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Abstract

We aim to develop a fast, efficient, and automated
way to assess the severity of complications after
surgeries, so that medical professionals may compare
different surgery and treatment options, as well as
tailor the treatment plan for individual patients. The
Clavien-Dindo (CD) classification is commonly used
to categorize post-surgical complications into different
grades. We used the data of 494 patients from Raxa,
an Electronic Medical Record (EMR) provider in India,
to build a model that automatically performs a binary
classification of severity with 84% accuracy. We also
report preliminary results of predicting the CD grade
using this model.

Keywords: EMR, post-surgery complications,
Clavien-Dindo, data mining, predictive model

1 Introduction

Evaluating a patient for surgical procedure requires
the surgeon to assess not just the patient’s symptoms
but also his physical characteristics and underlying con-
ditions. Surgeons take a comprehensive look at all avail-
able information to decide on a treatment plan. To
make an informed choice, surgeons need to be able to
compare the likelihood of post-surgical complications,
based on pre-existing conditions and different procedu-
ral options, such as open versus laparoscopic surgery.

The Clavien-Dindo (CD) classification [3] and the
Comprehensive Complication Index (CCI ) [11] are com-
monly used to describe the severity of post-surgical com-
plications. The CD classification contains 7 grades: I,
II, IIIa, IIIb, IVa, IVb, V [4]. These metrics are designed
to categorize and generalize the post-surgery complica-
tions in an objective and reproducible way. They aim to
produce numerical values that doctors can use to com-
pare the outcomes of different surgical procedures, eval-
uate their effectiveness, and assess the potential risks.
However, the manual process of assigning the CD grade
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and CCI score is time consuming, and the information
is not always available.

Our aim is to provide a fast, efficient, and auto-
mated way to suggest a CD grade so that the doctors
can save time and create a valuable knowledge base.

2 Data Description

Raxa [10] is an electronic medical record (EMR)
software vendor in India. Their system’s data model
is derived from the OpenMRS project, an open-source
EMR format. Raxa provided the following three kinds
of data.

1. Medical records: Raxa provided a sanitized
database of medical records for 494 patients. This
database recorded 2,938 days of patient hospital
stays, 17,127 encounters between patients and med-
ical professionals, and 113,897 lines of observa-
tions made by medical professionals. The data was
anonymized by removing personally identifiable in-
formation, such as patients’ names, birthdays, and
phone numbers. All the data was from gastroin-
testinal surgery patients.

The medical records include both structured and
unstructured data. The structured data contains
quantitative health measurements, such as vital
signs and the medication doses. The unstructured
data is free-form text, such as after-visit notes
written by medical professionals.

2. Ground truth: Raxa provided a table of “ground
truth” – that is, the CD grade assigned by a
medical doctor to a patientID, an anonymized
identifier for a patient in the database. However,
we were not able to use all the patients’ CD grades
in this table. This was because some patients
had multiple surgeries with different CD grades
assigned afterwards. In such cases, we were not
able to tell which surgery an anonymized database
entry corresponded to. We also had patients
whose medical records in the database were not
complete. For example, if a patient’s records
include a computed tomography (CT) scan, the
expected CD grade would be IIIa (indicating a
radiological intervention). However, if the CD



Figure 1: Fraction of all data that was contained in each CD grade.

grade reported was II, the CT scan might have
been performed as part of a normal post-surgery
procedure. Such outliers were manually removed
from the dataset.

3. Medical ontology: Even though the free-form
text was entered in English, in many cases medical
shorthand was used. For example, when “BP
110/70” was recorded in the unstructured data
portion of a patient’s medical record, the intended
semantics are that the “systolic blood pressure =
110” and that the “diastolic blood pressure = 70”.
To help with extracting and interpreting such text
features, we utilized a custom ontology provided by
medical doctors.

CD Grade Distribution: The original Clavien-Dindo
scale consists of a system of letter grades [0, I, II, IIIa,
IIIb, IVa, IVb, V], for which 0 means no complications
occurred after surgery. To support the development of
a classifier, we use the Clavien-Dindo Numeric (CDN)
model instead. In this model, the grades are represented
by numerical variables [0, 1, 2, 3, 4, 5, 6, 7]. The
distribution of CD grades in our data is shown in
Figure 1. The majority of the patients had CDN 0–
2, which represents the range from no complications to
relatively mild ones.

A CD grade of IIIa or higher indicates that the
patient had more serious complications. For example,
they may have needed to undergo surgical, endoscopic,
or radiological intervention. This motivated us to split
the distribution into two categories – CD < IIIa, and

CD ≥ IIIa. The result is shown in Figure 1. Only 8%
of the patients were assigned a CD grade of IIIa or
higher – that is, our dataset is highly skewed.

Figure 2: Fraction of CD grades in two categories. This
split became the basis of the classification model.

3 Constructing Classifier Features

The raw data had to be transformed into input that
could be used with classification algorithms. Next, we
describe our approach.

3.1 Extracting Terms: cTakes [6] is an open-
source natural language processing tool. It is designed



to extract information from free-form text found in
EMRs, such as doctors’ notes following a patient’ hos-
pital visit. We use cTakes to extract a consistent set
of terms from various descriptions of the same symp-
tom. For example, an observation may contain “abun-
dant bleeding from the arm” or “The arm was bleeding
heavily”. In both cases, the output of cTakes contains
“arm”, “bleeding” and “arm bleeding.” Similarly, the
output will contain “fever”, regardless of whether a doc-
tor’s note indicates “fever” or “febrile”. We used cTakes
to extract 2,232 terms in the following categories (that
were defined by the tool): ProcedureMention, Sign-
SymptomMention, DiseaseDisorderMention, Anatomi-
calSiteMention, MedicationMention.

We found that there was high variance in the num-
ber of observations per patient. Similarly, medical pro-
fessionals exhibit varying degrees of verbosity. Conse-
quently, we opted to use the output of cTakes to indicate
whether each term was present or absent, rather than
counting the frequency of occurrence of each term.

3.2 Value Selection: The OpenMRS data model
contains fields for numerical data. However, we noticed
that in practice most medical professionals did not uti-
lize them. Instead, they recorded quantitative informa-

tion, such as vital signs, in fields defined for unstruc-
tured data, such as observation notes. As a result, we
extracted 8 vital signs from the free-form text: pulse,
(liquid) output, (liquid) intake, temp(erature), stoma,
RT (respiratory therapy), and SPO2 (oxygen satura-
tion).

For many of these features, a patient has multiple
measurements, even on a single day. We tested several
ways of grouping multiple values: computing the aver-
age, the median, or the difference between the minimum
and maximum. Finally, we opted to simply use the last
value reported. The motivation is that it has the most
up-to-date information. In addition, it is also the most
likely to capture an abnormal value if a complication
was in the process of developing.

3.3 Custom Dictionary: We built a custom dic-
tionary to map certain events to a corresponding CD
grade. The utility of this can be seen through an exam-
ple: Per the CD grade definitions, single organ failure
would result in grade IVa and multiple organ failure
would be grade IVb. When we see “renal failure” in a
patient’s data, their CD grade is IVa if there was no
other organ failure. We capture this as an entry in the
dictionary.

Figure 3: Errors using the custom dictionary: CDNdictionary − CDNtrue.



Using the custom dictionary, 80% of the CD grades
were correctly assigned. The false positives and false
negatives were then manually investigated to remove
outliers from the data set. We found our dictio-
nary tends to overestimate the CD grade, as shown
in Figure 3. CDdictionary is the CD grade assigned
based on our dictionary. CDtrue is the CD grade as-
signed by medical doctors. 50.7% of the patients have
CDdictionary ≥ CDtrue, of which 31.6% of the patients
have CDdictionary > CDtrue.

We suspect some of the false positives are due to
incomplete data and illustrate this with an example.
A patient may have complications after surgery that
necessitate admission to the ICU (intensive care unit).
This qualifies for a CD grade of IVa. However, it is also
possible for a patient to be sent to the ICU as part of a
normal recovery. This may be necessary for a number
of reasons, such as the patient being in a chemically-
induced coma or requiring assisted breathing facilities.
Though this is termed POICU (post-operative ICU),
some doctors may simply mention ICU. As a result, the
assignment of CD grade IVa becomes an overestimate.
This can be seen in the bottom right corner of Figure 4
– in the cases where CDdictionary is IV a or higher, and
CDtrue is 1 or 2.

It is not sufficient to just use a dictionary of
terms to assign CD grades. This can be seen in the
frequency distribution of dictionary keywords over CD
grades in the ground-truth table. Figure 5 shows the

Figure 5: Frequency of ‘expire’ per CD grade.

distribution for the word “expire” provides a clear
signal for grade V. In contrast, the distribution for
“ICU” is spread over almost all CD grades, including
0 (indicating no complications), even though an ICU
stay counts as a grade IV event.

As shown in Figure 6, “expire” is a clear signal for
grade V whereas “ICU” is used in almost all grades,
including 0 (no complication), even though an ICU
stay counts as a grade IV event. In other words, the
dictionary alone does not provide clear enough signals
to achieve a highly accurate CD classification system.

Figure 4: Comparing CDNdictionary and CDNtrue.



Figure 6: Frequency of ‘icu’ per CD grade.

4 Model Building

We aimed to develop an automated CD grade
classifier with the following properties:

• Robust: Each medical professional has a unique
style of writing that manifests as diversity in the
text describing patients’ symptoms and treatments.
Our feature extraction normalizes the differences in
style, using cTakes and our custom dictionary. This
makes the classifier robust in the face of writing
idiosyncrasies.

• Efficient: The system must be fast enough to
handle input describing each patient discharged in
a single day at a large hospital. At the same
time, it should be able to operate with the limited
computing resources of a small hospital. Our
current implementation takes about an hour on
a laptop to process 500 patients’ records. This
includes (i) extracting features using cTakes, (ii)
selecting a subset of high-utility key-value pairs,
and (iii) identifying whether terms in the custom
dictionary are present.

• Comprehensible: We anticipate medical profes-
sionals will trust the system’s output if its design
choices are clear. Consequently, we solicited and

utilized input from doctors when selecting features
from the medical records. In particular, we aimed
to ensure they could understand which symptoms,
observations, and other data influenced the classi-
fication.

With these goals in mind, we tried several classi-
fication algorithms, including decisions trees, random
forests, and naive Bayes. We did not investigate the use
of neural networks because the dataset size was small
(putting it at high risk of overfitting).

Data Skew: As described in Section 2, a CD grade of
IIIa or higher indicates serious complications. Based
on this, we aimed to classify patients into two groups
– those with CD grades below IIIa and those with CD
grades of IIIa or higher. Initially, we used 10-fold cross-
validation with an 80-20 training-test data split to build
our model. The skew in the data, seen in Figure 1, posed
a challenge. Even a zero-classifier, which randomly
assigns low or high CD grades to patients, achieves an
accuracy of 81%. Of the three algorithms tried, random
forests performed best. However, its 83% accuracy is
not significantly higher than the zero-classifier.

To address the skew in the data, we constructed a
balanced dataset. The number of patient records with
low CD grades was limited to match the number of
records of those with high CD grades. By construction,
the zero-classifier’s accuracy was reduced to 50%. Using
this dataset, we built another model using the earlier
approach (of applying 10-fold cross-validation with an
80-20 training-test data split). Table 1 shows the
confusion matrix obtained with the updated dataset.
The model has an accuracy of 79.3%.

Threshold Selection: When the model is applied to
a patient’s medical record, it computes a quantitative
estimate of complication severity. If this is above a
threshold, the patient is classified in the category of
patients with CD grades of IIIa or higher. The selection
of this threshold therefore determines a tradeoff between
false positives and false negatives. If the patient should
not have been classified as having CD grade IIIa or
higher but was, this constitutes a false positive. A
false negative occurs when the patient should have

Actual
Classified

CD < IIIa CD ≥ IIIa Total

CD < IIIa 423 (74.7%) 143 (25.3%) 566 (50%)
CD ≥ IIIa 91 (16.0%) 475 (84.0%) 566 (50%)
Total 514 (45%) 618 (55%) 1132

Table 1: Confusion matrix using the balanced dataset.



been so classified, but was not. In borderline cases,
the choice of threshold can change the category the
patient is classified into. When selecting a threshold, we
reasoned that it is preferable for the model to produce
an overestimate rather than an underestimate because
a doctor can manually override such false positives.

5 Predicting CD Grades

We explored whether the system could predict the
CD grade of a patient before a qualifying event. For
example, assume a patient experiences renal failure on
the tenth day after surgery. We studied whether the
system could predict (before the tenth day) this patient
was likely to experience a severe complication – in this
case, one with CD grade IVa.

Each patient’s data was split into sets of records
from individual post-operative days (PODs). Using
this, a list of recording dates and values was constructed
for each feature. In total, the dataset contained ele-
ments spanning 2,938 days and 494 patients.

Validating the model’s predictive power proved
challenging due to the nature of the dataset. To
explain the types of issues encountered, we describe
three patients’ cases. Their data is plotted in Figure 8.
One patient had been assigned CD grade I, while the
other two had received CD grade IVa. The x axis
represents the number of days elapsed since the patient’s
surgery. The y axis corresponds to the complication
severity. The green line shows the classifier’s threshold.
Values above it indicate a CD grade of at least IIIa.

In each case, it was not possible to make a pre-
diction before the threshold was crossed. However, the
reasons are different for each patient. In the first case,
the patient’s score remains below the threshold for the
entire hospital stay. This means there was no point in
time when the threshold was crossed. The second pa-
tient developed severe complications after POD 5. How-
ever, there were no records between POD 5 and 9. As a
result, the prediction does not cross the threshold until
POD 9. The third patient developed severe complica-
tions immediately after the surgery. It was therefore not
possible to make a prediction before the threshold was
crossed.

If we had CD grades for every POD of all patients,
we could have validated the predictive power of the
model. In practice, we had a single CD grade for
each patient. Recall that the CD grades are manually
assigned by doctors. As a result, we did not have ground
truth for the daily CD grade of each patient. Instead,
we studied the CD grade predicted by the model on
each day of each patient’s stay in the hospital. Each
predicted grade was compared the actual CD grade
assigned at the end by a doctor. The results are

summarized in Figure 7. For each predicted CD grade,
the confusion matrix shows the distribution of the actual
CD grades.

Figure 8: Predicted severity as a function of post-
operative days elapsed.



Figure 7: Actual versus predicted CD grades.

6 Related Work

Researchers have been applying machine learning
to medical data for over four decades [7]. Advances
in computing have facilitated significant improvements
in machine learning over the years. In 1986, the
U.S. National Library of Medicine created the Unified
Medical Language System (UMLS) [2]. It codifies
over a billion concepts, helping standardize medical
expressions. In 2002, Liu et al. [8] used machine learning
techniques to reduce ambiguity in the UMLS. This has
facilitated automated processing of free-form medical
text.

Rajkomar et al. [9] used over 46 million data points
from 216,221 patients to predict in-hospital mortality
(equivalent to CD grade V in our study) with 93–
94% accuracy. They utilized deep learning to analyze
electronic health records. To compare our system’s
accuracy to theirs, we would need to test perform tests
limited to CD grade V classification. However, the
small size of our dataset precluded this.

A number of other researchers have performed sim-
ilar studies in other areas of medicine. For example,
Blamey et al. [1] used machine learning to predict risk
in biliary surgery; Cruz and Wishart applied machine
learning techniques for cancer prediction and progno-
sis [5]. Similarly, artificial intelligence has been used to
augment image recognition in medicine – Xu et al. [13]
used such an approach to find cells, while Wolberg et
al. [12] applied it to identify cancerous regions in images.

7 Conclusion

We studied whether the assignment of post-surgery
complication severity grades could be automated. To
build a model, we extracted a set of features from the
electronic medical records of 494 patients, a custom
dictionary, and specific schema. Using the patient
data and a medical text processing tool, we trained a
classifier that was then able to achieve its goal with 84%
accuracy.

We also attempted to build and use a model to
predict when a patient’s complications would cross
a pre-defined threshold. The lack of ground truth
prevented a complete validation. However, we were still
able to compare the model’s daily predictions to the
final ground-truth value for each patient. The results of
this were summarized.

The results could be improved in a number of ways.
Separate models could be developed for different types
of surgeries. The increased specificity may improve
the precision of each model. Pre-surgery data, such as
family history, could be included. This would allow risk
factors to be incorporated into the classifier’s model.
Finally, an interactive version of the tool could allow
doctors to select between multiple options they may be
considering, based on predicted outcomes.
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