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Abstract—Security tool evaluations and experiments are often
hampered by ad-hoc setups, missing telemetry, and fragile
infrastructure. We report on a controlled experiment using
CRINKLE, a novel, interactive network packet provenance de-
bugger that is deployed on the national-scale FABRIC testbed.
Participants using CRINKLE consistently solved debugging
tasks faster and with less effort: two verified correct solutions
were completed in under six minutes with as little as one line
of code, outperforming advanced non-CRINKLE users despite
having far less FABRIC experience. Our integrated telemetry
stream captured 364 records with negligible overhead and zero
loss, enabling real-time detection of user and infrastructure is-
sues and proactive remediation. Over 38 slices and 24 different
FABRIC sites, we identified and resolved common platform
problems (permissions gaps, SSH key failures, transient site
outages). These findings demonstrate that pairing fine-grained
telemetry with realistic, federated testbeds yields reproducible,
performance-driven security tool evaluations and that CRIN-
KLE can serve as both a high-performance debugger and a
model for instrumented cybersecurity experimentation.

Index Terms—Network Experiments; Network Debugging;
User Study

1. Introduction

Testbed environments are used to develop, debug, and
evaluate research artifacts. Debugging in complex multi-
tenant, testbed environments can be a vexing challenge as
failures may arise from diverse causes including subtle con-
figuration errors, transient infrastructure issues, interference,
or unanticipated interactions between physical, emulated,
and virtualized components. These problems could lead
to pathologies such as unstable connectivity, variability in
latencies, or unexplained packet loss—issues that are often
time consuming and laborious to diagnose and reproduce.

Challenges like these are amplified in cybersecurity
testbeds, where a simple misconfiguration or overlooked
failure mode can pave the way for unintended vulnerabili-
ties, undermine monitoring coverage, disrupt essential ser-
vices, or otherwise compromise the validity of experiements.
We posit that ensuring system reliability and diagnostic
clarity is vital for maintaining effectiveness and integrity
of cybersecurity experiments.
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While traffic monitoring tools, such as tcpdump and
Wireshark, provide raw network packet visibility, they
place the burden of causal reasoning on the operator. Higher-
level instrumentation systems, including provenance-based
approaches, can capture the lineage of network events and
highlight causal relationships between failures and under-
lying configurations. Prior research on distributed prove-
nance [1]-[3] and distributed tracing [4]-[6] has shown
that causality-aware analysis can accelerate root-cause iden-
tification. However, these systems are often evaluated in
small-scale, controlled environments and lack integration
with modern, federated testbeds or realistic multi-tenant
infrastructure.

Large-scale experimental platforms such as Emulab [7],
FABRIC [8] and SPHERE [9] have emerged to support re-
producible networking and security research. FABRIC pro-
vides international, reconfigurable resources that can be pro-
grammatically instrumented, making it a promising venue
for evaluating interactive debugging tools under realistic
conditions.

Despite the importance of testbeds for networking and
cybersecurity research, few studies have explored how such
testbeds can be leveraged to run user studies for debugging
and diagnostic tooling, especially with integrated telemetry
that tracks user interactions, infrastructure state, and tool
performance in real time.

This paper presents an approach to address that gap
by evaluating CRINKLE, an interactive packet provenance
debugger, in a controlled study on the FABRIC testbed.
By combining provenance-driven debugging, comprehen-
sive telemetry, and a federated experimental platform, we
demonstrate a methodology for conducting reproducible,
performance-focused evaluations of debugging tools and
instrumentation approaches one that can generalize beyond
CRINKLE to other operational and research contexts.

Contributions. The contributions of this experience report
are threefold:

o We present the first large-scale, user-centered evaluation
of CRINKLE, measuring task performance against a non-
CRINKLE baseline.

o We design and deploy a fine-grained telemetry system that
captures both user activity and infrastructure state with
negligible overhead.

e We analyze FABRIC’s suitability as a platform for con-



trolled experiments with debugging and instrumentation
tools, identifying and categorizing infrastructure-related
challenges encountered during the study.

1.1. Artifact Sharing

The open-source FABIib API [[10] manages resources
and experiments on the FABRIC testbed (Section [2). This
API is used by FABRIC users for defining, reserving, and
managing their experiments. FABIlib is commonly used
through Jupyter notebooks [11], which are also used on
other testbeds, such as Chameleon. Notebooks provide both
flexibility for designing experiments and easily reproducible
artifacts [12]], [13]]. For our work, participants were given
notebooks to complete (Section [3). A copy of the materials
participants were given is distributed as a FABRIC artifactﬂ

1.2. Ethical Concerns

This research involved human participation by FAB-
RIC users. Before carrying out the user experiment, we
submitted an IRB (Institutional Review Board) request to
our institution and received an exemption. Participants used
CRINKLE’s evaluation platform on FABRIC to evaluate
CRINKLE’s network debugger and provide feedback. Par-
ticipants later completed a survey to give feedback about
the evaluation platform.

2. Background: FABRIC and FABIlib

This section describes the FABRIC testbed, which pro-
vides the development and evaluation environment for this
research. As a federated testbed, FABRIC is formed of a
set of 33 sites that are located across a wide geographic
area. There are FABRIC sites in universities and Internet
exchange points (IXPs) across the USA, Asia, and Europe.

Each FABRIC site hosts a rack of equipment that pro-
vides resources to the testbed. These resources include
Tofino switches and several worker machines that host var-
ious types of GPUs, storage devices, and network cards
(including Mellanox ConnectX NICs and Alveo FPGA
NICs). For example, the site at the University of Hawai’i
has 5 worker machines that (in aggregate) host 640 CPU
cores, 108TB storage, 2.4TB RAM, 8 A30 GPUs, 16 P4510
NVMe devices, 6 single-user ConnectX NICs, a ConnectX
NIC that can be shared among 635 users and 1 Alveo
FPGA cardP] Reservable resources in FABRIC sites are
called slivers. Slivers can include nodes (Virtual Machines
that are allocated storage, CPU cores, and RAM on worker
machines), programmable switches, NICs and GPUs. Slivers
are combined to create a slice—an example slice is shown

1. https://artifacts.fabric-testbed.net/artifacts/e 190c5f4-d753-4521-a682-
168d12460924

2. FABRIC uses SR-IOV and PCle passthrough to provide access to host
resources to its performance-sensitive users.

3. The resources of the FABRIC site at the University of Hawai’i are
described at: https://portal.fabric-testbed.net/sites/HAWI

in Fig. A slice consists of the set of resources that
researchers use to carry out a testbed experiment. This
terminology is common across large testbeds, and it is not
used exclusively by FABRIC. Slices can include any mix of
slivers, and that mix can be changed at any time, provided
that the resources are available.

FABRIC utilizes two sets of abstractions to define the
network links within a slice [[14]. These links interconnect
NICs and switches in a slice. The first set consists of
Layer 2 (L2) abstractions such as L2Bridge which links
resources within a single FABRIC site, L2STS (L2-Site-to-
Site) which links resources across sites, and L2P2P (L.2-
Point-to-Point) which links exactly two dedicated NICs
between two sites. To the experimenter, these connections
appear as if the resources are directly linked. The second
set consists of Layer 3 (L3) abstractions, which trade some
control for convenience. They utilize a service, called Fab-
Net to connect nodes through the sites’ L3-routed networks.
These connections have a further External type that allows
for the experimental data plane to connect to the wider
Internet. L2 and L3 abstractions can be used with Facility
Ports to connect FABRIC resources to external resources,
such as Chameleon [15]], which allows experimenters to use
FABRIC’s network flexibility with the dedicated resources
of other testbeds.

2.1. Debugging needs on testbeds

An important network debugging challenge in federated
network testbeds involves separating bugs in the researcher’s
network experiment from problems in the testbed’s underlay
network. Network problems that arise on a federated testbed
network are not unlike problems on other networks. FAB-
RIC racks are placed at professionally-managed facilities but
they are not immune from unplanned downtime—including
outages caused by fiber cuts [16], or pipe bursts leading
to an electricity shutdown [[17]. Moreover, FABRIC’s net-
work requires ongoing maintenance to address issues such
as transceiver reseating, optics cleaning, and firmware and
configuration updates.

Because of their role, federated network testbeds also
face additional debugging challenges: (1) Experimental pro-
totype network architectures and processors take months
to develop, during which time they will require network
debugging. (2) Shared testbeds can involve simultaneous
experiments by different (tenant) researchers whose (virtu-
alized) slice resources are not perfectly isolated, which can
affect experiment results and their reproducibility. (3) Host
and network virtualization is used to provide abstractions to
different researchers, but abstractions occasionally leak. For
example, virtual NICs do not receive all frames, even when
set to run in promiscuous mode [18]—violating the “rule
of least surprise” [[19]] and giving researchers a wide set of
possible causes for this behavior. For another example, ex-
periments might occasionally fail because they rely on sites
that intermittently run out of resources because of heavy
use—for example, IPv4 addresses might be depleted [20].
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Figure 1: Example of a FABRIC slice (defined in Section . This visualization is produced by FABRIC and shows a
multi-path network that consists of seven nodes (n1-n7) that reside in three FABRIC sites (at Tokyo, Los Angeles, and at
CERN in Geneva). This network sets up a user-defined topology of intra-site and inter-site links (net1-net6).

2.1.1. A typical FABRIC network experiment. A FAB-
RIC experiment typically consists of generating, processing,
and analyzing network traffic. As part of an experiment,
researchers might install and run prototype software or
hardware packet processors or network topologies. A slice
can represent any type of network—including scaled-down
HPC clusters, telecom backbones, and datacenter networks.
Figure[T] shows a typical network (slice) on FABRIC. Slices
can differ by the number of nodes and other types of slivers
(such as smart NICs) that they include. Slices also differ by
the software that is installed on nodes and the configuration
of nodes, NICs, and other slivers.

2.1.2. Debugging needs for a network experiment on
FABRIC. Consider the slice shown in Fig. [} Network-
related problems that might arise include:

o Congestion and faults in FABRIC’s underlay, including
fiber cuts, as described above. In Figure[I] this could result
in traffic loss or delays at any node in the topology.

« Forwarding and routing: (1) for traffic flowing between n6
(in Tokyo) and n5 (at CERN), each step of the journey
depends on correct configuration. For instance, N7 must
be configured to forward packets between two interfaces.
(2) n2 might be misconfigured to egress traffic on n2-
iface2 instead of n2-ifacel.

o Delays might be caused by congestion on intermediate
nodes and their hosts. Fig. [T| shows a multi-path topology
in which traffic from n6 to n5 can cross either net3 or
net6 for load balancing, but if misconfigured this can lead
to network bugs.

« Additional sources of network problems can arise from
the use of smart NICs and FPGA cards because of their
higher complexity to program and use.

e As a network topology grows, so do the sources of
potential network problems—for instance, there are more
elements that could fail or be misconfigured.

« Different runs of this experiment might behave differently
because of background traffic. By default, testbeds do
not provide per-experiment network telemetry that can be
used to measure background traffic.

3. Network Debugging on FABRIC:
State of the Art

As part of the research on CRINKLE, we surveyed
FABRIC users to establish how they carry out network
debugging on FABRIC, and how it compares to carrying out
networking debugging on a non-testbed network. 22 people
participated in this survey—which is part of a larger study
described in Section We learned that:

« All respondents use low-level tools and techniques (such
as tcpdump and traceroute) for network debugging. Re-
spondents tend to use the same network debugging tools
and techniques on FABRIC as they do outside of FABRIC.
The main difference between FABRIC and non-testbed
network debugging consists of the use of Jupyter note-
books to run commands on FABRIC nodes and the use
of vendor-specific tooling outside of FABRIC.

e 50% of surveyed researchers ran Jupyter notebooks au-
thored by other FABRIC users, underscoring the reuse of
research artifacts within the FABRIC community.

e 50% of surveyed researchers experienced infrastructure
problems when running our notebook—including authen-
tication, authorization, and availability problems related
to their configuration. The experiment took place during
a typical operation window on the testbed (it was not



undergoing maintenance). This characterizes the feedback
that currently needs to be relayed between users, but that
could be automatically sent to us as telemetry.

4. CRINKLE

This section introduces the CRINKLE system which was
designed to meet the following goal: provide a debugging
system that enables users, without requiring operator sup-
port, to debug issues within their slices of testbed experi-
ments. For our implementation, this means that CRINKLE
uses resources, permissions, and APIs that FABRIC already
supports.

4.1. Overview

Fig. [2] outlines the workflow that is implemented in
CRINKLE to enable researchers on FABRIC to debug
their networks.FABRIC researchers @ usually use FAB-
RIC through Jupyter notebooks that are hosted at a cloud
server. To use CRINKLE, researchers use FABRIC as nor-
mal, since CRINKLE extends FABRIC’s API with debugging
features. The Jupyter notebook server controls FABRIC
resources @. When using CRINKLE, FABRIC users augment
their network with new monitoring capabilities to debug
their network. They choose where to install monitors by
bisecting links ©®. CRINKLE uses resources on FABRIC for
monitoring the network, capturing data, and @ storing it.
Debugging output and telemetry are streamed back @ to the
Jupyter notebook. The debugging output is used by FABRIC
users to fix network problems, and the telemetry is sent to
a collector ® for remote analysis.

CRINKLE’s telemetry stream consists of tuples that are
sent to a collector. The tuples are emitted at different stages
of an experiment. The tuple values are used to identify the
experiment’s stage, user, configuration, FABRIC site and
other details that can help diagnose problems remotely. For
our experiment, we monitored an endpoint which received
HTTP POST requests containing these tuples, and reached
out to participants via email when the telemetry indicated
they might need assistance. Some circumstances prompting
us to reach out included multiple slice setup failures or an
excessive amount of time spent on one step.

4.2. Topology extension paradigm

As sketched in Fig. 2] CRINKLE transforms links to add
monitors. This takes advantage of the flexibility of federated
testbeds to add a dedicated monitoring node to the link.
To the experiment, the topology is unchanged, but these
monitored links provide the ability to observe and influence
the network’s data plane. CRINKLE requires no support from
the user, and it is entirely hardware-agnostic as it can treat
every node in the network as a black box.

All traffic that crosses a monitored link will traverse that
link’s monitor node. On the monitor, this traffic is processed
by a specialized DPDK application (Data Plane Develop-
ment Kit [21]]) through which CRINKLE can modify and

record traffic. Monitors are connected using an out-of-band
L3 network with an analyzer, a special higher-resourced
node which maintains the database of packet provenance,
which is described later in this section.

5. FABRIC User Study

This section outlines the user study carried out using
CRINKLE.

Methodology. An IRB (Institutional Review Board) ex-
emption was obtained for an experiment design involving
human participants who would carry out network debug-
ging exercises. This experiment was carried out in a novel
manner: it recruited participants who use FABRIC, and who
could solve the exercises by carrying out experiments on
FABRIC. Participants would be given a Jupyter notebook
by the experiment organizers. This notebook would create
a network topology and simulate two network problems for
participants to debug.

Participants were recruited by word-of-mouth and had
a range of different experience levels—we deliberately
avoided only recruiting students since they tend to have
less experience. Participants were given a few days to solve
the exercises and were allowed to install arbitrary software
on their FABRIC nodes. After completing the exercises,
participants were asked to complete a short survey.

Exercises. Fig. [3] shows the network topology that was
used by both exercises that participants were asked to solve.
The topology includes two hosts connected by multiple
paths through nine routers. Each router ran a P4 program
that was configured differently on each router. The P4
program was a simple IPv4 forwarding program that would
take an input packet, use the destination IP to decide the
outgoing ports, and then rewrite the MAC addresses for
the outgoing link. The program additionally used a counter
to decide which output port to forward on, which reset
after 3 (so valid values of 0, 1, and 2), to allow for using
multiple paths without using ECMP (since the flows were
unchanging). The routers were not programmed to respond
to ICMP or any other management protocol.

For Exercise 1, router r7 had a single-character miscon-
figuration in its forwarding rules that would send packets
arriving from r8 back towards r8 instead of towards r6.
For Exercise 2, the routers were configured to add GTP-
U tunneling headers consisting of an outer IPv4 header,
a UDP header, and an 8-byte GTP-U header [22], with
the outer IPv4 headers using new IP addresses. Router r9
was given incorrect forwarding rules which caused it to
drop tunnelled packets. For each exercise, participants were
shown the results of 10 pings from h1 to h2, and were asked
to identify which router was misconfigured, with the correct
answers of r7 for Exercise 1 and 19 for Exercise 2.

Participants were informed immediately if their answer
was correct or not, and could make multiple attempts.
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Figure 2: Overview of CRINKLE’s workflow, detailed in Section
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Figure 3: Topology used in the user study. This topology is
described in Section [3}
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6. Evaluation

CRINKLE is evaluated in a first-of-its-kind user experi-
ment (described in Section to assess the (1) effective-
ness of the debugger and its telemetry, and (2) usability by
FABRIC users.

6.1. User study

This section describes the first user study that was car-
ried out using FABRIC. In this study, FABRIC provided
network and computational resources, and served as the
platform on which physically-distributed study participants
solved network debugging exercises.

6.1.1. Experiment setup. The user study was planned over
6 months. This section describes how the user experiment
was run, and the sections that follow report the experiment’s
results.

Population. Participants were recruited as described in Sec-
tion 5} The set of participants was split evenly into two: a
set of participants who were given CRINKLE for debugging,
and the other set were asked to use any network debugging
approach they preferred. For fairness, the two sets were
balanced for the number of participants and their relative
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(b) The number of attempts made by participants, grouped by
months of experience with FABRIC.

Figure 4: The number of attempts made by participants.
A negative value indicates the number of attempts made
without eventually reaching the correct answer. “N” is the
group tasked with using any technique, “C” is the group
tasked with using CRINKLE.

experience. For both sets of participants, the notebooks
streamed telemetry to the collector (Fig. [2). The final an-
swers from both sets of participants were also uploaded to
the collector for analysis.

Among participants, months of FABRIC experience
and network debugging experience were weakly correlated.
While participants who had Medium experience with net-
work debugging also had middling FABRIC experience,
Beginner and Advanced were fairly represented in both the
high and low end of the range. The non-CRINKLE group had
an average of 26.7 months of FABRIC experience, while the
CRINKLE group had an average of 26.8 months of FABRIC
experience.

Responses. 33 participants signed up to complete the exer-
cises and were split into two sets of participants—of 17 and



TABLE 1: Attributes of the experiment participants
in the CRINKLE group and the control group.

Attribute | Non-CRINKLE | CRINKLE
Network Debugging Experience
Beginner 3 4
Medium 3 4
Advanced 5 3
Months of FABRIC Experience
0-11 3 3
12-23 0 2
24-35 1 2
36-48 4 2
48+ 3 2
Has P4 Experience
Yes 3 7
No 6 3
No Answer 2 1

16 people: the first set would use CRINKLE for network
debugging, and the second set is the control group who can
use whichever technique they prefer. Ultimately, 11 people
in each set completed the experiment, and their composition
is shown in Table

Problem set. The problems were designed to range across
some of the needs described in Section [2.1.2] Participants
were given two network debugging exercises that used the
same 9-router, multi-path network topology—the topology
and further details are provided in Section [5] Both exercises
involve identifying a misconfigured router. Exercise 1 in-
volves an incorrect forwarding rule. Exercise 2 involves a
faulty program being applied by a router. In both exercises,
the misconfiguration results in packet loss, and the partici-
pant must correctly identify the misconfigured router.

6.1.2. Effectiveness of the telemetry. The telemetry system
was able to deliver all telemetry records to the collector
with negligible overhead for users. During the experiment,
the collector received 364 telemetry records. These included
85 records of attempts to carry out the exercises, and also re-
vealed the problems that were encountered by participants—
these are described in Section [6.1.3] Three participants
encountered issues that were not caught by the telemetry,
but the telemetry system can be patched to report these in
the future. The uploads from participants were compared
against the streamed telemetry, and this confirmed that no
telemetry messages were lost.

6.1.3. Analysis of using FABRIC for a user experiment.
During this study, 38 slices were created on FABRIC, and
participants used 24 sites in aggregate. The telemetry re-
vealed several instances of infrastructure-related problems:

« 1 participant was missing permissions in their project and
could not run the experiment notebook, and 2 participants
were missing a FABRIC project. These 3 participants
were added to the FABRIC project for this study.

« 1 participant was missing a configuration for their Jupyter
environment.

o 4 participants had issues relating to missing or expired
SSH keys for their FABRIC resources.

o 5 participants had a slice successfully reserve and come
up, fail the baseline, then succeed on the next site. This
was distributed among both groups—with 3 (N) and 2 (C)
participants in each.

o 1 participant was unable to reserve resources due to a
depletion at their FABRIC site. The participant’s slice
succeeded when attempted at a different site. There was
also a FABRIC site with persistent problems throughout
the study, but these were unrelated to CRINKLE.

Having the telemetry stream enabled us to reach out
to struggling participants proactively. In each case, partici-
pants were helped to overcome these issues since they did
not relate to the debugger’s evaluation. Some participants
faced multiple issues, and the total number of participants
who faced infrastructure-related problems were 5—which
indicates that FABRIC is a reasonable platform on which to
carry out such user studies.

6.1.4. Effectiveness of the debugger. The results described
below support the following conclusions:

o For users with some experience with FABRIC and net-
work debugging, by using CRINKLE they could debug on
average up to 37.5% faster, with one participant correctly
solving an exercise with a single line of code. For other
users, CRINKLE is at least as effective (in terms of number
of correct answers and time taken) as existing debugging
techniques.

« For highly-advanced users, the lack of familiar tools (like
traceroute) appears to be a barrier. We believe that ad-
vanced users have established methods of debugging net-
work issues, and might be less receptive to new methods.

o The debugger utilizes a linear number of monitoring
resources on FABRIC, resulting in larger slices when
compared to the original FABRIC experiment, but this
does not contribute to instability.

o Some CRINKLE participants, mostly those with Beginner
network debugging experience, struggled to understand
the provenance graph output from CRINKLE. Improved
teaching methods such as hands-on tutorials could help
in this case, as for the experiment CRINKLE participants
were given only a 15-minute demonstration video and API
documentation.

Of the 11 participants in each group, 6 correctly solved
both exercises while an additional 1 non-CRINKLE and 2
CRINKLE participants solved just the first exercise. The
non-CRINKLE group that correctly solved both exercises
consisted of 2 Beginner, 3 Medium, and 1 Advanced user
while the CRINKLE group was 3 Beginner and 3 Medium
users (Figure [5b). By network debugging experience, most
of the participants with incorrect or incomplete submissions
belonged to the Advanced group (Figure [5b), and by FAB-
RIC experience they were generally at either the low or high
ends (Figure @ There were 6 incomplete runs, which were
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Figure 5: “N” is the group tasked with using any technique, “C” is the group tasked with using CRINKLE.

solely Advanced participants, and 5 responded with reasons
for their incompletion with most indicating a combination
of reasons. Of these 5: 3 indicated they ran out of time; 3
that the instructions were unclear; 4 that the environment
was too unfamiliar (as in, could not install wanted tools or
were confused about CRINKLE); 1 that FABRIC technical
issues were a barrier (in this case, causing them to run out
of time). Most participants that had knowledge of P4 were
able to solve one or both exercises (Figure [5¢). Members of
the Beginner group or those with less FABRIC experience
generally took more attempts to reach the correct answer
than their more experienced counterparts (Figure [4).

For the part of each group that correctly solved both
exercises, Beginner members of the CRINKLE group were
generally equal to their non-CRINKLE peers for Exercise 1,
but they did not experience a speed-up the CRINKLE mem-
bers did for Exercise 2.

For Medium-experience members, CRINKLE partici-
pants were on average 37.5% faster than their non-CRINKLE
counterparts for both exercises. Notably, while one non-
CRINKLE participant managed to guess and submit the
correct answer without verification in just over a minute—
a valid technique used by other participants, though with
verification—two of the CRINKLE participants submitted
correct answers with verification in under 6 minutes. The
three CRINKLE participants respectively executed 1, 6, and
7 lines of code, indicating that when familiar with the tool
they can efficiently use it.

One Advanced CRINKLE group member was over twice
as fast as the successful non-CRINKLE member on Exer-

cise 1 while having less FABRIC experience (0-11 months
vs 36-47 months).

7. Findings, Recommendations, and Implica-
tions for Cybersecurity Experimentation

This section discusses the findings of this research and
offers recommendations to improve the breadth and accu-
racy of experiments that are carried out on state-of-the-art
federated testbeds.

7.1. Findings: Using FABRIC for User Experiments

As analyzed in Section [6.1.3] we found that FABRIC
is a viable platform for carrying out a distributed, asyn-
chronous user study. The downside of carrying out a study
in this format was that the experiment conditions were less
controlled than if participants were physically constrained to
a location—one participant said they had to “complete the
work while making a lot of context switches among other
things.” The upside is that we were able to recruit a wider set
of participants—particularly when compared to a classroom
experiment, which tends to produce more homogeneous and
less-experienced participants.

Using FABRIC greatly simplified the process of pro-
viding participants with equal access to a well-resourced
experiment platform, but Section [6.1.3] identifies two types
challenges that participants encountered—and that are there-
fore likely to be encountered by general FABRIC users.



First, there were occasional inconsistencies and faults in
the distributed system. Second, there was a long start-
up time for the experiment—which ate into the time that
participants could spend on the experiment. To mitigate this,
we added a CRINKLE-specific VM image on FABRIC to
speed-up the start of nodes in its topology. Even then, we
observed that the average start-up time for the CRINKLE
cohort was 46.68 minutes (o 5.58), whereas for the non-
CRINKLE cohort the average was 27.23 minutes (o 22.38).
The next section makes recommendations to overcome both
these difficulties.

7.2. Feature Recommendations

Based on the observations made during the CRINKLE
user study, we offer these recommendations for testbed
features: (1) Since slices can take long to start, we suggest
that testbeds support a callback action that is invoked once
a slice is started, and that the slice start-up can complete in
the background. Such an action could consist of sending an
email or running a Python script. Moreover, when starting a
slice, users should be able to run fine-grained status query.
(2) For closer collaboration between testbed users—such as
the collaboration through which we got feedback from our
study participants—it would be useful to be able to start
slices and then hand them over to other testbed users. This
would have enabled us to reduce the burden on study partici-
pants who had to navigate a long setup process. (3) To help
distinguish experiment-level problems from FABRIC-level
problems, we suggest the adoption of a “Power-On Self-
Test” best practice for testbed experiments. This was carried
out as part of our study, and provided an early indication of
underlying problems that would have undermined the rest
of the experiment being carried out by a remote participant.

7.3. Implications: Testbed Experimentation

CRINKLE provides an important support for running ex-
periments on testbeds through: (1) providing real-time mon-
itoring of experiments, (2) providing precisely-measurable
artifact behavior, (3) obtaining telemetry from other testbed
users who are running an instance of the experiment, (4) ob-
taining feedback from other testbed users that is inlined
with telemetry. This combination of features is essential for
research, and user input helps scale evaluation results. This
is also particularly when evaluating cybersecurity research
through user experiments. The research described in this
paper underscores the viability of carrying out asynchronous
and distributed user experiments on testbeds, which widens
the pool of participants considerably when carrying out
user experiments. Overall, the study demonstrates that with
proper instrumentation using tools like CRINKLE and atten-
tion to user experience, platforms like FABRIC can serve as
powerful, scalable foundations for interactive cybersecurity
research and evaluation.

8. Related Work

To our knowledge, this paper describes the first user
study of a network debugger. This study targeted CRINKLE,
the first telemetry system for a shared testbed and the
first network debugger for a testbed. Past work on testbed
debugging focused on wireless problems [23], [24].

When compared to related work in non-testbed net-
works, CRINKLE provides novel primitives for both net-
work debugging and telemetry without requiring pro-
grammable network elements. For telemetry, CRINKLE
streams experimenter-selected information at experimenter-
selected points to a collector, and cross-user, cross-
experiment, cross-site analysis can be carried out on that
telemetry. Compared to telemetry that is used for perfor-
mance diagnosis for datacenters [25]], the Internet [5], [26],
and in programmable networks [27]], this telemetry infor-
mation is integrated with rich debugging state for remote
analysis of network and experiment problems.

Recent work on network debugging leveraged Software-
Defined Networking to increase the debuggability and ver-
ifiability of networks or uses abstractions of network con-
figuration. This is one of the key differences of CRINKLE
over related work: CRINKLE works on actual traffic and
non-programmable, third-party hardware.

CRINKLE is primarily designed for a high-performance,
federated testbed environment, and leverages the testbed’s
ability to reconfigure itself. This environment produces both
technical opportunities and challenges when compared to
the ISP and datacenter networks that related work is de-
signed for. Opportunities include more transparency and
agency for network users (who are given more visibility
and control when compared to users of other networks),
and challenges include: inconsistent network load from other
users, workload diversity and the presence of prototype
protocols, and—when compared to debugging techniques
devised for network operators—a lack of total control of
the network. CRINKLE is a runtime tool that operates
on network traffic—not on abstractions of the network’s
configuration—and it is hardware and protocol agnostic.

9. Conclusion

Despite the importance of testbeds for networking and
cybersecurity research, very little research has been directed
at how to use testbeds to run user studies involving research
artifacts running on those testbeds. This paper presents
such a user study for CRINKLE—a novel, interactive packet
provenance debugging and diagnostic tool, intended to sup-
port the research of testbed users. CRINKLE telemetry tracks
user interactions, infrastructure state, and tool performance
in real time. To our knowledge, this paper was the first to
present a controlled user study on the FABRIC testbed. Fu-
ture work includes adapting the techniques used in this user
study to enable external participants to evaluate and provide
feedback on cybersecurity research prototypes that run on
FABRIC and other testbeds, to support testbed researchers
in carrying out user studies for their systems.
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