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ABSTRACT

Ransomware attacks continue to be a prominent cybersecurity
threat and the subject of considerable research activity. Despite
frequent high profile public reports of ransomware attacks, we
found a paucity of tangible open behavioral activity data for large
collections of real world ransomware binaries. The lack of such
open datasets introduces barriers to research that may otherwise
lead to innovative approaches to ransomware mitigation. We have
constructed a dataset of ransomware activity logs and correspond-
ing provenance graphs. They are derived from the sandboxed ex-
ecution of all ransomware-tagged binaries in the widely-known
MalwareBazaar. We also provide the code for orchestrating the log
collection and provenance inference steps. The aim is to enable
other researchers to customize and extend it for their analyses. We
hope that the dataset will facilitate the discovery of innovative and
effective ransomware mitigation strategies.
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1 INTRODUCTION

It is difficult to overstate the significance of ransomware attacks in
recent years. At the moment of writing, high profile ransomware
news stories are easily found: the large pharmaceutical company,
Merck, has won a lawsuit against its insurers to cover $1.4 billion
in losses related to a NotPetya attack [20]; the Federal Bureau of
Investigation (FBI) ceased negotiations with a ransomware gang
that attacked municipal systems in Oakland, California [2]; recov-
ery from a ransomware attack on critical municipal government
infrastructure in Dallas, Texas is projected to take months [4].
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Ransomware has achieved an unprecedented scale of promi-
nence and, perhaps, damage. While it is quite clear that fortifying
systems against these threats is difficult, researchers interested in
mitigation approaches have little in the way of easily available tools
and datasets for experiments and analysis.

We present the Ransomware Execution PROvenance Dataset
(REPROD), a collection of 933 distinct executions of ransomware-
tagged binaries available in the MalwareBazaar[3] database. Our
aim is to facilitate reproducible ransomware analysis and subse-
quent mitigation research. The system activity logs of a Microsoft
Windows sandbox virtual machine environment running the bina-
ries were transformed (via SPADE [13]) into provenance graphs in
the Open Provenance Model (OPM). These provenance graphs rep-
resent agents (e.g., the user), processes, and artifacts (e.g., files) as
vertices, while events and relations between them are represented
by edges. This representation allows users to craft queries about
ransomware execution, including what files were created, modified,
or transformed by a given process to understand dependencies and
impacts.

Contribution: The primary benefit of our work is an open
dataset that provides a detailed provenance representation of the ex-
ecution of many ransomware-tagged binaries. Further, we describe
a simple, reusable automated process to produce such datasets. The
source code for this process that was used is also provided. (See
Section 8.) The approach utilized for the collection of this dataset
does not rely on custom triggering of ransomware execution or
mitigation of virtual machine detection, making it widely usable.
This type of data can help researchers gain initial insights into how
the collective ransomware ecosystem is operating. It can also aid
in identifying common patterns of execution that can subsequently
be leveraged for attack mitigation research.

2 MOTIVATION

The significant body of earlier related research [21] should have
facilitated effective mitigation systems against ransomware. The
continued prominence of attacks suggests that such systems are
not available yet. We could not find any mention of datasets for re-
searchers to download and apply in their own efforts. The difficulty
that researchers have in obtaining such data may contribute to the
extant vulnerability of large critical systems to ransomware attacks.
Further, the Cuckoo Sandbox [1] environment that was widely em-
ployed for malware analysis in the past is no longer supported or
usable on modern systems.

There have been multiple efforts that broadly touch on different
aspects of the dataset that we present here. Three are of particular
note:

• The UNVEIL [18] system is from 2016 and built with the
Cuckoo Sandbox framework. The paper claims to be able to
achieve a 96.3% true positive and 0% false positive rate for
ransomware binary classification across ransomware attack
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Figure 1: The REPROD workflow starts with collecting a set of ransomware binaries. These are then individually run with

Windows Process Monitor active. The resulting logs are used to infere data provenance graphs. The set of logs and graphs

consitute the dataset.

types (including encryption and screenlocker variants). An
accompanying dataset was listed as available to researchers.
However, we were unable to obtain it despite repeated re-
quests.

• The second is RanSAP[16], which provides a dataset of stor-
age access patterns – that is, raw read and write calls – with
entropy measurements for seven well-known ransomware
samples and five benign programs. While this dataset could
be used in the context of low-level hardware research, it does
not contain any high-level information, such as filenames
or system events, that would be needed for typical security
research. Though the dataset is open, no accompanying code
is provided.

• PEELER [6] is a more recent system, having been published
in 2021. It represents the state-of-the-art in terms of reported
efficacy and efficiency. It uses a combination of detection
rules and data mining. These are applied to data collected
from specific system calls. The authors report detection of
encryption activity within 115 milliseconds in 70% of their
ransomware samples. Neither code nor resulting execution
traces were published.

Consequently, a researcher interested in trying out a new detection
approach cannot (i) use extant datasets, or (ii) even use any provided
code to generate such data.

In contrast to earlier approaches that focused on the lower ab-
straction level of system calls, more recent research in malware
analysis [7, 17] utilizes a richer abstraction – data provenance that
is inferred from the combination of system call event sequences,
operating system internals, and causal models that provide ab-
stract connections between the monitored elements. This direction
for ransomware analysis has previously been considered by other
researchers [19]. Motivated by the need for open data, we have col-
lected and are sharing both system activity logs and inferred data
provenance graphs of a large collection of ransomware samples.

3 REPRODUCIBILITY CHALLENGE

Experimental analysis within the field of cybersecurity spans a
wide set of topics, ranging from empirical evaluation of theoretical
primitives (such as cryptographic ciphers or differential privacy

algorithms) to the study of deployed malware detection systems. A
researcher that creates a new approach to classify, detect, mitigate,
or respond to a threat or class of attacks is faced with the challenge
of how to evaluate the efficacy of their idea. Creating an end-to-end
implementation involves significant effort:

(1) They need to consider multiple platforms to decide which
one to target.

(2) A realistic benign workload may need to be deployed.
(3) Their approach may require custom system-level instrumen-

tation as well as application-level processing of the resulting
records.

(4) Metrics need to be defined and realized to be able to under-
stand the utility of the defenses they build.

This effort is compounded further if they need to compare their
system to the previous state-of-the-art, of which there may be no
publicly available version.

Ransomware analysis brings with it a further complication. In
the case of traditional malware analysis, scoping the side-effects is
relatively tractable – that is, the environment in which the malware
runs is sandboxed; its ability to communicate externally is tightly
controlled, with incremental relaxation of firewall rules used to coax
interesting behavior while managing risk. In contrast, in the case of
ransomware the expected result is highly destructive behavior, such
as locking the analyst out of the machine or disrupting subsequent
forensic analysis through the encryption of numerous files.

4 PILOT ANALYSIS

We anticipated that significant development effort and computa-
tional resources would need to be invested to achieve our aim. At a
high-level, the goal is the creation of a dataset that would be useful
for ransomware analysis. To this end, we decided to first perform
a pilot study on the type of data that we anticipated collecting at
scale later. Such data would consist of execution traces and data
provenance inferred from the resulting logs. If our study succeeded,
we would have increased confidence that the range of information
we planned to report would be useful for others. Intermediate fail-
ure would present us an opportunity to adjust the definition of our
target dataset before embarking on the larger effort.
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Signature: Jigsaw WannaCry CryptoLocker Troldesh Dharma GlobeImposter Lockdown Nefilim Rapid Hive Phobos REvil Sugar Thanos
Dataset:

Jigsaw 1770 0 0 0 0 0 0 0 0 0 0 0 0 0
WannaCry-1 0 348 0 0 0 0 0 0 0 0 0 0 0 0
WannaCry-2 0 1811 0 0 0 0 0 0 0 0 0 0 0 0
CryptoLocker-1 0 0 256 0 0 0 4 0 0 0 0 0 0 0
CryptoLocker-2 0 0 256 0 0 0 4 0 0 0 0 0 0 0
Troldesh 0 0 0 1799 0 0 0 1094 0 0 0 0 0 0
Dharma-1 0 0 0 0 15953 0 0 0 0 0 0 0 0 0
Dharma-2 0 0 0 0 1536 0 0 0 0 0 0 0 0 0
GlobeImposter 0 0 0 0 0 60 0 0 0 0 0 0 0 0
GlobeImposter-2 0 0 0 0 0 57 0 0 0 0 0 0 0 0
Lockdown 0 0 0 0 0 0 41 0 0 0 0 0 0 0
Nefilim-1 0 0 0 0 0 0 0 4486 0 0 0 0 0 0
Nefilim-2 0 0 0 0 0 0 0 13 0 0 0 0 0 0
Rapid-1 0 0 0 0 0 0 0 0 1420 0 0 0 0 0
Rapid-2 0 0 0 0 0 0 0 0 223 0 0 0 0 0
Hive-1 0 0 0 0 0 0 0 966 0 3260 0 2 0 0
Hive-2 0 0 0 0 0 0 0 57 0 466 0 1 0 0
Phobos 0 0 0 15 0 0 0 0 0 0 3203 0 0 0
Revil-1 0 0 0 0 0 0 0 9 0 0 0 77 0 0
Revil-2 0 0 0 0 0 0 0 0 0 0 0 109 0 0
Sugar-1 0 0 0 0 0 0 0 0 0 0 0 0 1194 0
Sugar-2 0 0 0 0 0 0 0 0 0 0 0 0 1263 0
Thanos-1 0 0 0 0 0 0 0 0 0 0 0 0 0 74
Thanos-2 0 0 0 0 0 0 0 0 0 0 0 0 0 105
Benign-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Benign-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Benign-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1: Reported here are results of a pilot study performed to validate the type of data being collected. One or two executions

of each of 14 ransomware binaries and three benign executions were performed. These represent the rows in the table. For

each ransomware binary, a custom signature was created. These represent the columns of the table. Each binary execution

gives rise to a collection of subsequences. These are matched against all the signatures. A cell entry represents the number of

subsequences from a binary’s execution that matched a particular signature.

Initially, we employed a manual version of the collection pro-
cess that was subsequently automated (as described in Section 6.2).
Specifically, a collection of 14 ransomware-tagged binaries with the
following names was selected: Jigsaw, WannaCry, CryptoLocker,
Troldesh, Dharma, GlobeImposter, Lockdown, Nefilim, Rapid, Hive,
Phobos, REvil, Sugar, and Thanos. Additionally, a benign binary
was selected. Each binary was run once or twice (except the benign,
which was run thrice), with an activity log collected each time.
From this log, a provenance graph was inferred. Since filesystem
interaction is a key aspect of ransomware activity, we derived an
abstraction of each graph that focused on the file metadata and
content read and write operations.

Using the focused provenance, we then manually constructed
detection signatures for each of the ransomware binaries. These
signatures were articulated in a regular-expression-based language,
similar to how a commercial anti-virus product would do so (to
minimize the chance of false positives). Next, each signature was
run over the sliding windows of the focused provenance from all
ransomware and binary executions. The results are shown in Ta-
ble 1. We can see that in most cases, the signature matched windows
from provenance of the corresponding binary. The one exception
is the Nefilim signature which resulted in a number of false pos-
itive matches with windows from provenance of other binaries –
specifically, Troldesh and Hive. We note that none of the signatures
matched windows from any of the benign traces.

Based on these results, we opted to proceed with the next stage
– that is, constructing the larger dataset.

5 APPROACH EMPLOYED

A concrete construction of each of the elements needed to create a
fielded ransomware detector has certain advantages. The obvious
benefit is that it gives future researchers a basis for rapid prototyp-
ing. This is our motivation for selecting the components that we
have.

Platform: Ransomware has historically been developed for and
deployed on various versions of Microsoft’s Windows operating
system. This introduces multiple challenges:

(1) Typically, a research prototype is developed on one version.
When comparing multiple detection systems, they may uti-
lize diverse low-level instrumentation that target different
APIs (as these change between operating system versions).

(2) Windows has a number of subsystems from which different
types of events can be captured. Examples of these are Win-
dows Management Instrumentation (WMI), Event Tracing
for Windows (ETW), and custom filesystem filter drivers.
Tools may use different subsets of such information.

(3) Recent versions of Windows require low-level instrumen-
tation, such as filesystem drivers, to be signed with a cryp-
tographic signing key obtained from Microsoft. This raises
the bar for researchers to implement such logging (or even
reuse code from other researchers, since it necessarily will
not include a signing key).

To address these concerns, we utilize event logs collected by
Process Monitor (also known as ProcMon). This is a utility program
that was originally developed by Sysinternals. Since Microsoft ac-
quired it in 2006, the tool has continued to be updated and freely
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arch:64-bit
commandline:...8abaa521a014cdbda2afe77042f21947b147197d274bf801de2df55b1e01c904.exe

company:
description:

imagepath:...8abaa521a014...
name:8abaa521a014cdbda2afe77042f21947b147197d274bf801de2df55b1e01c904.exe

pid:7908
ppid:7832

type:Process
version:

class:File System
path:...MKV-tiny0076-mkv.mkv

type:Artifact

duration:0.0005199
datetime:2/6/2023 9:32:41 PM

detail:Offset: 0, Length: 1,877,097, Priority: Normal
time:9:32:41.7038945 PM

category:Write
type:WasGeneratedBy
operation:WriteFile

duration:0.0001216
datetime:2/6/2023 9:32:41 PM

detail:Desired Access: Generic Write, Read Attributes, Disposition: OverwriteIf...
time:9:32:41.7037392 PM

category:Write
type:WasGeneratedBy
operation:CreateFile

duration:0.0005199
datetime:2/6/2023 9:32:41 PM

detail:Offset: 0, Length: 1,877,097, Priority: Normal
time:9:32:41.7038945 PM

category:Write
type:WasGeneratedBy
operation:WriteFile

duration:0.0002541
datetime:2/6/2023 9:32:41 PM

detail:Desired Access: Generic Write, Read Attributes, Disposition: OverwriteIf...
time:9:32:41.1296094 PM

category:Write
type:WasGeneratedBy
operation:CreateFile

Figure 2: A small section of a DOT file in REPROD is visualized with Graphviz [11]. It is from ransomware activity of the

8abaa521a01... binary. The blue rectangle denotes the ransomware process. The yellow ellipse depicts the video file that it is

operating upon. The sequence of writes are shown with multiple red arrows. (Some annotations were dropped for brevity.)

distributed. The utility records a range of low-level events and data,
abstracts it into a higher-level representation, and allows develop-
ers to configure the set of activity of interest. All necessary code
signing is handled by the tool’s authors, sparing developers from
the burden.

Population: The REPROD workflow started with a fresh instal-
lation of the Windows operating system in a virtual machine. We
opted to populate the filesystem with a collection of "honeypot"
directories and files (drawn from the open NapierOne dataset [9])
for multiple reasons:

(1) The presence of a collection of a user files gives the ran-
somware a non-trivial workload to operate on. This may
keep it operational for enough interesting activity to be man-
ifested. This will in turn improve the quality of behavioral
signatures that can be extracted.

(2) These inserted files can serve as sentinels. In particular, down-
stream analysis can utilize the presence of these files in
unmodified form to determine whether the ransomware
reached parts of the filesystem. Similarly, the state of particu-
lar types of files provides insight into what the ransomware
was targeting.

(3) Malware, in general, and ransomware, in particular, may
scan the environment before proceeding with its agenda.
This functionality is implemented to combat defensive tech-
nologies that may disrupt its operation. The absence of user
files may be interpreted as a host not worth targeting and
trigger suicide logic.

Provenance: In recent years, dynamic malware analysis has been
increasingly performed using data provenance graphs. The advan-
tage of utilizing this representation is that it relates the agents,
processes, and artifacts on a host, even if the connections span long
periods of time. In contrast, analyses that operate on event logs
directly will typically using a sliding window that limits the context
utilized. For example, DARPA’s 2015-2019 Transparent Computing
program used streaming provenance to detecting Advanced Persis-
tent Threats, a stealthy class of malware that is typically created by
well-resourced adversaries, such as nation states. Analyses based
on provenance have moved past the research stage into practical
deployments now. In 2023, DistDet [10] has been deployed by 50
customers on over 20,000 hosts.

ProcMon stitches together internalWindows details into abstract
events, such as the read of a file or a query of the registry for the
value of a key. However, its output is a still a stream of operations
emitted in the temporal order in which they occur. Dependencies
between elements are not explicitly chained, precluding system-
wide root-cause or impact analysis.

To compute data provenance graphs from ProcMon logs, we
opted to use SPADE [13]. See Figure 2 for a minimal provenance
graph and Figure 3 for a richer one. The system was selected for
the following reasons:

(1) It is an open source framework, that is relativelywell-documented
with academic publications describing its functionality and
a Wiki that provides explanations on how to use it. This sim-
plified the development process for us and will allow future
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class:Registry
path:HKLM\System\CurrentControlSet\Control\Nls\CustomLocale

type:Artifact

path:C:\Windows\SysWOW64\kernel32.dll
subtype:file
type:Artifact

User:DESKTOP-N28L2FH
ansomware
type:Agent

arch:64-bit
commandline:C:\Windows\system32\svchost.exe -k wusvcs -p -s WaaSMedicSvc

company:Microsoft Corporation
description:Host Process for Windows Services
imagepath:C:\Windows\system32\svchost.exe

name:svchost.exe
pid:1460
ppid:592

type:Process
version:10.0.19041.1 (WinBuild.160101.0800)

arch:32-bit
commandline:C:\Users

ansomware\Downloads\2d4fed9f16b3c4cece6d0f772cfb23e7b3a88406a704b05a10315a61f7d668e4.exe
company:

description:
imagepath:C:\Users

ansomware\Downloads\2d4fed9f16b3c4cece6d0f772cfb23e7b3a88406a704b05a10315a61f7d668e4.exe
name:2d4fed9f16b3c4cece6d0f772cfb23e7b3a88406a704b05a10315a61f7d668e4.exe

pid:5636
ppid:6812

type:Process
version:

arch:64-bit
commandline:C:\Windows\System32\WaaSMedicAgent.exe b152ac4f70e6028d41439ca71275e114 fqKqczATck6Sk5mDM6Wecw.0.1.0.0.0

company:Microsoft Corporation
description:WaasMedic Agent Exe

imagepath:C:\Windows\System32\WaaSMedicAgent.exe
name:WaaSMedicAgent.exe

pid:6812
ppid:1460

type:Process
version:10.0.19041.1949 (WinBuild.160101.0800)

User:NT AUTHORITY\SYSTEM
type:Agent

class:File System
path:C:\Windows\System32\iertutil.dll

type:Artifact

duration:0.0000000
datetime:2/17/2023 12:03:48 AM
detail:Image Base: 0x77350000, Image Size: 0xf0000
time:12:03:48.5662889 AM
type:Used
operation:Load Image

duration:0.0000047
datetime:2/17/2023 12:03:45 AM
detail:Name: \Windows\System32\iertutil.dll
time:12:03:45.7150533 AM
category:Read Metadata
type:Used
operation:QueryNameInformationFile

datetime:2/17/2023 12:03:49 AM
time:12:03:49.9471309 AM
type:WasTriggeredBy

datetime:2/17/2023 12:03:37 AM
time:12:03:37.7894083 AM
type:WasTriggeredBy

datetime:2/17/2023 12:03:49 AM
time:12:03:49.9471309 AM
type:WasControlledBy

datetime:2/17/2023 12:03:37 AM
time:12:03:37.7894083 AM
type:WasControlledBy

duration:0.0000045
datetime:2/17/2023 12:03:48 AM
detail:Desired Access: Query Value
time:12:03:48.5725159 AM
category:Read
type:Used
operation:RegOpenKey

Figure 3: Data provenance provides a rich abstraction of system activity. Here two levels of ancestry of a ransomware process

were extracted. Numerous artifact vertices were pruned for clarity. Accesses to single file, registry, and filesystem (yellow)

vertices were kept to illustrate the type of I/O activity captured. Further, the process (blue) vertices and their relationships are

seen. Finally, (red) agent vertices show the users that control the processes.

researchers to easily modify dataset construction, should
they wish to do so.

(2) The modular design includes a number of backends, allowing
the provenance to be stored in multiple formats. In addition
to the graph representation that is natural for provenance, it
also allows the data to be serialized in a tabular format (using
a relational database) or the original temporal sequence. The
options to generate sequence, tabular, and graph versions
of the same incoming provenance data ensures that a wide
range of machine learning approaches will be able to utilize
it.

(3) The system has a long history. In 2022, it received ACM
Middleware’s 10-year Test-of-time Award [8]. We hope that
this bodeswell for researchers thatmay be interested in using
it to generate comparable provenance from new ProcMon
logs in the future.

6 DATA COLLECTION

6.1 Binary Selection

The overwhelming majority (i.e. 1,298) of MalwareBazaar entries
with the ransomware tag were of executable (EXE) filetype. The
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frequencies for the next most common types were Linux executable
format ELF (87), Windows dynamic link library DLL (62), and com-
pressed archive ZIP (59). Given the distribution, we limited the
type to EXE to make the dataset uniform and internally consis-
tent without sacrificing a significant number of samples. While our
implementation targets Microsoft Windows, it can be extended to
other operating systems. In particular, SPADE can infer provenance
from Linux Audit and Mac OS X OpenBSM event logs as well.

A list of the 1,298 Windows ransomware binaries was con-
structed by downloading all entries from MalwareBazaar [3], filter-
ing the list to select just the entries with a filetype with an "EXE"
extension, and then querying MalwareBazaar though a Python API
to check the tags for the presence of the string "ransomware". The
MalwareBazzar API limits the query response size to a 1,000 items,
necessitating this approach to construct the complete ransomware
list.

6.2 Collection Workflow

An extant framework, such as Xanthus [15], could be used in prin-
ciple. To accommodate Windows interactions, a custom automated
process was created to perform the following steps:

(1) Download and run each binary inside a Windows virtual
machine sandbox.

(2) Within the sandbox, ProcMon is also run.
(3) Each run is limited to ten minutes. At the end of a run,

Density Scout is used to measure the entropy of files to
determine if they were encrypted.

(4) The ProcMon log is transformed into a provenance graph
using the SPADE system running in a separate virtual ma-
chine.

(5) Querying the provenance graph in SPADE [12] to produce a
subgraph that corresponds to the ancestors of the process
ID (PID) associated with ransomware binary.

(6) Collation of information from all the executions into a single
comma-separated-value (CSV) file.

Descriptions of each component are provided below for the
purpose of reproducibility. More specific details are in the REPROD
repository. (See Section 8.)

6.3 Sandboxed Windows Environment

An x86-64 machine with Windows 10 installed as the operating
system serves as the host. In this environment, the packages for
the Python language runtime and its package manager, Pip, are
installed. This is used to get the MalwareBazaar (0.1.2) Pip package,
which provides programmatic access to the repository’s collection
of malware binary samples.

We use VirtualBox 7.0 to create an x86-64 virtual machine. It is
configured with three disks:

(1) A separate local operating system disk is created. Microsoft
Windows is installed on it – specifically, we use version
10.0.19045 Build 19045. It is located in drive C:. If a user wants
to extend the dataset, they will need a Windows license to
recreate this virtual machine with the scripts and directions
we provide.
To facilitate use of the VirtualBox’s –with_autologon switch,
its Guest Additions are also installed on this disk.

A ProcMon configuration file is installed. This specifies the
list of attributes to record for each operation that occurs
on the virtual host. The resulting log can then be used for
inferring data provenance (using SPADE [13]).
Modern versions of Windows provide a number of security
controls. To maximize the opportunity for the ransomware
to exhibit its complete behavior, the controls are configured
to be inactive. To ensure reproducibility of the results, the
details of the steps taken for this are documented in the data
repository.

(2) To provide the ransomware with a realistic environment
in which to operate, a collection of 955 files are randomly
selected from the NapierOne dataset [9]. In total, these files
take about 1.2GB of disk space. This set of sentinel files
are spread across various folders, including the Desktop,
Documents, and Videos folders in the user directory on the
C: drive, as well as in a honeypot disk (E: drive).
A utility programDensityScout (build 45)[22] is also installed.
It provides a convenient way of measuring the "density", a
variant of "entropy", to help determine when a plaintext file
has been transformed into ciphertext by the ransomware.
(Density provides a measure of the dispersion in the his-
togram of bytes values in the data.)
This Virtual Disk Image (VDI) is configured to be automati-
cally mounted as the E: drive.

(3) Finally, an empty VDI is created as the F: drive. It serves as
a transfer zone, where ProcMon can deposit compressed log
files of activity that it collects. Subsequently, this VDI can
be separately accessed from the host. This allows the logs to
be (relatively) safely extracted.

To ensure the integrity of the operating system, the runtime
environment, and the logs collected, pristine versions of the disks
are used for each ransomware execution.

After the honeypot disk is created, the densities of files in the
initial snapshot are recorded. After a run, the difference in file
densities is calculated. A significant increase in density suggests
the file has been encrypted. Care must be taken when selecting
pre- and post-execution files to compare since the ransomware can
change the name and extension of the files.

6.4 Provenance Inference Environment

To minimize the impact on the environment where ransomware
instances run, we limit our changes to the ones described above.
ProcMon’s execution is efficient and minimally invasive, allowing
logs to be collected relatively unimpeded. These are then extracted
and moved to a separate virtual machine that is used for inferring
data provenance graphs from the PML logs.

An x86-64 virtual machine is created and Ubuntu 18.04 is in-
stalled on it. SPADE is downloaded, configured, and built by follow-
ing instructions on the project’s Wiki. SPADE can be configured
with a number of queryable databases. Postgres is used since it
provides a SQL-queryable database.

To infer a provenance graph from a particular PML log, SPADE’s
state (including Postgres) is first reset. ProcMon is used to translate
the log from PML to XML. The ProcMon Reporter is then configured
to ingest the XML version. The Reporter module infers provenance
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elements and sends them to the storage. These include Open Prove-
nance Model Process vertices, including ones for the ransomware
instance that is run, and Artifact vertices that represent elements
such as files. It is worth noting that deletion events are not recorded
as provenance.

The provenance graph inferred can have extraneous content for
multiple reasons:

(1) Various processes may be operating in the background. Their
activity is likely orthogonal to that of the ransomware.

(2) The ransomware may load standard system libraries that all
other processes use as well. The provenance of such artifacts
is typically not informative.

(3) As transitive dependencies are followed, they become in-
creasingly likely to be benign.

%only_processes = type == 'Process'
$all_processes = $base.getVertex(%only_processes)
%rw_name = "name" like '$sha256.exe'
$rw_processes = $all_processes.getVertex(%rw_name)
$rw_activity = $base.getLineage($rw_processes, 2,

'ancestor')

Figure 4: QuickGrail [12] queries for extracting two levels

of ancestors of all ransomware processes originating from a

specific binary (named by its hash).

Consequently, we extract provenance subgraphs rooted at the
vertices of the ransomware processes and limited to two levels of
ancestry. See Figure 4 for the queries used to extract such subgraphs.
Once a subgraph has been extracted into a graph variable, it can be
exported into Graphviz DOT format for visualization or JSON for
other downstream programmatic analysis.

Alternative subgraphs can be extracted by adjusting the queries.
For example, an analyst may wish to study the impact of the ran-
somware on the system. In this case, they can adjust the ancestor
term in the query to descendant. If they wished to see three levels
of descendants, they can change the parameter 2 to 3.

6.5 Results

We started with the set of all 1,298 ransomware binaries available
in MalwareBazaar (as described in Section 6.1). Each was run in a
fresh sandboxed Windows environment (as outlined in Section 6.3).

Ideal Execution: The best case occurs when ProcMon log gen-
eration is proceeding unimpeded at the time limit that we set for
data collection (which is ten minutes). This held in 861 runs. Data
provenance could be inferred in each of these instances.

Imperfect Timing: The next class of executions of interest is
the set where the ransomware was triggered but log collection
was disrupted. Typically, this was because the ransomware had
encrypted the ProcMon log itself by time we attempted to extract it.
There were 316 such instances. In each case, we were able to identify
evidence of ransomware activity, such as files being renamed or
the background image being altered. In the future, valid logs for
this class of binaries may be retrieved by halting execution earlier.

Instrumentation Limitation: The last class consists of binaries
that may not be amenable to data collection using our current
methodology. It contains two subclasses. In 72 cases, there was an
issue with ProcMon’s termination. The side-effect is an unusable
log. This issue can occur in the absence of malware. Addressing it
will require alternate monitoring. In 49 instances, in addition to the
log being inaccessible, inspection of the affected environment did
not reveal evidence of ransomware. This may be because the envi-
ronment prevented it from triggering or its effect is not detectable
by our observation methodology. Further analysis will be needed
to address this subset. This is facilitated by the workflow we have
provided.

6.6 Potential Limitations

The approach we have adopted may have limitations, particularly
in the face of the sophisticated adversaries that are presumed to be
behind ransomware attacks. Techniques such as virtual machine
detection or instrumentation deactivation could be used by ran-
somware authors to impair the workflow we have presented. There
was no observable evidence of ransomware activity in 497 of the 861
"ideal execution" runs – that is, no changes in density or anomalous
screenshots were observed. Multiple explanations exist – the ran-
somware may have detected monitoring, only affected non-sentinel
files, or not run long enough. Analysis of the root cause is outside
the scope of the current effort.

7 DATA OVERVIEW

Graph size Vertex count Edge count
Minimum 24 54
Lower-hinge 467 6,192
Median 1,042 23,125
Upper-hinge 13,477 216,729
Maximum 349,064 7,766,739

Table 2: The inferred provenance graphs vary in size. The

Tukey 5-five number summary is reported here to provide

an idea of the scale.

Two types of ransomware predominate. The first utilizes en-
cryption to lock files on an infected host. The effect of this type of
ransomware’s execution can be detected by the change in density
of sentinel files in the honeypot collection. The second locks the
screen on the infected host. To detect this, first a screenshot of
the target system is taken; next the ransomware instance is exe-
cuted; then another screenshot is taken at the execution time limit
(set to ten minutes). The two screenshots are compared to identify
anomalous screen activity.

Recall that 861 executions resulted in a usable ProcMon log. In
300 runs, more than 20,000 file operations were observed. In 241
of these, the density of the sentinel files in the honeypot collec-
tion changed. This is expected since ransomware that performs
encryption typically does so by operating upon files.

In total, 279 runs resulted in files with density changes in the
sentinel files. In 41 runs, files with density changes could not be
read after the ransomware execution, indicating they had been
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encrypted. 224 executions produced anomalous screen activity. In 98
instances, both changes in file density and anomalous screenshots
were observed.

Given the 861 ProcMon logs, we inferred a corresponding num-
ber of provenance graphs. There is a substantial spread in the size
of these graphs, even though they all derive from ten minute ex-
ecutions and extraction of two levels of ancestry rooted at the
ransomware process. To illustrate the spread in sizes, we report the
Tukey 5-number summary [5] in Table 2. The statistic provides a
concise description by reporting the minimum, first to third quar-
tiles, and maximum number of vertices and edges in the collection
of graphs.

Ransomware activity patterns are diverse. Even if the focus is
on I/O-related calls, the temporal behavior differs significantly
depending on the specific binary being run. The heterogeneity is
exhibited with respect to multiple dimensions, including the length
of time for which activity persists as well as the average and peak
rate of events. This makes it challenging to design a detection
system, motivating the need for a diverse enough set of samples to
study. REPROD aims to provide this.

Sample Temporal Analysis
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Figure 5: Three samples from the REPROD provenance

graphs were randomly selected. Each is distilled into a set

of Write events. These are binned temporally to obtain a his-

togram. The three resulting graphs illustrate the diversity of

behavior across samples.

To illustrate the issue, we selected three logs at random. These
were generated from the AvosLocker, ChinaJm, and Snatch samples.
For each, we distilled the corresponding provenance graph to the
set of Write events performed by the ransomware process. These
events were then bucketed into 10 second bins. The result is a
temporal histogram that provides insight into the activity rate as

well as the periods of time over which the writes occurred. Figure 5
shows the resulting histograms.

AvosLocker generated tens of thousands of Write events in each
10 second bin. The activity stopped after two minutes had elapsed
(out of the ten minute execution). In contrast, ChinaJm operated at
a lower rate (closer to a thousand writes in each 10 second bin) but
continued through most of the execution. The screenshot taken at
the end was anomalous. No sentinel file encryption was observed
for either of these ransomware samples. The temporal pattern of
Snatch also peaked at over ten thousand writes (like AvosLocker)
in a ten second bin but ended much earlier. In contrast to the other
two, the writes did result in observed file density changes.

These observations provide tangible evidence of the range of
activity across diverse samples that must be considered by any
mitigation approach.

8 ONLINE RESOURCES

The code used to produce REPROD has been shared on GitHub [14]
and the dataset is on Zenodo [23].

The dataset contains provenance graphs (in DOT format) for
all 861 ideal executions. In addition, it contains 405 ProcMon com-
pressed logs (in PML format). This includes 98 logs where both
density changes of honeypot files and anomalous screen activity
was observed, 181 logs where only density changes were seen, and
117 logs where only anomalous screen activity occurred.

9 CONCLUSION

REPROD represents a broad collection of activity logs and prove-
nance graphs for all ransomware binaries inMalwareBazaar. REPROD
provides a dataset that can help analysts understand how ran-
somware can be expected to operate. Many binaries exhibit en-
cryption activity within the first ten minutes of execution, despite
no special actions taken to trigger this. Further, clear file access
patterns are visible in the provenance graphs. These motifs can be
leveraged in future work on ransomware detection and mitigation
(using machine learning, for example). Open datasets like REPROD
can help improve the efficiency of mitigation, which may ultimately
reduce ransoms.
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