in the two
categories of ASLR-proof and Turing-complete expressivity. These are reported
in Figure 5. In both categories, Chisel yields the highest reduction (of 28.2%

Evaluating Program Debloaters 11

bzi
p2

cho
wn da

te
gre
p

gzi
p

mk
dir rm sor

t tar un
iq

−40

−20

0

20

40

AS
LR
-P
ro
of
 G
ad
ge
ts
 E
xp
re
ss
iv
ity

 C
la
ss
es
 R
ed
uc
tio

n
(%

)

Chisel Occam Razor

(a)

bzi
p2

cho
wn da

te
gre

p
gzi

p
mkd

ir rm sor
t tar un

iq

−20

0

20

40

60

Tu
rin

g
Co

m
pl

et
e

Ga
dg

et
s E

xp
re

ss
iv

ity
 C

la
ss

es
 R

ed
uc

tio
n

(%
)

Chisel Occam Razor

(b)
Fig. 5. (a) ASLR-proof ROP gadget expressivity and (b) Turing-complete ROP gadget
expressivity reduction.

and 36.6% on average, respectively). For the Turing-complete category, Occam
(11.4%) is more effective than Razor (4.3%). In contrast, Razor (20.6%) yields
more reduction for the ASLR-proof category than Occam (13.3%). Finally, we
applied Piece-wise to musl libc. In both the Turing-complete and ASLR-proof
categories, there was no reduction in the number of classes, i.e., gadgets for 16
of 17 Turing-complete classes and 34 of 35 ASLR-proof classes were present.

bzip2 chown date grep gzip mkdir rm sort tar uniq
0

100

101

102

103

104

Ti
m
e
Ta
ke
n
(s
)

Chisel Occam Razor Piecewise

(a)

bzip2chown date grep gzip mkdir rm sort tar uniq

−102

−101

−100
0

100

101

102

Bi
na
ry
 S
ize

 R
ed
uc
tio

n
(%

)

Chisel Occam Razor Piecewise

(b)
Fig. 6. (a) Average time to debloat all variants of a target application with each de-
bloater. Note that the y-axis is logarithmic to accommodate the large differences in
time taken. (b) Effect on binary size on disk after applying different debloaters to each
target program. Note that positive decreases indicate binary size reduction.

RQ4: Tool Usability. To gain insight into the settings where each debloater
could potentially be deployed, the time it takes to run on all the variants in our
workload was measured. The results are in Figure 6 (a). Chisel takes several
orders of magnitude (with an average of around 13,000 seconds) more time than
the other debloaters. This limits the settings in which Chisel could be prac-
tically utilized. In contrast, the average time taken by Piece-wise, Occam,
and Razor are 22.1, 4.9, and 5.2 seconds, respectively. This makes them usable
in traditional optimization workflows. Piece-wise, Occam, and Razor take
significantly less time than Chisel because they mainly rely on static analysis,

12 Ali et al.

whereas Chisel relies on Markov Decision Processes to find a minimal subset
of statements satisfying the provided testcases.

Summary: Evaluation results on coreutils programs

– Correctness: Chisel: 80.4%, Occam: 100%, Razor: 94.8%, Piece-Wise:
100%. Static analysis-based debloaters produce more correct binaries than dy-
namic analysis-based debloaters.

– Size on disk: Chisel and Occam cause reductions. However, by extending
the original binary, Razor and Piece-Wise increases the size.

– Gadget Expressivity: Chisel outperformed others in both categories: ASLR-
proof (28.2%), and Turing-complete (36.6%).

– Debloat Time: Chisel takes several orders of magnitude (3.75 hours) more
than others. The average time taken by Piece-wise, Occam, and Razor are
22.1, 4.9, and 5.2 seconds, respectively.

gra
ph
ics
ma
gic
k gv vlc

pu
tty

ng
inx

0

20

40

60

80

100

te
st
s p

as
se
s (

%
)

Occam Razor Piecewise

(a)

gra
ph
ics
ma
gic
k gv vlc

pu
tty

ng
inx

−40

−30

−20

−10

0

10

20
Bi
na

ry
 S
ize

 R
ed

uc
tio

n
(%

)
Occam Razor Piecewise

(b)
Fig. 7. For non-coreutils programs: (a) Average fraction of tests passed. (b) Average
binary size reduction.

5.2 Evaluation results on 5 non-coreutils programs.
Here, we present the evaluation results on non-coreutils programs. To evaluate
the correctness (RQ1) we used 247 test cases for 22 variants of 5 non-coreutils
programs. We debloated these applications inside containers. For their correct-
ness testing, we used the host system because of the difficulty of handling GUI
applications inside the containers. Our evaluation shows that only Occam and
Piece-wise produced correct binaries that passed all the test cases. Razor
produced correct binaries for two of them (vlc and nginx), while failing to de-
bloat others. Finally, Chisel failed on all of the target programs. Surprisingly,
all of the debloaters increased binary size to some extent (RQ2). Correctness
and binary size reduction results are summarized in Figure 7.

The maximum average debloating time (RQ3) for Piece-Wise was 129.67
seconds (on Graphicsmagick) and the minimum was 13.66 seconds (on Gvpdf).

Evaluating Program Debloaters 13

%
 T

es
ts

 P
as

se
d

0

25

50

75

100

uniq date chown mkdir tar rm

Occam COR OR CO CR

(a) Correctness

%
 S

iz
e

D
ec

re
as

e

-50

0

50

100

uniq date chown mkdir tar rm

COR OR CO CR Chisel

(b) Size reduction
Fig. 8. (a) Average fraction of tests passed after applying a debloater com-
position to a target application. (b) Average binary size reduction using
debloater composition.

Occam took an average maximum of 95.6 seconds (on Graphicsmagick) and
a minimum of 1.3 seconds (on Vlc). Razor took an average maximum of 120
seconds. As summarized in Figure 10(c) and (d) in Appendix, only Occam
removed gadgets classes for both ASLR-proof and Turing-complete categories
(RQ4), while Razor increased the number of Turing-complete gadget classes.

Summary: Evaluation on non-coreutils programs

– Correctness: Dictated by static analysis-based tools (Occam and Piece-
Wise).

– Size: All of them increased the binary size (except Occam on Vlc).

– Gadget Expressivity: Occam significantly outperformed others.

%
 A

S
LR

-P
ro

of
 R

O
P

 R
ed

uc
tio

n

0

20

40

60

80

rm tar uniq chown mkdir date

COR OR CO CR Chisel

(a)

%
 T

C
 R

O
P

 R
ed

uc
tio

n

-25

0

25

50

75

rm tar uniq chown mkdir date

COR OR CO CR Chisel

(b)
Fig. 9. (a) ASLR-proof ROP gadget expressivity reduction using debloater
composition. (b) Turing-complete ROP gadget expressivity reduction using
debloater composition.

5.3 RQ5: Debloater Composition
For meaningful comparison, we only used coreutils programs to evaluate debloater
compositions. In Figures 8, and 9, the three-stage pipeline is referred to as COR
to denote Chisel to Occam to Razor. Further, each pair of these three de-
bloaters can be composed without the third one. We evaluated these three com-

14 Ali et al.

binations as well. In the figures, they are denoted by OR for Occam to Razor,
CO for Chisel to Occam, and CR for Chisel to Razor. After applying two
or more debloaters in succession, the resulting binary must function correctly.
Figure 8(a) reports the average fraction of tests passed after each combination
of debloaters is applied to a target application. The correctness testing of in-
dividual debloaters (reported in Section 5.1) found that Chisel was the most
likely to produce a binary that failed a check. These variants were eliminated
when testing the composition of debloaters. On the other hand, Occam is used
as a baseline since binaries derived from its output passed all tests.

The maximum average binary size reduction by any single tool is 70.4% (from
Chisel). The combination of Chisel followed by Occam slightly outperforms it
with an average reduction of 74.6%. (The combination of all three debloaters only
yields an average reduction of 67.5%.) For the Turing-complete gadget expres-
sivity case, the single tool with the maximum average improvement was again
Chisel with 36.6%. However, in this case, the Chisel-Occam-Razor com-
position yielded a slightly better 38.8% while the Chisel-Occam combination
provided a substantially better reduction of 50.5%. In the ASLR-proof gadget
expressivity case, the single tool with the highest reduction was Chisel with
28.2% (Figure 9). Here, Chisel-Occam, Chisel-Razor, and Chisel-Occam-
Razor combinations all outperformed with reductions of 45.9%, 40.4%, and
45.8%, respectively.

Chisel to Piece-wise Pipeline. After debloating with Chisel, out of 10
target programs, we were successful in compiling five of them with Piece-
wise compiler. Among these programs, Piece-wise was not able to compile
all the variants of grep, date, and tar. This is due to the incompatibility be-
tween musl-libc and glibc, where Chisel uses glibc and Piece-wise uses
musl-libc for compilation.

Summary: Composition of Debloaters

– Correctness: Produces correct binaries for non-Chisel pipelines.

– Size: Chisel-Occam pipeline outperformed the best individual tool (Chisel).

– Gadgets: In both ASLR-proof and Turing-complete gadget expressively cases,
several compositions (e.g., Chisel-Occam, Chisel-Occam-Razor) signifi-
cantly outperformed the best tool (Chisel).

6 Discussion

We first discuss the impact of design choices on the performance and the usability
of program specialization tools in the light of our evaluation. Then, we discuss
the limitations of this study.

6.1 Impact of Design Choices
Dependency on test-cases in Chisel: Our evaluation revealed that, in terms
of the correctness of the debloated binary, Chisel is the weakest of all the

Evaluating Program Debloaters 15

techniques. This is mostly because of Chisel’s strong reliance on test scripts
that it uses to guide the debloating. Also, these scripts can be tricky to get
right and Chisel can misbehave sometimes even when the scripts are seemingly
correct. In our experiments, on average, over 96% of the debloating time is spent
in running the property test script.
Partial evaluation in Occam: Our experience shows that the partial eval-
uation [27] significantly reduced the usability of Occam. It only allows non-
conflicting flags to be present in a debloated binary. We call two flags to be
non-conflicing, if both of them can be used simultaneously in the same execu-
tion. So for two conflicting flags, one needs to create two variants. However, it
is worth noting that configuration-based program debloating enabled by partial
evaluation in Occam are easy to setup. This is because it does not require care-
ful and tedious use of testcases, where the quality of the tests impacts the overall
usability of the debloated binary.
Tracing-based reduction in Razor: A dominant trend in the analysis of
Razor debloating was that the number of correctness tests passed would remain
low for several heuristics (i.e., no heuristic, zCode, and zCall) and high for others
(i.e., zFunc and zLib). This implies that the benefits of using different heuristics
need to be fully assessed to choose the heuristic that produces the correct binary
to retain reasonable functionality. Figure 10(a) illustrates the overall relationship
between heuristic levels and the percentage of test cases passed in each coreutils
program. Moreover, Razor’s training time is dependent on the number of train
cases provided to it. Figure 10(b) in Appendix shows how the number of train
cases impacts the time taken to train Razor for each of the 10 target programs.
Load-time reduction in Piece-wise: At compile time Piece-wise computes
the program dependency graph and appends it in the .dep section in the ELF
header, which is used for reduction in load-time. This significantly increases the
size. For some applications, the large increase in size can outweigh the benefit.

6.2 Limitations of this Study.
In the current version, DebloatBenchA chose a single tool per category and
provides an in-depth analysis. However, tool coverage can easily be extended.
The current choice of selecting target applications was hindered by existing de-
bloaters’ capabilities, which can be extended too. We created an extensive num-
ber of test cases to maximize the coverage for training and testing, however, it
is hard to guarantee.

7 Related Work

C/C++ program specialization. There are three broad classes of program
specialization, i.e., source-level (e.g.,Chisel [22],C-Reduce [42], andPerses [46]
and DomGad [52]), IR-level (e.g., Trimmer [6, 7, 44] , LLPE [45], LMCAS [8],
Occam [31, 33]) and binary-level (e.g., Razor [37]). Performance comparisons
in most of these tools are done with either the state-of-the-art tools in their cat-
egory or none. Library specialization tools (e.g., Piece-wise [39], BlankIt [36],

16 Ali et al.

Nibbler [5]) also followed a similar trend. Razor [37] and LMCAS [8] are two
exceptions. Razor compared its performance with Chisel on runtime, binary
correctness as well as code, ROP gadget and CVE reduction. LMCAS [8] com-
pared the runtime with Occam, Chisel and Razor, while the performance
on other metrics were compared with Occam. To the best of our knowledge,
DebloatBenchA is the first benchmark to systematically scrutinize tools across
all the categories to underscore the strength and weaknesses of each of the meth-
ods. Our evaluation also highlights that a composition of multiple methods has
a great potential to achieve better performance than any of the individual tools.

Environment/OS-level debloating MultiK [29] and shard [4] offers appli-
cation specific kernel-level debloating. Cimplifier [41] uses dynamic analysis to
detect logically distinct applications inside a container and automatically breaks
it into smaller containers. LightBlue [50] leverages static analysis to perform
application-guided firmware debloating. CDE [20] leverages execution tracing to
identify the dependencies of an application for seamless porting. In a concurrent
work, recently, Hassan et al. developed a framework named DebloatBenchC

to evaluate container debloaters [21].
Program specialization for other languages. Researchers have also ex-
plored program debloating for other languages. For example, Piranha [40] tar-
gets Objective-C. JShrink [16]; JSCleaner [17], Lacuna [35], Muzeel [30],
Stubbifier [48] and [49] target JavaScript; JRed [26], JAX [47], BloatLid [18]
Depclean [2] and [9] target Java- and PHP-based applications, respectively. A
body of work exists on byte code reduction as well [19, 28].

8 Conclusion

We presented DebloatBenchA, an extensible and sustainable benchmarking
framework for rigorous evaluation of program debloaters. We integrated Chisel,
Occam, Razor and Piece-wise into the framework and performed a holistic
comparative study. Our analysis shows that conservative static analysis tools
produce correct binaries (e.g., Occam, Piece-wise), while aggressive dynamic
analysis tools (e.g., Chisel) perform better in reducing size and gadget classes.
A surprising finding was Piece-Wise failed to reduce any gadget classes while
increasing the binary size. Also, test-cased-driven tools performed worse on non-
coreutils programs. Our analysis of multi-tool composition at different stages
opens up avenues for future explorations.

Acknowledgements

This material is based upon work supported by the National Science Foundation (NSF)
under Grant ACI-1440800 and the Office of Naval Research (ONR) under Contracts
N68335-17-C-0558 and N00014-18-1-2660. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the authors and do not necessarily
reflect the views of NSF or ONR. We thank Muhammad Hassan, Abdullah Naveed,
Talha Tahir, Muhammad Farrukh, and Ahsan Amin for their help in preparing and
testing the large application suite.

Bibliography

[1] Busy box. https://busybox.net/

[2] Depclean. https://github.com/castor-software/depclean

[3] Ropgadget tool. https://github.com/JonathanSalwan/ROPgadget

[4] Abubakar, M., Ahmad, A., Fonseca, P., Xu, D.: Shard: Fine-grained kernel special-
ization with context-aware hardening. USENIX Security Symposium 28th (2019)

[5] Agadakos, I., Jin, D., Williams-King, D., Kemerlis, V.P., Portokalidis, G.: Nibbler:
debloating binary shared libraries. In: ACSAC. pp. 70–83 (2019)

[6] Ahmad, A., Anwar, M., Sharif, H., Gehani, A., Zaffar, F.: Trimmer: Context-
Specific Code Reduction. 37th IEEE/ACM Conference on Automated Software
Engineering (ASE) (2022)

[7] Ahmad, A., Noor, R., Sharif, H., Hameed, U., Asif, S., Anwar, M., Gehani, A.,
Zaffar, F., Siddiqui, J.: Trimmer: An Automated System For Configuration-Based
Software Debloating. IEEE Transactions on Software Engineering (TSE) 48(9)
(2022)

[8] Alhanahnah, M., Jain, R., Rastogi, V., Jha, S., Reps, T.: Lightweight, multi-
stage, compiler-assisted application specialization. In: 7th European Symposium
on Security and Privacy. IEEE (2022)

[9] Azad, B.A., Laperdrix, P., Nikiforakis, N.: Less is more: Quantifying the security
benefits of debloating web applications. USENIX Security Symposium 28th (2019)

[10] Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Gros, C., Kam-
sky, A., McPeak, S., Engler, D.R.: A few billion lines of code later: using static
analysis to find bugs in the real world. Commun. ACM 53(2), 66–75 (2010)

[11] Bhattacharya, S., Rajamani, K., Gopinath, K., Gupta, M.: The interplay of soft-
ware bloat, hardware energy proportionality and system bottlenecks. In: Hot-
Power’11. pp. 1–5 (2011)

[12] Bierbaumer, B., Kirsch, J., Kittel, T., Francillon, A., Zarras, A.: Smashing the
stack protector for fun and profit. In: Janczewski, L.J., Kutylowski, M. (eds.) ICT
Systems Security and Privacy Protection. IFIP, vol. 529, pp. 293–306. Springer
(2018)

[13] Biswas, P., Burow, N., Payer, M.: Code specialization through dynamic feature
observation. In: Joshi, A., Carminati, B., Verma, R.M. (eds.) CODASPY ’21. pp.
257–268 (2021)

[14] Brown, M.D., Pande, S.: Is less really more? towards better metrics for measuring
security improvements realized through software debloating. In: 12th USENIX
Workshop (CSET 19) (2019)

[15] Brown, M.D., Pruett, M., Bigelow, R., Mururu, G., Pande, S.: Not so fast: Under-
standing and mitigating negative impacts of compiler optimizations on code reuse
gadget sets. Proc. ACM Program. Lang. 5(OOPSLA) (2021)

[16] Bruce, B.R., Zhang, T., Arora, J., Xu, G.H., Kim, M.: Jshrink: in-depth investi-
gation into debloating modern java applications. In: Devanbu, P., Cohen, M.B.,
Zimmermann, T. (eds.) ESEC/FSE. pp. 135–146. ACM (2020)

18 Ali et al.

[17] Chaqfeh, M., Zaki, Y., Hu, J., Subramanian, L.: Jscleaner: De-cluttering mobile
webpages through javascript cleanup. In: Huang, Y., King, I., Liu, T., van Steen,
M. (eds.) WWW. pp. 763–773. ACM / IW3C2 (2020)

[18] Dewan, A., Rao, P., Sodhi, B., Kapur, R.: Bloatlibd: Detecting bloat libraries in
java applications. In: 16th Conference on the Evaluation of Novel Approaches to
Software Engineering (2021)

[19] GuardSquare: Proguard. https://github.com/Guardsquare/proguard

[20] Guo, P.J., Engler, D.R.: CDE: using system call interposition to automatically
create portable software packages. In: Nieh, J., Waldspurger, C.A. (eds.) USENIX
ATC (2011)

[21] Hassan, M., Tahir, T., Farrukh, M., Naveed, A., Naeem, A., Shaon, F., Zaffar,
F., Gehani, A., Rahaman, S.: Evaluating container debloaters. In: IEEE Secure
Development Conference, SecDev 2023, Atlanta, GA, USA, October 18-20, 2023.
IEEE (2023)

[22] Heo, K., Lee, W., Pashakhanloo, P., Naik, M.: Effective program debloating via
reinforcement learning. In: 2018 ACM CCS. pp. 380–394 (2018)

[23] Holzmann, G.J.: Code inflation. IEEE Softw. 32(2), 10–13 (2015)

[24] Homescu, A., Stewart, M., Larsen, P., Brunthaler, S., , Franz, M.: Microgadgets:
Size does matter in Turing-Complete Return-Oriented programming. In: USENIX
WOOT ’12) (2012)

[25] Javed, F., Afzal, M.K., Sharif, M., Kim, B.S.: Internet of things (iot) operating
systems support, networking technologies, applications, and challenges: A com-
parative review. IEEE CS&T 20(3), 2062–2100 (2018)

[26] Jiang, Y., Wu, D., Liu, P.: Jred: Program customization and bloatware mitigation
based on static analysis. In: IEEE COMPSAC. pp. 12–21 (2016)

[27] Jones, N.D.: An introduction to partial evaluation. ACM Comput. Surv. 28(3),
480–503 (1996)

[28] Kalhauge, C.G., Palsberg, J.: Logical bytecode reduction. In: ACM SIGPLAN
PLDI. p. 1003–1016. ACM (2021)

[29] Kuo, H., Gunasekaran, A., Jang, Y., Mohan, S., Bobba, R.B., Lie, D., Walker,
J.: Multik: A framework for orchestrating multiple specialized kernels. CoRR
abs/1903.06889 (2019)

[30] Kupoluyi, T., Chaqfeh, M., Varvello, M., Hashmi, W., Subramanian, L., Zaki, Y.:
Muzeel: A dynamic javascript analyzer for dead code elimination in today’s web.
arXiv preprint arXiv:2106.08948 (2021)

[31] Malecha, G., Gehani, A., Shankar, N.: Automated Software Winnowing. 30th
ACM Symposium on Applied Computing (SAC) (2015)

[32] Martin, R.C.: The open-closed principle. More C++ gems 19(96) (1996)

[33] Navas, J., Gehani, A.: OCCAMv2: Combining Static and Dynamic Analysis for Ef-
fective and Efficient Whole Program Specialization. Communications of the ACM
66(4) (2023)

[34] Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
Conference on Compiler Construction (2002)

[35] Obbink, N.G., Malavolta, I., Scoccia, G.L., Lago, P.: An extensible approach
for taming the challenges of javascript dead code elimination. In: Oliveto, R.,

Evaluating Program Debloaters 19

Penta, M.D., Shepherd, D.C. (eds.) Conference on Software Analysis, Evolution
and Reengineering (2018)

[36] Porter, C., Mururu, G., Barua, P., Pande, S.: Blankit library debloating: getting
what you want instead of cutting what you don’t. In: ACM SIGPLAN PLDI. pp.
164–180 (2020)

[37] Qian, C., Hu, H., Alharthi, M., Chung, P.H., Kim, T., Lee, W.: Razor: A frame-
work for post-deployment software debloating. In: USENIX Security (2019)

[38] Quach, A., Erinfolami, R., Demicco, D., Prakash, A.: A multi-os cross-layer study
of bloating in user programs, kernel and managed execution environments. In:
Kim, T., Wang, C., Wu, D. (eds.) Workshop on Forming an Ecosystem Around
Software Transformation (2017)

[39] Quach, A., Prakash, A., Yan, L.: Debloating software through piece-wise compi-
lation and loading. In: USENIX Security. pp. 869–886 (2018)

[40] Ramanathan, M.K., Clapp, L., Barik, R., Sridharan, M.: Piranha: reducing feature
flag debt at uber. In: Rothermel, G., Bae, D. (eds.) ICSE-SEIP. pp. 221–230. ACM
(2020)

[41] Rastogi, V., Davidson, D., Carli, L.D., Jha, S., McDaniel, P.D.: Cimplifier: au-
tomatically debloating containers. In: Bodden, E., Schäfer, W., van Deursen, A.,
Zisman, A. (eds.) European Software Engineering Conference / Foundations of
Software Engineering (2017)

[42] Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X.: Test-case reduction
for C compiler bugs. In: ACM PLDI. pp. 335–346 (2012)

[43] Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.)
ACM CCS 2007. pp. 552–561. ACM (2007)

[44] Sharif, H., Abubakar, M., Gehani, A., Zaffar, F.: Trimmer: Application Special-
ization for Code Debloating. 33rd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE) (2018)

[45] Smowton, C.S.: I/O Optimisation and elimination via partial evaluation. Tech.
rep., UC, CL (Dec 2014)

[46] Sun, C., Li, Y., Zhang, Q., Gu, T., Su, Z.: Perses: syntax-guided program reduc-
tion. In: ICSE 2018. pp. 361–371 (2018)

[47] Tip, F., Laffra, C., Sweeney, P.F., Streeter, D.: Practical experience with an ap-
plication extractor for java. SIGPLAN Not. 34(10), 292–305 (oct 1999)

[48] Turcotte, A., Arteca, E., Mishra, A., Alimadadi, S., Tip, F.: Stubbifier: Debloating
dynamic server-side javascript applications. CoRR abs/2110.14162 (2021)

[49] Vázquez, H.C., Bergel, A., Vidal, S.A., Pace, J.A.D., Marcos, C.A.: Slimming
javascript applications: An approach for removing unused functions from javascript
libraries. Inf. Softw. Technol. 107, 18–29 (2019)

[50] Wu, J., Wu, R., Antonioli, D., Payer, M., Tippenhauer, N.O., Xu, D., Tian, D.J.,
Bianchi, A.: Lightblue: Automatic profile-aware debloating of bluetooth stacks.
USENIX Security Symposium 30th (2021)

[51] Xin, Q., Kim, M., Zhang, Q., Orso, A.: Program debloating via stochastic opti-
mization. p. 65–68. ICSE-NIER ’20 (2020)

[52] Xin, Q., Kim, M., Zhang, Q., Orso, A.: Subdomain-based generality-aware de-
bloating. IEEE/ACM ASE 35th (2020)

20 Ali et al.

[53] Xu, G., Mitchell, N., Arnold, M., Rountev, A., Sevitsky, G.: Software bloat anal-
ysis: Finding, removing, and preventing performance problems in modern large-
scale object-oriented applications. In: FSE/SDP. pp. 421–426 (2010)

Appendix
Applications #Train cases #Correctness cases

bzip2 45 198

chown 20 35

mkdir 10 69

sort 55 77

uniq 55 55

grep 20 25

gzip 36 132

tar 33 99

date 50 50

rm 16 20

gm 125 75

gv 120 75

vlc 125 75

putty 7 10

nginx 9 12

(Total) 726 1007

Table 3. The number of train and correctness testcases we used during our experiment
for each of the input programs.

%
 o

f t
es

ts
 p

as
se

d

0

25

50

75

100

bzip2
chown

mkdirsortuniqgzip
greptarrmdate

No Heuristic zCode zCall zFunc zLib

(a)
No. of train cases

Ti
m

e
(s

)

0

1

2

3

4

2 4 6 8

bzip2

chown

mkdir

sort

uniq

gzip

grep

tar

rm

date

(b)

gra
ph
ics
ma
gic
k gv vlc

pu
tty

ng
inx

0

10

20

30

40

AS
LR
-P
ro
of
 G
ad
ge
ts
 E
xp
re
ss
iv
ity

 C
la
ss
es
 R
ed
uc
tio

n
(%

)

Occam Razor

(c) ASLR-proof gadgets classes

gra
ph
ics
ma
gic
k gv vlc

pu
tty

ng
inx

−30

−20

−10

0

10

20

30

Tu
rin

g
Co

m
pl
et
e
Ga

dg
et
s E

xp
re
ss
iv
ity

 C
la
ss
es
 R
ed

uc
tio

n
(%

)

Occam Razor

(d) Turing-complete gadget classes

Fig. 10. For coreutils, (a) average fractions of test passed for different heuris-
tics in Razor and (b) relationship between the time taken to train Razor and
the number of train cases. For non-coreutils, (c) ASLR-proof ROP gadget
expressivity and (d) Turing-complete ROP gadget expressivity reduction.

