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Abstract Users can determine the precise origins of their data by collecting detailed
provenance records. However, auditing at a finer grain produces large amounts of
metadata. To efficiently manage the collected provenance, several provenance man-
agement systems, including SPADE, record provenance on the hosts where it is gen-
erated. Distributed provenance raises the issue of efficient reconstruction during the
query phase. Recursively querying provenance metadata or computing its transitive
closure is known to have limited scalability and cannot be used for large provenance
graphs. We present matrix filters, which are novel data structures for representing
graph information, and demonstrate their utility for improving query efficiency with
experiments on provenance metadata gathered while executing distributed workflow
applications.

4.1 Introduction

The provenance of data is a description of how the data came into being or was
derived. Provenance metadata is becoming increasingly useful in addressing a
wide variety of issues, such as performance optimization, generating repeatable
and reproducible scientific computation, security verification, and policy validation
for checking regulatory compliance. Consequently, applications are being coupled
with suitable provenance middleware that can audit events, read logs, and answer
provenance-related questions.
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We are particularly interested in provenance infrastructure that is used with ap-
plications that perform distributed computation. In this context, consider some ex-
amples that give rise to a variety of interesting issues: (i) scientific applications
decompose data-intensive problems into subtasks and distribute them across a Grid
through a workflow planner that may not track provenance; (ii) scientists who con-
duct distributed experimental analyses on a variety of research hardware, such as
mass spectroscopes, DNA sequencers, or oscilloscopes, must maintain records of
the combined analyses for reproducibility; (iii) when different users share data
through network connections, the resulting information generated has distributed
provenance that may be drawn from multiple, independent administrative domains.

A characteristic feature of such distributed applications is that they are of-
ten conducted in loosely controlled environments and use heterogeneous software
platforms. It is therefore important to collect such provenance metadata in an
application-agnostic manner. The Open Provenance Model (OPM) provides a spec-
ification that serves this purpose and allows provenance to be exchanged between
systems through a generic vocabulary [27]. Tracking distributed computations at the
operating system level allows coupling between the filesystem’s state and the asso-
ciated provenance metadata [32, 11]. A significant implication of this design choice,
however, is that it results in large volumes of provenance metadata [12]. Neverthe-
less, a number of systems, including PASS and SPADE, support transforming such
provenance records into OPM.

Provenance systems that audit at fine granularity employ various architectures
and mechanisms to manage the resulting metadata. Several systems [32, 4, 36] col-
lect provenance information in centrally managed databases, often referred to as
provenance stores. Benefits of aggregating provenance information in central stores
include the ease of maintenance and curation, storage efficiency, and access con-
trol [17]. These mechanisms, however, also introduce significant network overhead,
with many provenance records being transferred to the central provenance store, al-
though remote queries for them may never arise [12]. Accordingly, it is important
for distributed applications to account for the location where provenance metadata
is collected, processed, stored, and consumed.

Support for Provenance Auditing in Distributed Environments, SPADE [37] is
a data provenance management system. SPADEv2 refers to the second generation
of the system, which has modular components for gathering, integrating, filtering,
storing, and querying data provenance. Except for the components that gather prove-
nance, the rest are completely agnostic to the source domain. SPADE uses Reporter
modules customized to the provenance domain to transform the specific semantics
into an OPM compliant form. The domain can be a particular application, the oper-
ating system, or even manual curation. To manage the resulting provenance, SPADE
embodies a decentralized model, with each distributed host maintaining the author-
itative repository of provenance metadata collected on it. SPADEv2’s modules for
tracking operating system activity record not only data flow dependencies between
files and processes but also data movement across systems via network connections.
All provenance information is stored in a local database.
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Distributed provenance management systems, such as SPADE, face a significant
challenge when reconstructing data provenance that spans multiple hosts. The prob-
lem is often solved by tracing a path or recursively querying metadata that is mani-
fested as a directed graph. Recursive querying is known to have poor response times
for large provenance graphs [20]. In the case of distributed provenance, it is also
expensive in terms of network operations since the provenance metadata is unlikely
to be located where the data is stored, and the appropriate remote sources must be
identified. The alternative to recursive querying is computing a transitive closure,
which is computationally expensive. In addition, this requires global knowledge,
which raises traditional distributed system challenges.

SPADE employs provenance sketches to address the problem of reconstructing
distributed data provenance. Such provenance can be viewed as a collection of sub-
graphs, each from a different host, that interface through vertices corresponding to
network connections between the hosts. The provenance sketches determine which
network connections are relevant to a query, while locally computed transitive clo-
sures provide host-specific subgraphs that must then be stitched together. In our
earlier work [24], provenance sketches summarized host-specific provenance sub-
graphs with Bloom filters [2]. In contrast, we now encode an entire provenance
graph by organizing a set of Bloom filters into a new data structure that we term a
matrix filter. Matrix filters, when propagated to other downstream hosts, determine
in a single lookup the existence of a path between any two distributed hosts, which
would previously have required contacting multiple hosts. If the path exists, the
matrix filter can also be used to determine the specific remote hosts that contain the
intermediate path. This allows us to contact the intermediate remote hosts in parallel
to construct the full provenance path rather than building the path one remote host at
a time. The parallel operation substantially improves the performance of distributed
path queries.

We deployed SPADE to collect fine-grained provenance of workflows used in
the NIGHTINGALE project [30]. The project uses heterogeneous machine learn-
ing algorithms to translate information from multiple languages so that monolin-
gual users can query the content. The provenance of intermediate outputs is used
when comparing the quality of competing approaches. We mapped the provenance
metadata to distributed SPADE databases, and constructed representative prove-
nance queries. SPADEwas augmented with functionality to compute the provenance
sketches needed for each host. Our experiments indicate that queries are answered
accurately with the aid of matrix filters. Query response times remain constant even
when the number of levels in the provenance increases.

The remainder of the paper is organized as follows. Section 4.2 describes prove-
nance systems for distributed applications. Section 4.3 outlines the SPADE archi-
tecture and data model for auditing system-level provenance and storing it in dis-
tributed repositories. Section 4.4 describes sketches for encoding graphs. In partic-
ular, it describes the matrix filter and how it can be used for improving the latency
of provenance queries in a distributed provenance system, such as SPADE. Section
4.5 reports our findings about the use of matrix filters to improve the efficiency of
SPADE queries in a PlanetLab [31] distributed environment. Section 4.6 concludes.
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4.2 Related Work

Distributed applications manage and query digital provenance in a variety of ways.
Chimera [8] uses a virtual data catalog to store information about Grid data ob-
jects, transformation types, and applications. Swift extends concepts in Chimera
to include a custom provenance data store with an SQL-like language [10]. ES3
[9, 25] and PASOA [14, 16] record the provenance of files in distributed services,
but provide minimal query interfaces. Karma explores a service-oriented architec-
ture for collecting provenance metadata about workflows. It employs basic recur-
sive traversal to enhance query capabilities [36]. Service-oriented Grids also gather
provenance at multiple locations using distributed protocols [15].

One primary issue that arises with distributed data artifacts is how they should
be semantically described and referenced. OPM facilitates interoperability between
systems by providing a common model for provenance. Several projects provide
OPM-compliant provenance, such as SPADE, PASS [33], VisTrails [4], and Tupelo
[40]. More recently, an OPM profile (which is a set of conventions) models aspects
such as transactions in distributed systems [18].

Not all systems, however, provide a combined comprehensive recording and
querying infrastructure. The PASS project developed the provenance query language
(PQL) [21]. PQL, however, does not interact with the distributed provenance gather-
ing system PA-NFS [33] that enhances NFS to record provenance in local area net-
works. ExSPAN [41] allows the exploration of provenance in networked systems.
Both systems use provenance metadata to answer queries about the origin of data
and how it was derived. The ExSPAN scheme extends traditional relational models
for storing and querying provenance metadata, while SPADE supports both graph
and relational database storage and querying. Queries in ExSPAN are not optimized
for performance.

ProQL [22] is a query language for provenance graphs and presents a convenient
way of exploring tuples and nodes, and the ability to isolate and request portions
of the graph. Similarly, D-PQuery [17] allows fetching of portions of a provenance
graph in a distributed setting. However, the efficiency of queries is not addressed.
ExSPAN explores storage and query optimization techniques to reduce communi-
cation latency and bandwidth, and employs caching of provenance metadata to im-
prove query performance [41]. Caching assumes locality over the incoming query
pattern. SPADE employs summary data structures to improve the performance of
each distributed query.

An issue related to distributed provenance querying is the identification of objects
uniquely across different administrative boundaries. PASS describes global naming,
indexing, and querying in the context of sensor data [34]. SPADE addresses the
issue by using storage identifiers for provenance vertices that are unique to a host
and requiring distributed provenance queries to disambiguate vertices by referring
to them by the host on which the vertex was generated as well as the identifier local
to that host.

Given the data-intensive nature of managing provenance metadata, providing
adequate storage can be a challenge. PASS explores storing provenance in highly
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available fault tolerant environments, such as clouds [34, 35]. SPADE employs flex-
ible provenance storage, including graph databases, installed on the hosts where the
provenance is generated. Provbase [1] uses Hbase, an open-source implementation
of Google’s BigTable [5] to store and query scientific workflow provenance. Prove-
nance metadata is exported to Hbase as RDF triples, and SPARQL is used to query
Hbase using its native API. Storing provenance concisely has also been investigated
elsewhere [41, 20] and remains an active area of research.

4.3 Tracking System-Level Provenance with SPADE

Fig. 4.1 The SPADE kernel provides an independent provenance middleware service on each host
in the distributed system. A SPADE Reporter is a module that transforms records from a domain,
such as operating system activity, into an OPM-compliant representation of data provenance. Dis-
tributed provenance queries are transparently handled by the local service, which contacts remote
daemons as needed.

SPADEv1 refers to an initial implementation that enabled provenance questions
about executed processes and files that were read and written by them. SPADEv2
is a second generation of the system and adopts the OPM model. It has a kernel,
storage, querying, and filtering that is agnostic to the source of provenance, with
domain-specific annotations created in Reporter modules, as illustrated in Figure
4.1. The rest of this paper focuses on the use of operating system Reporters that audit
filesystem reads and writes, process execution, and TCP connections, and transform
them to OPM.

In a distributed environment each computer has the freedom to maintain an inde-
pendent filesystem and accompanying namespace, and yet data can be shared across
organizational boundaries. The provenance recording infrastructure must overlay a
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coherent framework that facilitates reasoning about the origins of data in such a dis-
tributed environment. In particular, the infrastructure must track data flows within
a host — that is, intra-host dependencies, and across hosts — that is, inter-host de-
pendencies. We now describe how we record both intra-host and inter-host operating
system dependencies with SPADE.

Recording provenance by tracking data flows requires the system to (i) identify
the producers and consumers of each piece of data, and (ii) define the granularity
at which a piece of data will be tracked. On a single host, the immediate source
of a piece of data will be a process, which may in turn (recursively) have used
data written by other processes that have executed on the same host. In addition to
the data flowing within a single host, processes may have read data from other hosts
through network connections. In such an event, the provenance of any data modified
by a process must also include the provenance of the data read from the remote host.
We adopt the convention of identifying data by both its location in the system and
the time at which it was last modified.

The granularity at which we track the provenance of a data object affects the
overhead that will be introduced in the system. The advantage of fine-grain auditing,
at the level of assembly instructions or system calls, for example, is that information
flow can be traced more precisely, allowing an output’s exact antecedents to be
ascertained by reconstructing the exercised portion of the control flow graph of the
relevant process. The disadvantage is that the system’s performance will perceptibly
degrade and the monitoring will generate large volumes of provenance metadata.
Since persistent data is managed at file granularity, a reasonable compromise on the
level of abstraction at which to track data provenance is to define it in terms of files
read and written.

4.3.1 Intra-host Dependencies

We utilize the following elements to model intra-host dependencies in a provenance
graph:

• Process vertices are initialized when the auditing system first encounters a pro-
cess. Each vertex contains a range of attributes, including the name of the pro-
cess, its operating system identifier, owner, and group. Each vertex also records
the parent process, the host on which the process is running, the creation time
of the process, the command line with which it was invoked, and the values of
environment variables. We do not version process vertices as the state changes
(when an environment variable is updated, for example), although this could be
useful for long-running processes such as server daemons.

• File vertices include various attributes associated with a file, including the host
on which it resides, its pathname in the host’s filesystem, the size of the file, the
last time it was modified, and optionally a hash of the file’s contents and a digital
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signature by the file’s owner to attest the integrity of the hash. When the prove-
nance of a file is being discussed, the sink of the associated provenance graph
will be the vertex corresponding to the file. We adopt the convention of iden-
tifying a file using both its logical location and its last time of modification to
disambiguate different versions of the same file, which avoids data dependency
cycles in the provenance graph.

• Edges in a provenance graph are directed, signifying the direction of the data
dependency. An edge to a file vertex indicates that the file was read, while an
edge from a file vertex indicates that the file had been modified. Analogously, an
edge from a process indicates that a read operation was performed by the process,
while an edge to a process vertex reflects a write operation. Consequently, read
and write operations to and from the filesystem by a process can be modeled by
a provenance graph.

In the context of provenance, we define the semantics of a primitive operation
to be an output file, the process that generated it, and the set of input files it read
in the course of its execution. For example, if a program reads a number of data
sets from disk, computes a result and records it in a file, a primitive operation has
been performed. If a process modifies a number of files, a separate instance of the
representation is used for each output file.

Primitive operations are combined into a compound operation. For instance, if
the result of appending together several data sets (by a program such as UNIX cat)
is then sorted into a particular order (using another program, such as UNIX sort,
that executes as a separate process), then the combination of appending and sorting
is a compound operation. Thus, the provenance of every file can be represented by
a compound operation that is a directed graph, consistent with the model used by
Grid projects [39].

4.3.2 Inter-host Dependencies

We now consider a simple example where an operation spans multiple hosts. A
user with identity 501 on the machine with IP address 10.12.0.55 uses ssh to con-
nect to a remote host. The user runs the UNIX cat program to output the con-
tents of the file /var/log/remote httpd.log. The output is redirected into the file
/tmp/local httpd.log in the filesystem of the host where the ssh command was in-
voked. This effectively copies the contents of the remote file to the local file.

% ssh 501@10.12.0.55 cat /var/log/remote httpd.log > /tmp/local httpd.log
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pidname:cat
pid:1364
uid:501

starttime:Fri Dec 9 9:15:02 2011

fi lename:remote_httpd.log
path:/var/log/remote_httpd.log

size:44182
lastmodified:Wed Dec 7 13:48:26 2011

pidname:sshd
pid:1422
uid:501

starttime:Fri Dec 9 9:14:57 2011

pidname:ssh
pid:3106

uid:10
starttime:Fri Dec 9 9:14:15 2011

local_host:10.12.0.34
local_port:1359

remote_host:10.12.0.55
remote_port:22

pidname:tcsh
pid:3059

uid:10
starttime:Fri Dec 9 9:14:11 2011

local_host:10.12.0.55
local_port:22

remote_host:10.12.0.34
remote_port:1359

filename:local_httpd.log
path:/tmp/local_httpd.log

size:44182
lastmodified:Wed Dec 7 13:48:26 2011

Fig. 4.2 A vertex shown with a rectangle represents the execution of a process, while a vertex
shown with an ellipse represents a file that was read or written. A network vertex, depicted using
a diamond, has the property that its attributes can independently be inferred at both ends of a
connection. TCP connections used for protocols such as ssh, FTP, HTTP, or Java RMI allow the
construction of such network vertices.

Similar commands and analogous file transfer utilities like sftp, FTP, or GridFTP
are commonly used in large distributed computations to move input data to idle
processors and to retrieve the results after the execution completes. If the provenance
tracking was restricted to inter-host dependencies, queries about the provenance of
the file /tmp/local httpd.log would not be able to establish a relationship to the file
/var/log/remote httpd.log on the machine 10.12.0.55.

One approach to addressing the gap described above is to record information
about the host on which each process runs and where each file is located. Users
can then be provided a mechanism for transferring the provenance metadata when
a file moves from one computer to another. Records that refer to the part of the
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provenance graph that originated on a remote host will be explicitly disambiguated
using the host attribute. While this scheme ensures that all provenance queries can
be answered at the destination host, it incurs considerable storage overhead [11].

An alternate approach would avoid replicating the provenance records at the des-
tination host to which the file is being transferred. Instead, the provenance store at
the destination would be provided with a pointer back to the relevant provenance
metadata on the source host. However, provenance queries at the destination would
require the source hosts to be contacted, slowing the response time and decreasing
reliability (since remote hosts may be unreachable).

In the above example, a distributed data flow takes the form of a file transfer. In
practice, data may also flow through network connections directly from one process
to another, as is the case in service-oriented architectures. In such systems, a series
of HTTP calls is made from one host to another, each passing XML documents
that include requests and arguments, and corresponding XML responses with return
values.

• To model network flows, we introduce a fourth type of element in provenance
graphs — the network vertex — that has the property that its attributes can inde-
pendently be inferred in two or more processes. If the processes are being audited
by different provenance middleware, the property ensures that each system can
construct an equivalent network vertex without any explicit coordination. For
example, equivalent network vertices associated with a TCP connection can be
constructed at both endpoints using the local IP address and TCP port, remote IP
address and TCP port, and timestamp (including the date), as illustrated in Figure
4.2.

Figure 4.2 depicts the provenance graph for the file /tmp/local httpd.log that
would arise after execution of the ssh command described earlier. (The graph is
simplified for clarity.) The key point to note is that the provenance vertex for the
network connection (between ssh and sshd in the example) can be independently
constructed by both the hosts at the two ends of the network connection. This allows
complete decentralization of the provenance recording in the distributed system,
with each host’s provenance infrastructure operating independently. At the same
time, the provenance records generated can be pieced together to yield a coherent
and complete reconstruction of the distributed data flows.

4.4 Querying Provenance

SPADE provides a query client that can be used to inspect the provenance metadata
generated by the operating-system-level Reporters to ask questions about processes
that ran, the files they read or wrote, and the network connections they initiated or
handled. In particular, this can be used to answer the questions asked in the First
Provenance Challenge of the International Provenance and Annotation Workshop
(IPAW) [26]. SPADEv2 supports a variety of storage formats for the provenance
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metadata. This includes the default storage in the graph database Neo4j [29], the
embedded relational database H2 [19] (and with minor changes, MySQL [28]). The
client can interrogate each storage with the underlying database’s query language,
as well as custom provenance queries.

All of the domain-specific semantics are recorded as annotations of the OPM
vertices. SPADEv2 requires the user to specify the hosts on which the known ele-
ments of the query are present. It maps these elements to globally unique provenance
identifiers in an initial phase, and then uses its auxiliary data structures to operate
on provenance graphs that are represented in terms of these identifiers.

The provenance queries in the IPAW challenge can be classified into those that
require access to (i) the entire provenance graph of the output file, (ii) just a subgraph
of the provenance of a vertex, or (iii) a path in the provenance graph between spe-
cific input and output vertices. These categories lead to the following query specifi-
cations: (a) given a vertex, request its entire provenance graph, (b) path expressions
with vertex attributes that include process and file identifiers, (c) given a vertex, re-
quest its provenance subgraph up to k levels, and (d) check if a path exists between
two vertices, s and t. We will focus on provenance path queries of type (d) as they
are the most general and often have high latency.

Provenance path queries can be answered recursively – by following a pointer,
corresponding to the direction from which data had flowed – or by computing the
transitive closure over the entire graph. It has been shown experimentally that stan-
dard recursive graph traversal algorithms do not scale for large workflow processes
and for large collections of data sets [20]. The alternative method of computing
the transitive closure over the entire provenance graph is computationally expensive
and has a large storage overhead [7]. When the graph is distributed, computing the
transitive closure is a complex operation. An efficient method for computing the
transitive closure has been described [20], but it is not clear how it translates to a
decentralized scenario.

We adopt a hybrid approach for answering distributed provenance path queries.
Across distributed hosts, the query is computed recursively. Within a host, the query
is computed using the transitive closure, an operation that is natively supported if
the storage used is a graph database.

We improve the efficiency of recursive querying with sketches that help reduce
the number of hosts that must be contacted when constructing the response to a
provenance path query. The sketches are space-efficient representations of graphs
and are used in SPADE to track connections between network vertices. In the rest
of this section, we describe how provenance sketches are constructed and how they
are used in SPADE to efficiently answer provenance path queries.

4.4.1 Provenance Sketches

Consider a graph, such as the one at the top of Figure 4.3, that depicts the prove-
nance of a piece of data on a single host in terms of identifiers for file and process
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vertices and edges representing the data dependencies. We introduced the notion of
a provenance sketch [13] to allow such a graph to be succinctly represented. De-
pending on how the sketch is constructed, it can support a specific set of queries.

F1

P1

F2

F3

P2 F4

P3

P4

F5
F6

1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

F1
F6

1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1

Vertices

F1-P1

P1-F6

Edges Direct

Indirect

F7

Fig. 4.3 A sketch of a provenance graph can created by inserting the hash of each vertex in a
Bloom filter, the hash of each direct edge in a second Bloom filter, and the hash of each indrect
edge in a third Bloom filter. However, this construction has limitations.

The sketches we will describe use Bloom filters as building blocks. A Bloom
filter is a compact data structure that provides a probabilistic representation of a set.
It supports membership queries – that is, queries that ask “Is element X in set Y?”,
denoted with the predicate inSet(Y,X). Given a set A = a1, . . . ,an of n elements, a
Bloom filter uses a vector v of m bits, with all bits initially set to 0, and k independent
hash functions, h1, . . . ,hk, each with a range 1, . . . ,m. For each element a ∈ A, the
bits at positions h1(a), . . . ,hk(a) in v are set to 1. Inserting an element only requires
it to be hashed with the k functions. Each of the k outputs determines a bit in the
vector v that should be set to 1 (if it is currently 0). Given a query for b, the bits at
positions h1(b), . . . ,hk(b) are checked. If any of them is 0, then certainly b is not in
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the set S. Otherwise, b is conjectured to be in the set with probability (1−e−kn/m)k.
The possibility of a false positive is what causes this probability to differ from 1.

We considered a number of methods to encode graphs with Bloom filters, each
enabling a different set of queries. The simplest approach is to use the vertices of
the graph as elements of the set S [13]. However, this only enables set membership
queries, such as inSet(S,F1) and inSet(S,P1) where F1 is a file vertex and P1 is a pro-
cess vertex. This cannot support queries about a path in a provenance graph, such
as P1/F2/*/P2/F4, which determines if file F2 generated by process P1 is part of
the provenance of file F4, generated by P2. To enable path queries, an alternative ap-
proach is to store the edges of the graph as set members. This enables path queries
in which all the vertices on a path are specified. However, it cannot handle regu-
lar expression path queries, which are among the provenance queries in the First
Provenance Challenge.

A provenance sketch with a second filter that contains edges can answer some
path queries but at the cost of topology-induced false positive [24]. To see why this
occurs, consider the path query P1/F2/*/P2/F4. A filter with edges as set members
returns “true”, since edges P1-F2 and P2-F4 are in the filter. However, file F2 is not
in the provenance of file F4. To address this, we previously proposed an edge-based
sketch for graphs. Two Bloom filters are maintained – corresponding to the sets of
direct and indirect edges in the graph [24]. The set of indirect edges is obtained by
computing the transitive closure of the provenance graph, as shown in Figure 4.3.
Such an edge-based Bloom filter correctly answers all path queries (other than the
false positives from the underlying Bloom filters).

The above provenance sketch construct does not capture all the ancestral relation-
ships of a vertex – in particular, ancestors that are on other hosts are not encoded.
To answer a distributed path query, the construct would require SPADE to maintain
an additional table of cross-edges between network artifact vertices. Below we in-
troduce a provenance sketch that encodes all the ancestral relationships of vertices
and supports queries about whether a path exists between two vertices, regardless
of whether they are on the same host or on different hosts.

4.4.2 Matrix Filter

We introduce the matrix filter, a new data structure to probabilistically represent
graph connectivity (or any other data that can be stored in a matrix). Whereas the
original matrix may have a size of µ × µ for an arbitrary µ , the filter only uses
O(m×m) space for a fixed m, thereby providing a compact representation of the
matrix.

A matrix filter consists of (a) a row array of m bits, (b) a column array of m2

bits, and (c) k independent hash functions {h1, . . . ,hk}, each of which has a range
of {1, . . . ,m}. Further, the ith bit bi of the row array defined in (a) is associated with
the ith set of m bits in the column array defined in (b).
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Fig. 4.4 A graph edge (s,t) is stored in a matrix filter. The filter is then used to determine that edge
(s’,t) is not in the graph.

Assume that S is the set of direct edges in the provenance graph G = (V,E).
During an initial setup phase, the edges in S are inserted into the filter. Consider
the insertion of a direct edge (s, t) ∈ E – that is, s is the parent of t – into the matrix
filter, as showin in Figure 4.4(b). First k hash functions are applied to t and each
resulting value sets the bits in the row array defined above in (a). Thus, Hk(t) sets
one or more of the m bits. For each bit in the row array that is set by Hk(t), k hash
functions are applied to s. Each resulting value sets one or more of the ith set of
m bits in the column array. Figure 4.4(c) shows that when edge (s, t) is inserted
into the empty filter, Hk(t) sets the bits in positions 1, 5, 7. Each of these bits is
associated with a set of m bits, which is updated with the value of the hash of s,
Hk(s) = 0010110.

To check if an edge, (s′, t), is present in the graph, the k hash functions are applied
to t. The bits indexed by Hk(t) are checked in the row array. If they are all set to 1,
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t is potentially in the graph. Each such bit is associated with a set of m bits in the
column array. All these sets of m bits are combined by a bitwise AND. A vertex s′ is
potentially an ancestor of t if all the bits determined by the hashes Hk(s′) are in the
bitwise AND. If any of the row array bits is set to 0, this indicates that t is not a child
vertex. If any of the bits in the computed bitwise AND is 0 but was pointed to by one
of the hashes of s′, this indicates that s′ is not a parent vertex of t. In Figure 4.4(d),
the test for edge (s′, t) fails and thus the edge is not in the graph.

In the matrix filter, vertices of an edge are hashed to distinct arrays – one vertex
to the row array and the other to the column arrays indexed by the set row array bits.
By encoding the ancestry relationship of the edge into different arrays, the matrix
filter can compute if a path exists between any two vertices of the graph without
computing the graph’s transitive closure. We demonstrate this property of the matrix
filter through examples:

• A completely specified path query, such as s/t/u/v, can be checked by issuing
set membership subqueries (s, t), (t,u), and (u,v). If the set membership test is
true for all subqueries, then the path exists.

• A path query specified with a regular expression s/*/t can be performed by first
checking if t is in the row array of the matrix filter. If t is present, then a check is
done to see if s is in the bitwise AND of the corresponding subsets of the column
array of the matrix filter.

4.4.3 SPADE’s Use of Matrix Filters

To collect the provenance of data created by a distributed application, SPADE is
deployed on all the hosts where the application executes. Each instance operates
independently, creating its own matrix filter to represent the provenance graph for
the host on which it resides. Detailed provenance metadata in the form of process,
file artifact, and network artifact vertices are collected in a local provenance store.
Intra-host provenance queries can be resolved using these provenance stores. What
remains then is to determine the cross-host provenance relationships, which are cap-
tured by the set of network artifact vertices in a distributed provenance graph. Hence,
the matrix filter on each host is used to store the set S of edges between network
artifact vertices and their ancestor vertices that are also network artifacts. Each net-
work artifact is stored in the row array of the host’s matrix filter. Its ancestor net-
work artifact vertices are stored in the corresponding column array locations. This
includes ancestors on the same host as well as on other hosts. Figure 4.5 shows the
sets S of edges between network artifacts that the hosts insert in their respective
matrix filters.

Provenance path queries whose end points reside on different hosts must deter-
mine the exact hosts through which their path traverses. Otherwise, computing them
will result in a commensurate number of (high latency) network connections on
several hosts. Since network artifacts connect hosts, we observe that storing edges
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Fig. 4.5 A provenance graph can be distributed across multiple hosts. Query F1/ ∗ /F6 arrives at
host 4. The list of all hosts that must be contacted is completely determined locally using host 4’s
matrix filter.

only between network artifacts is sufficient to answer distributed provenance path
queries. We elucidate this observation with a concrete example in the next subsec-
tion.

When a network artifact is generated on a host, SPADE adds it to the prove-
nance store. If the new vertex is associated with an incoming network connection,
the SPADE server on the remote host is contacted and that host’s matrix filter is
retrieved. The set of ancestor network vertices of the new vertex is extracted from
the remote host’s matrix filter. The new vertex and the set of ancestor vertices are
added to the local matrix filter. (A performance optimization was also implemented
where remote matrix filters are locally cached to avoid repeated retrieval at the cost
of losing distributed consistency.) Consequently, the matrix filter of a host includes
the ancestral network vertices from all upstream hosts.

A matrix filter construction also requires a judicious choice of the value of k and
m. In general, a smaller k is preferred since it reduces the amount of computation [2].
The appropriate choice of m depends on the number of network connections being
made. For applications with limited network connectivity, a smaller m in the range
10-50 provides low falses. Similarly, a higher m in the range of 100-500 provides
low false positives for more network intensive distributed applications.
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4.4.4 Querying Provenance Across Multiple Hosts

To illustrate how SPADE handles queries about provenance metadata that spans
multiple hosts, we consider the case when the path is a regular expression that in-
cludes vertices s and t from different hosts. SPADE tackles distributed provenance
path queries in two stages.

compute query hosts(Ns,Nt ,M,C)
begin

H←{}
foreach n s ∈ Ns

foreach n t ∈ Nt
if inFilter(ns,nt ,M)

print(Path exists)
mark(ns)

fi
end

end
foreach n s ∈ NS

if isMarked(ns)
foreach c ∈C

if ns ∈ c
H ← H U host(c)

fi
end

fi
end

end

Fig. 4.6 M is the matrix filter and C is the cache of sketches, both at the host where t is located. H
is the set of hosts that will be contacted for path fragments. In the first stage, every network vertex
ns is marked if there is a descendant network vertex nt in the matrix filter. In the second stage, a
list is built of the hosts with sketches that contain any of the marked network vertices.

In the first step, the SPADE daemon on the host where the query arrives inspects
its local matrix filter. The daemon determines if a path exists between the network
artifacts that are the descendants and ancestors of vertices s and t, respectively. If
such a path exists, SPADE determines the list of potential intermediate hosts that the
path traverses. In the second step, the SPADE daemon on each of the hosts in the
list is contacted to retrieve a part of the path that satisfies the query specification.

Assuming the existence of a provenance graph with components distributed
across multiple hosts, each of which has its own matrix filter, we can perform a
distributed provenance path query s/∗/t as follows:

1. Query the host where s is located to determine Ns, the set of network artifacts that
are the descendants of s, and Nt , the set of network artifacts that are ancestors of t.
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2. Execute the algorithm in Figure 4.6 to determine the list of hosts that need to be
contacted.

If a path exists between the two distributed vertices, the provenance subgraphs
corresponding to the query specification must be obtained. To determine the sub-
graphs, queries are sent to relevant remote hosts in parallel. The daemon that ini-
tiated the query receives the path fragments in response and assembles them into
a single path from s to t. False positives from a sketch may result in extra path
fragments in the response, necessitating careful selection of the parameter m when
initializing the matrix filters.

Figure 4.5 illustrates the process of determining which hosts need to be contacted
to obtain path fragments in response to a query. In this example, the query F1/∗/F6
arrives at Host 4. The daemon on Host 4 queries the daemon Host 1 to obtain
NF1 = {N1,N2,N3}, the network artifacts that are the descendants of F1, and locally
determines NF6 = {N′5}, the network artifacts that are ancestors of F6. Using the lo-
cal sketch, a check is performed to see if any path in the set {N1/N′5,N2/N′5,N3/N′5}
exists. The paths {N2/N′5,N3/N′5} are present. The cached sketches are used to de-
cide which hosts have network vertices in NF1 as ancestors. If the sketch produces
false positives, a small number of unnecessary network connections may still be
made.

4.5 Experimental Results

Our experiments are conducted on provenance metadata that was gathered by using
SPADE to monitor the workflow of a large distributed application in SRI Interna-
tional’s Speech Technology and Research Laboratory [38]. The application work-
load originated as part of the NIGHTINGALE project [30], which allows monolin-
gual users to query information from newscasts and documents in multiple lan-
guages. The objective of the NIGHTINGALE project is to produce an accurate
translation. NIGHTINGALE aims to achieve this with a workflow that specifies
the tools that will transform the inputs using automatic speech recognition algo-
rithms, machine translation between languages, and distillation to extract responses
to queries. However, there is no canonical algorithm for each of these steps, neces-
sitating a choice between a variety of tools. The speech scientists use accompanying
metadata to estimate which combination of available tools will produce the most
accurate result. This is further complicated by the fact that the tools have multiple
versions and are developed in parallel by experts from 15 universities and corpora-
tions. Finally, the choice of which specific version of a tool to use depends on the
outcome of previous workflow runs.

A representative application workload executed for roughly half an hour with
SPADE collecting provenance metadata about the processes that ran and files that
were accessed and modified. The resulting provenance graph had 5256 file vertices,
5948 process vertices, 35948 edges, and a depth of 24 levels. Since the workflow
was obtained from a single site (at SRI), we divided it to correspond to a distributed
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execution over eight geographically diverse hosts with matching network connec-
tion entries. These were PlanetLab [31] hosts located at SRI, University of Wash-
ington, and Princeton University.

To divide the workload into subgraphs corresponding to a distributed workflow,
we used hMETIS [23], a graph partitioning tool. When running hMETIS, we used
a high UBfactor (in the range of 40 to 50), which specifies that a large imbalance
is allowed between partitions during recursive bisection. Since hMETIS partitions
the workload by recursively creating bisections, the resulting topology over the dis-
tributed system has a tree structure, similar to what would result from a workflow
planner. This also results in fewer edges between partitions, consistent with the goal
of a distributed workflow planner, such as Pegasus [6]. The longest network path
length in this tree was 4.

The resulting partitioned provenance graphs were then deployed on each of the
eight PlanetLab hosts as SPADE databases. In addition, we constructed a synthetic
workload that consists of a single linear path through nine PlanetLab hosts. The
second workload provides a control to understand the effect of the sketches on the
network latency of provenance queries, independent of the graph characteristics of
the workload (since it consists of a series of network connections sequenced through
all the hosts). In both workloads, there are 16 network vertices.

We use matrix filters with 20 bit row filters, 20 bit column filters, and 4 hash
functions each. The matrix filters are built by inserting all network vertices created
on a host, as well as ancestor network vertices from matrix filters of upstream hosts.

A client requests the provenance through a query, which may originate at any
host in the system. A query is considered to be local to a host if the end vertex is
on that host. Otherwise, the query is transported to the host where it is local. Matrix
filters are used to both determine if a path exists as well as to locate the hosts that
may contain parts of the provenance related to a query.

4.5.1 Reduction in Network Latency

The dominant cost of answering distributed provenance path queries comes from the
network connections. To measure the reduction in network latency, we undertook
the following experiment. The x axis of Figure 4.7 shows the actual number of
hosts that need to be contacted to respond to a query asking for all the paths from
one distributed vertex to another. The time taken to complete the request with and
without the use of sketches is shown along the y axis. In particular, note that when
using sketches, the latency does not increase when an increasing number of hosts
must be contacted. This is true because the sketches allow all the remote hosts to be
contacted in parallel, each with a suitable query, corresponding to the piece of the
distributed path from that host.

While Figure 4.7 shows that using provenance sketches significantly reduces the
time to answer a path query, this is seen even more dramatically in Figure 4.8 with
the synthetic workload that demonstrates the effect as the query is scaled to a depth
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Fig. 4.7 The latency of path queries with and without the use of provenance sketches as a function
of the number of hosts that must be contacted. The provenance is of a speech processing workflow.
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Fig. 4.8 The latency of path queries with and without the use of provenance sketches as a func-
tion of the number of hosts that must be contacted. The provenance is of a synthetic workload,
consisting of a sequence of network connections through consecutive hosts.

of nine distributed hosts. The latency for answering queries remains constant re-
gardless of the number of remote hosts that must be contacted when sketches are
utilized.
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4.5.2 Sketch Robustness

To understand the efficacy of our sketches as the provenance graph grows in size,
we measured the number of false positive answers to queries about whether an edge
between two network vertices exists in a matrix filter. Since the sketch contains
provenance metadata of an increasing number of hosts as it propagates along a dis-
tributed path in the system, it is expected to provide an increasing number of false
positive responses. Figure 4.9 shows that the rate of such false positives is very low,
ensuring that the sketches are robust as the provenance grows. Figure 4.10 shows
that this is not an issue even in the case of the more strenuous synthetic workload
with longer path lengths.
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Fig. 4.9 The number of false positive responses in 100,000 random provenance queries. Each
query checks if an edge exists between two network vertices using the matrix filter sketch of a
host. The provenance is of a speech processing workflow.

4.6 Conclusion

SPADE is a system for auditing, recording, and querying the provenance of dis-
tributed applications. Domain-specific (such as operating system level) activity is
transformed into an OPM-compliant record by SPADEv2 modules. Each host main-
tains the authoritative repository of its data provenance. The distributed model
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Fig. 4.10 The number of false positive responses in 100,000 random provenance queries check-
ing if an edge exists between two network vertices using the matrix filter sketch of a host. The
provenance is of a synthetic workload, consisting of a sequence of network connections through
consecutive hosts.

of SPADE introduces the problem of reconstructing provenance during querying.
SPADE uses novel provenance sketches to improve the performance of querying
such provenance metadata. The provenance sketches determine which past network
connections were relevant to a query, allowing all appropriate hosts to be contacted
in parallel. Host-specific provenance subgraphs are computed using local transitive
closures between network vertices. These subgraphs are retrieved in parallel and
stitched together. SPADE is currently deployed within the NIGHTINGALE [30]
project for auditing distributed workflows. Using real provenance data, we have
shown the efficiency of SPADE’s novel matrix filter summary data structure.
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