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Abstract

Risk analysis has been used to manage the security of systems for several decades. However, its use has
been limited to offline risk computation and manual response. In contrast, we use risk computation to drive
changes in an operating system’s security configuration. This allows risk management to occur in real time
and reduces the window of exposure to attack. We posit that it is possible to protect a system by reducing
its functionality temporarily when it is under siege. Our goal is to minimize the tension between security
and usability by trading them dynamically. Instead of statically configuring a system, we aim to monitor the
risk level, using it to drive the tradeoff between security and utility. The advantage of this approach is that it
provides users with the maximum possible functionality for any predefined level of risk tolerance.

Risk management can be framed as an exercise in managing the constraints on edge and vertex weights of
a tripartite graph, with the partitions corresponding to the threats, vulnerabilities, and assets in the system. If
a threat requires a specific permission and affects a particular asset, an edge is added between the threat and
the permission that mediates access to the vulnerable resource. Another edge is added between the permission
and the asset. The presence of a path from a threat, through a permission check, to an asset contributes an
element of risk. Risk can be reduced by denying access to a resource that contains a vulnerability or activating
data protection measures. We first show that algorithmic underpinnings of optimal risk management can be
formulated as the Partial Vertex Cover (PVC) problem in bipartite graphs. We then experimentally compare
several heuristics and a (1 +

√
2
2 + ε)-approximation algorithm we designed for the problem.

∗A preliminary version of this work have appeared in LNCS 7000 with the title ”Algorithmic Aspects of Risk Management”. This
version is not only an extended form of the preliminary version, but also both the introduction of the design patterns and their experimental
comparisons are completely new.
†This research has been supported in part by the National Science Foundation through Award CNS-0849735.
‡This research was supported in part by the Air Force Office of Scientific Research through Award FA9550-12-1-0199.
§This research was supported in part by the National Science Foundation through Awards CCF-0827397 and CNS-0849735, and Air

Force Office of Scientific Research through Award FA9550-12-1-0199.
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1 Introduction

The frequency of attacks faced by the average host connected to the Internet remains elevated, making reliance

on manual intervention for response decreasingly tenable. Operating system and application-based mechanisms

for automated response have increasing utility in this context. We analyze algorithmic aspects of a framework

for systematic fine-grained response that is achieved by dynamically controlling the host’s exposure to perceived

threats and limiting the consequences of security breaches.

Maintaining the security of a host requires it to be continually monitored. When there is suspicion that an

attack may be under way, it is prudent to effect a response. The first course of action would be to interrogate the

runtime environment to obtain finer-grain data to cross-check the audit information that raised the alarm. If the

suspicion remains, the next step would be to reconfigure the system (potentially reducing functionality) to limit

the exposure of portions that may be vulnerable to the attack in progress. Data that may be affected by the attack

should be safeguarded. Measures should be taken to ensure the confidentiality, integrity, and availability of the

data after a successful attack. Finally, an effort should be made to gather and preserve forensic information from

the environment that may not be available later.

We equate protecting a system with minimizing the risk it faces. The risk is dependent on three factors. The

first is the set of threats it faces and their likelihood of occurring. If there are no threats to the system, then it is

not at risk. The second factor is the set of vulnerabilities that exist in the system, along with the probability of

these being exposed. If there are no vulnerabilities, then even in the presence of a threat, no risk is posed to the

system. The third factor is the consequence of an attack succeeding. If there is no consequence, then the system

is not at risk.

Whereas threats are under the control of the attacker, vulnerabilities and consequences are within the control of,

and can therefore be managed by, the defender. In contrast to previous approaches, we assume that a computation

of risk will be used to drive changes in a system’s security posture, as depicted in Figure 1. This allows risk

management to occur in real time to reduce the window of exposure. We posit that it is possible to protect

a system by reducing its functionality. Our goal is to minimize the tension between security and usability by

trading them dynamically. Instead of statically configuring a system, we aim to monitor the risk level, using it to

drive the tradeoff between security and utility. The advantage of this approach is that it provides users with the

maximum possible functionality for any predefined level of risk tolerance.

2 Risk Model

We now describe some aspects of our risk model, omitting several algorithmic issues covered in previously

published work [Geh03] [Geh04] [GeK04], where we discussed mechanisms to efficiently recalculate the risk,

subtle reasons for modeling risk tolerance the way we do, how to track the costs and benefits in real time, and

how to adapt the model for risk relaxation to improve system performance without exceeding the threshold of

risk tolerance.
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Figure 1: Risk can be analyzed as a function of the threats, their likelihood, vulnerabilities, safeguards, assets,
and consequences. Risk can be managed by using the safeguards to control the exposure of vulnerabilities and
manipulating the assets to limit the consequences.

2.1 Runtime Risk Factors

We model risk as the flow between the first and last partitions in a tripartite graph, depicted in Figure 2.1, where

T is a partition of vertices ti each representing a unique threat, W is a partition of vertices wj each representing

a specific weakness in the system, and O is the partition of assets, with the vertices ok each representing a data

object.

Analyzing the risk that a system is faced with requires knowledge of a number of factors. Below we describe

each of these factors along with its associated semantics. We define these in the context of the operating system

paradigm since our goal is to manage the risk of a host.

Threats. A threat is an entity that can cause harm to an asset in the system. We define a threat to be a specific

attack against any of the application or system software that is running on the host. It is characterized by an

intrusion detection signature. The set of threats is denoted by T = {t1, t2, . . .}, where tα ∈ T is an intrusion

detection signature. Since tα is a host-based signature, it is composed of an ordered set of events S(tα) =

{s1, s2, . . .}. If this set occurs in the order recognized by the rules of the intrusion detector, it signifies the

presence of an attack.

Likelihood. The likelihood of a threat is the hypothetical probability of it occurring. If a signature is partially

matched, the extent of the match predicts the chance that it will later be completely matched. A function µ is
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Figure 2: Operating system risk can be modeled in terms of its constituent components. The threats, weaknesses
(corresponding to specific vulnerabilities), and objects (that are the assets) form three disjoint sets. An edge
between vertices represents a contribution to the system risk. The system’s risk is the total flow between the first
and third sets.

used to compute the likelihood of threat tα. µ can be threat-specific and depends on the history of system events

that are relevant to the intrusion signature. Thus, if E = {e1, e2, . . .} denotes the ordered set of all events that

have occurred, then T (tα) = µ(tα, E
≺
∩ S(tα)) where

≺
∩ yields the set of all events that occur in the same order

in each input set.

Assets. An asset is an item that has value. We define the assets as the data stored in the system. In particular,

each file is considered a separate object oβ ∈ O, where O = {o1, o2, . . .} is the set of assets. A set of objects

A(tα) ⊆ O is associated with each threat tα. Only objects oβ ∈ A(tα) can be harmed if the attack that is

characterized by tα succeeds.

Consequences. A consequence is a type of harm that an asset may suffer. Three types of consequences can

impact the data. These are the loss of confidentiality, integrity, and availability. If an object oβ ∈ A(tα) is

affected by the threat tα, then the resulting costs due to the loss of confidentiality, integrity, and availability are

denoted by c(oβ), i(oβ), and a(oβ) respectively. Any of these values may be 0 if the attack cannot effect the

relevant consequence. However, all three values associated with a single object cannot be 0, since in that case

oβ ∈ A(tα) would not hold. Thus, the consequence of a threat tα is C(tα) =
∑

oβ∈A(tα) c(oβ) + i(oβ) + a(oβ).

By removing an asset from the system, the consequences it faces can be curtailed [GCK06]. In the case of

data availability, replication serves this purpose, while in the case of confidentiality and integrity, cryptographic

operations can be used. For the purpose of estimating risk, a consequence curtailment effectively removes the

asset from the analysis.

Vulnerabilities. A vulnerability is a weakness in the system. It results from an error in the design, implemen-

tation, or configuration of either the operating system or application software. The set of vulnerabilities present

in the system is denoted by W = {w1, w2, . . .}. W (tα) ⊆ W is the set of weaknesses exploited by the threat tα
to subvert the security policy.
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Safeguards. A safeguard is a mechanism that controls the exposure of the system’s assets. The reference

monitor’s set of permission checks P = {p1, p2, . . .} safeguard an operating system. Since the reference monitor

mediates access to all objects, a vulnerability’s exposure can be limited by denying the relevant permissions. The

set P (wγ) ⊆ P contains all the permissions that are requested in the process of exploiting vulnerability wγ .

The static configuration of a conventional reference monitor either grants or denies access to a permission

pλ. This exposure is denoted by v(pλ), with the value being either 0 or 1. An active reference monitor

[GeK04][GK04] allows each permission to be associated with an independent set of constraints that are veri-

fied at runtime before granting the permission. By limiting the circumstances under which the permission will be

granted, the exposure of the resource being protected is reduced by a predetermined fraction.

The active reference monitor can therefore reduce the exposure of a statically granted permission to v′(pλ), a

value in the range [0, 1]. This reflects the nuance that results from evaluating predicates as auxiliary safeguards.

Thus, if all auxiliary safeguards are used, the total exposure to a threat tα is V(tα) =
∑

pλ∈P̂ (tα)
v(pλ)×v′(pλ)

|P̂ (tα)|
where P̂ (tα) =

⋃
wγ∈W (tα) P (wγ).

In practice, since the set of threats cannot be altered by the response apparatus, we can merge the first partition,

which contains the threats, into the second by scaling each permission’s weight (which represents its probability

of being granted) with the sum of the threat likelihoods that have incident edges on the permission.

2.2 Risk Management

The risk to the host is the sum of the risks that result from each of the threats that it faces. The risk from a

single threat is the product of the chance that the attack will occur, the exposure of the system to the attack, and

the cost of the consequences of the attack succeeding [Nat96]. Thus, the cumulative risk faced by the system is

R =
∑

tα∈T T (tα)× V(tα)× C(tα).

If the risk posed to the system is to be managed, the current level must be continuously monitored. When the

risk rises past the threshold that the host can tolerate, the system’s security must be tightened. Similarly, when

the risk decreases, the restrictions can be relaxed to improve performance and usability.

The system’s risk can be reduced either by reducing the exposure of vulnerabilities or by limiting the con-

sequences to the data in the event of a successful attack. The former is effected through the use of auxiliary

safeguards before granting a permission. The latter is realized by cryptographically protecting and remotely

replicating threatened files. Both approaches may also be used simultaneously.

The set of permissions P is kept partitioned into two disjoint sets, Ψ(P ) and Ω(P ), that is, Ψ(P )∩Ω(P ) = φ

and Ψ(P )∪Ω(P ) = P . The set Ψ(P ) ⊆ P contains the permissions for which auxiliary safeguards are currently

active. The remaining permissions Ω(P ) ⊆ P are handled conventionally by the reference monitor, using

only static lookups rather than evaluating associated predicates before granting these permissions. Similarly,

the set of files O is kept partitioned into two disjoint sets, Ψ(O) and Ω(O), where Ψ(O) ∩ Ω(O) = φ and

Ψ(O)∪Ω(O) = O. The set Ψ(O) ⊆ O contains the files that are currently inaccessible and unmodifiable due to

their cryptographic encapsulation. The remaining files Ω(O) ⊆ O are transparently accessible and modifiable.

At any given point, when safeguards Ψ(P ) and curtailments Ψ(O) are in use, the current riskR′ is calculated
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withR′ =
∑

tα∈T T (tα)× V ′(tα)× C′(tα) where

V ′(tα) =
∑

pλ∈P̂ (tα)∩Ω(P )

v(pλ)

|P̂ (tα)|
+

∑
pλ∈P̂ (tα)∩Ψ(P )

v(pλ)× v′(pλ)

|P̂ (tα)|

and

C′(tα) =
∑

oβ∈A(tα)∩Ω(O)

c(oβ) + i(oβ) + a(oβ).

2.3 Response Selection

The risk level after an event occurs is denoted byRa. If this increases past the threshold of risk toleranceR0, the

goal of the response engine is to reduce the risk by δg ≥ Ra −R0 to a level below the threshold. To do this, it

must select a subset of permissions ρ(Ω(P )) ⊆ Ω(P ) and a subset of objects ρ(Ω(O)) ⊆ Ω(O), such that adding

safeguards and curtailments respectively to the two sets will reduce the risk to the desired level. The resulting

risk level is reduced toR′′ =
∑

tα∈T T (tα)× V ′′(tα)× C′′(tα) where the new vulnerability measure is

V ′′(tα) =
∑

pλ∈(P̂ (tα)∩Ω(P )−ρ(Ω(P )))

v(pλ)

|P̂ (tα)|
+

∑
pλ∈(P̂ (tα)∩Ψ(P )∪ρ(Ω(P )))

v(pλ)× v′(pλ)

|P̂ (tα)|

and the new consequence measure is

C′′(tα) =
∑

oβ∈(A(tα)∩Ω(O)−ρ(Ω(O)))

c(oβ) + i(oβ) + a(oβ).

2.4 Performance Sensitivity

The choice of safeguards and curtailments also impacts the performance of the system. Evaluating predicates

before granting permissions introduces latency in system calls. Cryptographically protecting objects decreases

usability. Hence, the choice of subsets ρ(Ω(P )) and ρ(Ω(O)) or subsets ρ(Ψ(P )) and ρ(Ψ(O)) is subject to the

secondary goal of minimizing the overhead introduced.

The adverse impact of a safeguard or curtailment is proportional to the frequency with which it is used in the

system’s workload. Given a typical workload, we can count the frequency f(pλ) with which permission pλ is

requested in the workload. Similarly, we can count the frequency f(oβ) with which file oβ is accessed in the

workload. This can be done for all permissions and files. The cost of using subsets ρ(Ω(P )) and ρ(Ω(O)) for

risk reduction can then be calculated with

ζ(ρ(Ω(P )), ρ(Ω(O))) =
∑

pλ∈ρ(Ω(P ))

f(pλ) +
∑

oβ∈ρ(Ω(O))

f(oβ).
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2.5 Abstracting the Problem

The ideal choice of safeguards and curtailments minimizes the safeguards’ and curtailments’ impact on perfor-

mance, while simultaneously ensuring that the risk remains below the threshold of tolerance. Thus, for risk

reduction we wish to find:

minimize: ζ(ρ(Ω(P )), ρ(Ω(O)))

subject to: R′′ ≤ R0

Risk management can be viewed as an exercise in picking vertices from the second and third partitions of

Figure 2.1, that need to be protected. Since the set of threats and their likelihoods cannot be altered by the

response apparatus, we can merge the first partition, which contains the threats, into the second by scaling each

vulnerability’s weight with the sum of the threat likelihoods that have incident edges on it. We note that the

semantics of risk management require that at each step, the risk must be reduced below the threshold of tolerance.

This precludes optimization strategies such as minimizing a weighted sum of risk and runtime performance.

3 Statement of Problems

We formally define the graph-theoretic problems corresponding to our risk management model.

3.1 Integral Costs and Benefits

When performance-sensitive runtime risk management is viewed as a 0/1 integer linear programming problem, it

gives rise to a range of related graph problems. For example, consider the problem of selecting a set of responses

such that the total cost of effecting them is below a threshold T1, and simultaneously ensuring that the residual

risk is below T2 when the costs and benefits are integers. Since the costs correspond to the frequency with which

a resource is accessed in the workload, the costs are positive integers. In scenarios where the risk associated with

each edge is derived by counting the frequency with which the asset (associated with one vertex that the edge

is incident upon) is accessed through the permission (associated with the other vertex that the edge is incident

upon), the edge weights are also positive integers. This can be defined as the following problem P1:

Problem 1 (P1) Given a bipartite graph G = 〈V,E, ~p, ~w〉 with V denoting the set of vertices, E denoting

the set of edges, ~w : V → Z denoting a weighting function from the vertices to the set of positive integers,

and ~p : E → Z denoting a weighting function from the set of edges to the set of positive integers, a ver-

tex threshold T1 and an edge threshold T2, is there a subset of vertices V ′ such that
∑

v∈V ′ w(v) ≤ T1 and∑
e=(u,v); u,v 6∈V ′ p(e) ≤ T2?

Alternatively, the risk management algorithm could attempt to select a set of responses that would impose a

cost less than the threshold T1 but subject to the constraint that the resulting risk reduction would exceed threshold

T2 (where any response primitive chosen would eliminate all risk contributions that depended on access to the

targeted permission or asset). This can be formulated as the problem P2:
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Problem 2 (P2) Given a bipartite graph G = 〈V,E, ~p, ~w〉 with V denoting the set of vertices, E denoting

the set of edges, ~w : V → Z denoting a weighting function from the vertices to the set of positive integers,

and ~p : E → Z denoting a weighting function from the set of edges to the set of positive integers, a ver-

tex threshold T1 and an edge threshold T2, is there a subset of vertices V ′ such that
∑

v∈V ′ w(v) ≤ T1 and∑
e=(u,v); u∈V ′ or v∈V ′ p(e) ≥ T2?

The two problems P1 and P2 can be seen to be equivalent. Implementing a solution for one therefore im-

mediately provides a mechanism to address the other. The equivalence can be seen since an instance of P1 can

be represented as an instance of P2 by replacing T2 with
∑

e∈E p(e) − T2. Similarly, an instance of P2 can be

represented as an instance of P1 by replacing T2 with
∑

e∈E p(e)− T2. An important point to note about P2 is

that if a vertex in V does not have any incident edges, then it is automatically included in V − V ′. In the rest of

the text, we will refer to P2 as the WPVCB problem.

3.2 Independent Vulnerabilities and Consequences

In our initial investigation, we found that even simplifications of the performance-sensitive runtime risk man-

agement problem are algorithmically hard to solve. For example, consider the case where every attack relies

on a single vulnerability and affects a single asset. Each connected component of the corresponding graph is

composed of two vertices and an edge in between. Optimal response selection in this scenario is algorithmically

expensive as shown below:

Theorem 3.1 WPVCB problem is NP-hard even if each connected component of G is composed of two vertices

and an edge in between.

Proof: We reduce the 0/1 knapsack problem to the WPVCB problem. The knapsack problem is known to be

NP-hard.

An instance of the knapsack problem is characterized by n objects O = {o1, o2, . . . , on} with respective

profits {p1, p2, . . . , pn} and respective integer weights {w1, w2, . . . , wn}, a knapsack capacity W and a profit

target T . The goal is to pack objects into the knapsack so as to obtain a profit of at least T , while ensuring that

the sum of the weights of the objects is at most W .

Given the knapsack instance, we construct the following instance of the WPVCB problem. Corresponding to

object Oi, create two vertices vi and vn+i and an edge connecting them with weight pi. The two vertices are

given weight wi each. The vertex threshold is set at W and the edge threshold is set at T .

We claim that the knapsack instance is a “yes” instance if and only if the WPVCB instance is.

Assume that the given knapsack instance is a “yes” instance – that is, there is a set of objects O′ ⊆ O, such

that
∑

y:y∈O′ w(y) ≤ W and
∑

y:y∈O′ p(y) ≥ T . Pick only one the two vertices in the WPVCB instance that

correspond to these objects. Per the construction, the vertex threshold of these vertices is at most W and the edge

threshold is at least T .
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Now assume that the WPVCB instance is a “yes” instance – that is, there is a collection of vertices whose

combined weight is at most W and the sum of the weights of the edges connected to these vertices is at least T .

Per the construction of the WPVCB instance, if vertex vi is picked, then vertex vn+i is not picked since these two

vertices are incident on the same edge. Further, the contribution of this vertex to the vertex threshold is wi and

to the edge threshold is pi. Consider the objects corresponding to the picked vertex pairs. Per the construction,

their weights sum to at most W and their profits sum to at least T . 2

3.3 Qualitative Exposures and Consequences

Instead of considering the case when each vulnerability affects a different asset in the system, we extended

the scope of the problem to consider the result when each vulnerability could affect multiple assets and each

asset could be affected by multiple vulnerabilities. We restrict the problem to the case where only qualitative

knowledge about the vulnerabilities and consequences in the system is available, with the result that a vertex

exists for each vulnerability and asset in the system, but it is unweighted.

Since only their absence or presence is known, an unweighted edge between the permission guarding a vul-

nerability and the object affected by the consequence is inserted only when the vulnerability and consequence are

both present. To ensure that the risk remains below a predefined threshold, vertices can be removed by deacti-

vating the corresponding permissions or curtailing the relevant consequences. The result is that an edge incident

on any of the removed vertices would itself be removed from the graph, reducing the risk. This is formulated as

problem P3:

Problem 3 (P3) Given a bipartite graph with unweighted vertices and unweighted edges, find the smallest set

S of vertices, subject to the constraint that the number of edges incident to S is above a predefined threshold T .

In the rest of the text, we will refer to P3 as the PVCB problem.

3.4 Known Workloads

The formulation of P3 did not account for the frequency with which each response primitive occurs in the

workload. In practice, the frequency with which the safeguard or data protection primitive is invoked affects its

impact on performance. Picking primitives with lower frequencies is therefore preferable. When a workload is

known in advance, the problem can be formulated as P4:

Problem 4 (P4) Given a bipartite graph with weighted vertices and unweighted edges, find the set of vertices S

with the lowest sum of vertex weights, subject to the constraint that the number of edges incident to S is above a

predefined threshold T .

In the rest of the text, we will refer to P4 as the VPVC problem.
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3.5 Dynamic Application Workloads

We can generalize the risk model from the case where exposure and consequences are considered only qualita-

tively – that is, only their presence or absence is known, to the case where an estimate of their degree is known.

If the degree is estimated with an integer, then the risk contributed by the presence of each exposure and conse-

quence pair is also an integer (since it is the product of two integers). Therefore the edges in the bipartite graph

constructed to represent the risk has integer weights.

In general, if the target application workload is known a priori, information gleaned from it can be used to

optimize the choice of risk management responses. The approach comes with the caveat that predicting a target

workload may be nontrivial. In particular, past workloads may not be available and even if they are, they may not

be representative of future tasks. Additionally, if the target workload has high variance – that is, if it dynamically

and significantly changes its characteristics, then the use of average frequencies for vertex weights can result in

distorted tradeoffs between cost and benefit estimates of selecting specific responses. In such a situation, we can

factor out performance sensitivity by using unweighted vertices. The corresponding formulation is P5:

Problem 5 (P5) Given a bipartite graph with unweighted vertices and weighted edges, find the smallest set S

of vertices, subject to the constraint that the sum of the weights of the edges incident to S is above a predefined

threshold T .

In the rest of the text, we will refer to P5 as the EPVCB problem.

4 Related Work

The effort to manage the risk of information systems can be traced to the use of the Annual Loss Expectancy

(ALE) metric [FIP74][FIP79] by large data processing centers. The use of the ALE paradigm by commercial

tools [Nat91a], coupled with a focused research effort [Nat88][Nat89][Nat90][Nat91b], resulted in improve-

ments in risk modeling. Although risk analysis has been used to manage the security of systems for several

decades [FIP74], its use has been limited to offline risk computation and manual response. SooHoo [Soo02] pro-

posed a general model using decision analysis to estimate computer security risk and automatically update input

estimates. Bilar [Bil03] used reliability modeling to analyze the risk of a distributed system. Risk is calculated

as a function of the probability of faults being present in the system’s constituent components. Risk management

is framed as an integer linear programming problem, aiming to find an alternate system configuration, subject to

constraints such as acceptable risk level and maximum cost for reconfiguration. In this paper, we modeled the

risk management partial vertex cover problem in bipartite graphs allowing weights in both the vertices and the

edges.

In the classical Weighted Vertex Cover (WVC) problem, we are given an undirected graph G = 〈V,E, ~w〉,
where V is the vertex set with |V | = n, E is the edge set with E = m, and ~w is the vector of positive weights on

the vertices. We want to find a minimum weight subset V ′ ⊂ V such that for every edge e = (i, j) ∈ E, either

i ∈ V ′ or j ∈ V ′. The WVC problem is one of the classical NP-complete problems listed by Karp [Kar72].

There are several polynomial-time approximation algorithms for the WVC problem within a factor of 2, and
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the best-known approximation algorithm for the WVC problem has an approximation factor of 2 − θ
(

1√
logn

)
[Kar09]. The WVC problem is known to be APX-complete [PY91]. Moreover, it cannot be approximated to

within a factor of 1.3606 unless P = NP [DS05] and not within any constant factor smaller than 2, unless the

unique games conjecture is false [KR08].

In the Weighted Partial Vertex Cover (WPVC) problem, we are given an undirected graph G = 〈V,E, ~w〉,
where V is the vertex set with |V | = n, E is the edge set with |E| = m, and ~w is the vector of positive weights

on the vertices, and a positive number T . We want to find a minimum weight subset V ′ ⊂ V such that V ′ covers

at least T edges – that is, for at least T edges (i, j) ∈ E, either i ∈ V ′ or j ∈ V ′. It is trivial to observe that the

WPVC problem is a generalization of the WVC problem, since the WPVC problem subsumes the WVC problem

for T = m. Therefore, all the hardness results given above for the WVC problem directly apply to the WPVC

problem.

The WVPC problem has been extensively studied for more than a decade (see [BYFMR07]) and the refer-

ences therein). In particular, there is a O(n · log n + m)-time primal-dual 2-approximation algorithm[Mes09],

a combinatorial 2-approximation algorithm [BYFMR07], and a slightly improved 2 − θ
(

ln ln d
ln d

)
-approximation

algorithm [HS02], where d is the maximum degree of a vertex in G.

Although the WVC problem and the WPVC problem have almost matching approximation ratios and in-

approximability results, the WPVC problem is in some sense more difficult than the WVC problem. For the

cardinality versions of the problems – that is, all vertex weights are 1, the WPVC problem was shown to be

W[1]-complete, while the WVC is fixed parameter tractable [GNW05].

In this paper, we focus our attention to bipartite graphs and give a (1 +
√

2
2 + ε)-approximation algorithm for

the WPVC problem on bipartite graphs, which we refer to as the WPVCB problem.

5 Bounded-Error Approximation Algorithm

In this section, we present a (1 +
√

2
2 + ε)-approximation algorithm for the WPVCB problem. Since the VPVCB,

EPVCB, and PVCB problems are the special cases of the WPVCB problem, we have a (1+
√

2
2 +ε)-approximation

algorithm for all four of the problems considered in this paper.

Theorem 5.1 There exists a (1 +
√

2
2 + ε)-approximation algorithm for the WPVCB problem.

The rest of the section is devoted to prove Theorem 5.1 by giving a (1 +
√

2
2 + ε)-approximation algorithm for

the WPVCB problem. The approximation algorithm is composed of three steps, which are presented in Section

5.1, 5.2, and 5.3.

5.1 Preprocessing Step

Recall that a WPVCB instance is composed of a bipartite graph G = 〈V,E, ~p, ~w〉, and a threshold T . In the

optimization version of the WPVCB problem, the goal is to find a minimum weight subset S of vertices such that

the sum of the weights of the edges incident to a vertex of S is at least a given threshold T . For a given WPVCB
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instance, we first obtain a upper-bound B for the optimal solution to the WPVCB instance. There are various

ways to obtain an upper-bound; for instance, taking the solution returned by the 2-approximation algorithm given

in [Mes09]. Let N ⊂ V be the set of vertices of G, whose weights are at least ε · B. Since B is an upper-bound

for the optimal solution to the given WPVCB instance, an optimal solution to the given WPVCB instance will

have at most 1
ε of the elements of N for any ε > 0.

In the preprocessing step, we enumerate all subsets of N , whose cardinalities are at most 1
ε . It is trivial to

establish that there are at most O(n
1
ε ) such subsets. For each such subset P of N , we construct a different

problem as explained below. We will solve all these O(n
1
ε ) problems and return the cheapest solution.

Problem for Subset P. For every vertex i ∈ P , we add vertex i to the solution and therefore, delete vertex i

and all its incident edges from the graph G. We construct an Integer Programming (IP) formulation given below

as System 1 for the WPVCB instance on the remaining graph G′ = 〈V ′, E′, ~p, ~w〉. Notice that V ′ = V − P ,

and E′ ⊂ E is the edges with both end-points in V − P . For all vertices of N that are not in P , we force the

corresponding variable in the IP to be 0 so that our algorithm will never select them in the later stages by adding

an extra constraint to the IP. This makes sure that the only heavy weight vertices (the elements of N ) will be the

elements of P .

min
∑
i∈V ′

w(i) · xi

fij ≤ xi + xj ∀(i, j) ∈ E′

fij ≤ 1 ∀(i, j) ∈ E′

xi = 0 ∀i ∈ N − P∑
(i,j)=e∈E′

fij · p(e) ≥ K

xi ∈ {0, 1} ∀i ∈ V ′ (1)

In the IP given as System 1, we have a variable xi corresponding to each vertex i ∈ V ′. We have a variable fij
for every edge (i, j) ∈ E′ that keeps track of whether (i, j) is covered or not. The first two constraints and the

fourth constraint ensure that fi,j = max{1, xi + xj}. Third constraint ensures that no element of N − P will be

selected in later stages of the algorithm. In the fourth constraint of the IP, we have an integer K which denotes

the sum of the weights of the edges to be covered. Notice that K is not necessarily equal to T since the edges

incident to a vertex in P are already erased. So, K = T −
∑

e=(u,v); u∈P or v∈P p(e).

We then solve our problem for all of the O(n
1
ε ) instances construction of which is explained in detail above.

The rest of the algorithm is executed in all of these instances of the problem and the cheapest solution is reported

at the end. Notice the the cost of a solution is not just the cost of the solution to the IP we will obtain since we

need to take the weights of the vertices in P as well. Therefore, the cost of the solution for the subset P is the

sum of the weights of the vertices of P plus the sum of the weights of the vertices in V ′−N that will be selected

in the later stages of the algorithm.
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Once we have constructed the integer programs for all O(n
1
ε ) problems, we continue with the second step of

our algorithm. The second phase of the algorithm is composed of usual iterative rounding steps as explained in

Section 5.2.

5.2 Iterative Rounding Step

This subsection is devoted to the second phase of the algorithm. This phase of the algorithm is composed of a

series of iterative rounding steps. We first solve the linear programming relaxation (LP) of the IP given above.

If there exists a variable xi such that xi ≥ 2 −
√

2, we round this variable to 1. Rounding a variable to 1

means adding the corresponding vertex into the partial cover (which initially contains only the vertices of P )

and deleting that vertex as well as all its incident edges from the graph. At this point, one step of the iterative

rounding algorithm is fulfilled and we obtained a smaller graph. We will then repeat the same procedure on this

smaller graph. Notice that after each rounding step the value of K is to be reduced as much as the sum of the

weights of the erased edges in that step.

If K becomes 0 or less, then the set of vertices added to the cover so far by the algorithm constitutes a feasible

partial cover and the algorithm terminates for the subset P . Since the algorithm only rounds the variables that

has a value of 2 −
√

2 or more, the solution returned will be within a factor of 1
2−
√

2
= 1 +

√
2

2 of the optimum

integral solution to the initial IP as desired.

Since the iterative rounding algorithm adds one vertex to the partial cover at each step as long as we did not

obtain a feasible solution and the optimal solution to the LP relaxation has a variable xi such that xi ≥ 2−
√

2,

we do not obtain a (1+
√

2
2 )-approximate solution during the iterative rounding step if and only if all the variables

of the optimal solution of the LP relaxation are less that (2−
√

2) and K > 0. Notice that the LP relaxation may

have more than one optimal solution and even though the optimal solution we found does not have a variable that

has a value of (2−
√

2) or more, there may be another optimal solution, where one of the variables has a value of

(2−
√

2) or more. However, it is trivial to answer the following query in polynomial-time: “For a given variable

xi, is there a fractional optimal solution to the given LP relaxation, where xi is (2−
√

2) or more?” If the answer

to this query is “Yes”, then we will continue the iterative rounding algorithm by rounding that variable to 1. If

the answer to this query is “No”, then we are done with the iterative rounding step.

If we did not obtain an integral solution at the end of the iterative rounding step, we obtain a graph G′′ such

that the sum of the weights of the edges of G′′ is more than
∑

e∈E p(e) − T , and no variable can have a value

of (2 −
√

2) or more in any optimal solution to the LP relaxation of System 1 for G′′. In that case, we execute

the third phase of our algorithm, which is given in Section 5.3 to obtain an integral solution to the problem we

generated for the subset P .

5.3 Main Step of the Algorithm

In this subsection, we describe the third phase of our algorithm in detail. Observation 5.1 gives us the structure

of the fractional optimal solution to System 1 on G′′.
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Observation 5.1 Assume that we have not obtained a (1 +
√

2
2 )-approximate solution at the end of the iterative

rounding step, and end up with a subgraph G′′ such that the sum of the weights of the edges of G′′ is more than∑
e∈E p(e)− T . There exists an optimal fractional solution to System 1 on G′′ that has the following properties:

• The value of each variable xi is strictly less than (2−
√

2);

• There exists at most one variable xi that has a nonzero value which is (
√

2− 1) or less.

Proof: The first property listed in the Observation is trivial since it is the stopping condition for the iterative

rounding step, i.e., if there is a variable with a value of (2 −
√

2) or more, then the iterative rounding algorithm

would not terminate and continue by rounding that variable up.

For the purpose of contradiction, assume that in all of the optimal fractional solutions of the LP relaxation

of System 1 on G′′, there are 2 or more variables that have a nonzero value of (
√

2 − 1) or less. Let S∗ be an

arbitrary optimal solution to the LP relaxation and let M be the set of such variables.

Lemma 5.1 Let i and j be two distinct elements of M . Then, |δ(i)|w(i) = |δ(j)|
w(j) , where |δ(i)| and |δ(j)| denote the

sum of the weights of the incident edges of the vertices i and j respectively.

Proof: Without loss of generality, assume |δ(i)|w(i) >
|δ(j)|
w(j) . Let ε = min{

(√
2− 1− xi

)
, xj
|δ(j)|
|δ(i)| }. Let S be the

following solution to LP:

S(xk) =


S∗(xi) + ε, if k = i

S∗(xj)− ε |δ(i)||δ(j)| , if k = j

S∗(xk), otherwise
S is a feasible solution to the LP relaxation. Since

∑
(i,j)=e∈E′′ fij is the same both in S∗ and S. However,

the objective function value of solution S is strictly less than the objective function value of the solution S∗. This

is a contradiction since S∗ is an optimal solution to the LP relaxation. 2

In the proof of Lemma 5.1, we obtained a solution cheaper than S∗ because we assumed |δ(i)|w(i) >
|δ(j)|
w(j) . Notice

that if |δ(i)|w(i) = |δ(j)|
w(j) (which is true by Lemma 5.1), the solution S constructed would have the same cost as S∗.

Therefore, starting with S∗, we can obtain a different optimal solution S to the LP relaxation by applying the

operation given in the proof of Lemma 5.1. Notice that either S(xi) =
√

2− 1, or S(xj) = 0. So, the operation

reduces |M | by 1 at each step. We will repeat this operation until |M | = 1 which satisfies the properties given in

the Observation 5.1. 2

Recall that there exists a solution to the IP, where each variable fij is either 0 or 1. This is not true for the LP

relaxations. Therefore, we introduce the following definitions.

Definition 5.1 An edge (i, j) is called a tight edge if xi + xj ≥ 1. We call (i, j) a fractionally covered edge if

xi + xj < 1.

Notice that since there is no variable that is 2−
√

2 or more, for any edge (i, j) ∈ E′′, if (i, j) is a tight edge

in the fractional solution, we have both xi and xj are more than (
√

2− 1). Therefore, we have a bunch of nodes

that has a value in the interval (
√

2−1, 2−
√

2). All other variables are between 0 and
√

2−1. By the arguments
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Figure 3: The bipartite graph shows our graph G′′. The variables x1, x2, x3 and x4 form the set A. The variables
x5, x6, x7, x8, x9, x10 and x11 form the set B. The variables xi, x12, x13 and x14 form the set C. Notice that an
edge can be fully covered if it has one endpoint in A and one endpoint in C.

given above as Observation 5.1, we can ensure that at most one of the variables whose value is between 0 and√
2− 1 is nonzero. Let this variable be xi.

We can classify the variables into 3 sets, namely A,B and C. Let C be the set of variables that are 0 and

xi. Let A be the variables of the left partition that have a value in the interval (
√

2 − 1, 2 −
√

2). Let B be the

variables of the right partition that have a value in the interval (
√

2− 1, 2−
√

2).

Let k be the sum of the weights of the variables that are either in A or B. Since all the variables in A and B

are at least
√

2 − 1, the objective function value of the LP is at least (
√

2 − 1)k. In order to obtain a 1 +
√

2
2 -

approximation algorithm, it suffices to show that we can cover enough edges by selecting vertices such that the

sum of the weights of the selected vertices are at most (1 +
√

2
2 )(
√

2− 1)k = (
√

2
2 k).

It is enough to cover the following set of edges:

• All the edges between A and B,

• All the edges incident to xi,

• A large enough subset of the remaining edges (j, l) such that j ∈ A ∪ B and l ∈ C. We call those edges

the Type 3 edges. A subset of the Type 3 edges is large enough for our purposes if the sum of the weights

of this subset of edges is at least (2−
√

2) times the sum of the weights of all the Type 3 edges.
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We select the set of vertices for our partial cover as follows:

We add the vertex i to the partial cover. The selection of the rest of the vertices depends on the relation between∑
j∈Aw(j),

∑
j∈B w(j), and k. If both

∑
j∈Aw(j) and

∑
j∈B w(j) are less than

√
2

2 k, we select all the vertices

of A if S covers more Type 3 edges than U per weight. Otherwise, we select all the vertices of B. Without loss

of generality, assume A covers more Type 3 edges than B per weight and so we selected all the vertices of A. We

then sort the vertices of B in descending order with respect to the number of Type 3 edges they cover per weight.

We add them into our partial cover until enough Type 3 edges are covered.

We next consider the case where either
∑

j∈Aw(j) or
∑

j∈B w(j) is bigger than
√

2
2 k. Without loss of gener-

ality, assume
∑

j∈Aw(j) >
√

2
2 k. We then add all the vertices of B to our partial cover. We then sort the vertices

of A in descending order with respect to the Type 3 edges they cover per weight. We add them into our partial

cover until enough Type 3 edges are covered.

The sum of the weights of the added vertices to the partial cover in the main step of the algorithm is not

necessarily bounded above by
√

2
2 k. However, if we exclude the vertex i and the last vertex added to the cover,

the sum of the weights of the rest of the vertices added to the partial cover in the main step of the algorithm is

bounded above
√

2
2 k. Therefore, we added to the partial cover a set of vertices whose total weight is at most

√
2

2 k

plus an additional 2 vertices. Notice that none of these 2 vertices is an element of N and therefore, the ratio of

their weight to the optimal solution is bounded by ε.

Therefore, our algorithms returns a (1 +
√

2
2 + 2ε)-approximate solution for at least one of the problems

constructed in the preprocessing step. If we select ε as half of what it is then the solution will be a (1 +
√

2
2 + ε)-

approximate solution.

6 Heuristic Approaches

In this section, we discuss the following 3 heuristic approaches. For ease of explanation, we assume that we want

to delete a small subset of vertices such that the sum of the weights of the remaining edges is T .

6.1 Lightest Vertex Out Algorithm

In this subsection, we discuss our next design approach which we call the Lightest Vertex Out Algorithm. Since

the deletion of vertices is reducing the functionality of the system, and we seek a solution that reduces the

functionality of the system as small as possible, in this design approach we delete the vertices one-by-one in the

ascending order with respect to their weight until the risk tolerance level is reduced below the threshold level,

i.e., the sum of the weights of the remaining edges is at most T .

6.2 Heaviest Edge Out Algorithm

In this subsection, we discuss our next design approach which we call the Heaviest Edge Out Algorithm. Since

we want to reduce the sum of the weights of the remaining edges below T , in this design approach we delete
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Function LIGHTEST WEIGHT VERTEX OUT ALGORITHM()
1: while

∑
e∈E p(e) ≥ T do

2: Let i be the vertex with the smallest weight.
3: Remove i and all its incident edges.
4: end while

Algorithm 6.1: Lightest Vertex Out Algorithm

one of the the incident nodes of the edge with the highest weight and repeat this procedure until the sum of the

weights of the remaining edges is below T . Since each edge is incident to 2 vertices, at each step of the algorithm

we are left with the choice of one of the two incident vertices of the edge we want to remove. The algorithm

always selects the incident vertex with the smallest weight.

Function HEAVIEST EDGE OUT ALGORITHM()
1: while

∑
e∈E p(e) ≥ T do

2: Let (i, j) be the edge with the highest weight.
3: if w(i) ≤ w(j) then
4: Remove i and all its incident edges.
5: else
6: Remove j and all its incident edges.
7: end if
8: end while

Algorithm 6.2: Heaviest Edge Out Algorithm

6.3 Best Return for Cost Algorithm

In this subsection, we discuss our last design approach which we call the Best Return for Cost Algorithm. Since

we want to reduce the sum of the weights of the remaining edges below T , by deleting a set of vertices such that

the sum of the weights of the vertices deleted is as small as possible, in this design approach we delete the vertex

with the highest return for cost and repeat this procedure until the the sum of the weights of the remaining edges

is below T .

Function BEST RETURN FOR COST ALGORITHM()
1: Let |δ(i)| denote the sum of the weights of the incident edges of each vertex i.
2: while

∑
e∈E p(e) ≥ T do

3: Let i be the vertex for which |δ(i)|w(i) is maximized.
4: Remove i and all its incident edges.
5: end while

Algorithm 6.3: Best Return for Cost Algorithm
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7 Empirical Study

To demonstrate the utility of our algorithms in a wide range of conditions, we compare the performance of our

design approaches on randomly generated bipartite graphs. We produced random bipartite graphs using the Erdos

Renyi random graph generation. In this model, a random bipartite graph is given by G(S1, S2, p) where S1 and

S2 are the first and second bipartite sets respectively and p is the probability of setting an edge between a vertex in

S1 and a vertex in S2 . Edge weights and node weights are both drawn from an independent uniform distribution

in the interval [0, 1]. Each experiment is repeated 10 times and the average cost for each algorithm is reported.

The aforementioned algorithms are implemented in Matlab using the optimization toolbox where necessary.

The Lightest Vertex Out (LVO) heuristic requires the vertices to be weighted, whereas the Heaviest Edge Out

(HEO) heuristic requires the edges to be weighted.
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Figure 4: Effect of the size of the random graph G(S1, S2, p) where |S1| = |S2| = N/2 and p = 0.5 is depicted.
APP, LVO, HEO and brc stands for the (1 +

√
2

2 + ε)-approximation algorithm, Lightest Vertex Out algorithm,

Heaviest Edge Out algorithm and Best Return for Cost algorithm, respectively. The (1 +
√

2
2 + ε)-approximation

algorithm presented in this paper scales better than the other algorithms.

We start our experiments by considering the effect of the increasing number of nodes and comparing the

average costs of the given algorithms. In each experiment we picked T = 0.25 ∗ num nodes and considered

the problem of covering T edges. The first experiment involves the effect of size of the random bipartite graph

of the form G(S1, S2, p) where |S1| = |S2| = N/2 and p = 0.5 with varying N . In Figure 4, we observe that

the heuristics Lightest Vertex Out (LVO), Heaviest Edge Out (HEO) and Best Return for Cost (BRC) all perform

similarly, whereas the (1 +
√

2
2 + ε)-approximation algorithm presented in this paper scales better as the number

of nodes in the solution increases.
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Figure 5: The effect of edge probability on the cost for a graph of size 100 with equal bipartite set cardinalities,
|S1| = |S2| is depicted in Figure 5(a). As the link probability increases, the graph becomes denser. Effect of the
ratio between the bipartite sets on the cost for a graph of size 100 with p = 0.5 is shown in Figure 5(b). APP,
LVO, HEO and BRC stand for the (1 +

√
2

2 + ε)-approximation algorithm, the Lightest Vertex Out algorithm, the
Heaviest Edge Out algorithm, and the Best Return for Cost algorithm, respectively.

We also consider the effect of the probability of setting a link between the vertices by varying p for a graph

of size 100 with |S1| = |S2|. As the probability p increases, the graph becomes denser. We observe that the

(1 +
√

2
2 + ε)-approximation algorithm presented in this paper performs better than the heuristic algorithms for

all the p values considered (Figure 5(a)).

For the same-sized random graphs, N = 100, with probability of building an edge p = 0.5, we also vary the

ratio between the bipartite sets, R = S1/S2 and plot the total cost as a function of R. We repeat this experiment

10 times as well to account for the randomness and report the average total cost in Figure 5(b). We see that the

cost of the WPVCB problem depends on the balance of the bipartite sets. When the sets have similar sizes, the

cost of the solution increases as well. Like previous experiments, we see a similar performance gain with the

(1 +
√

2
2 + ε)-approximation algorithm when compared to the aforementioned heuristics.

8 Conclusion

We studied the problem of managing the risk of information systems. We presented a model that uses the

computation of risk to derive changes in the security posture of a system. Our model corresponds to a slight

generalization of the well-known Partial Vertex Cover problem on bipartite graphs. We provided several design

approaches and an experimental comparison of our design approaches on instances of the problem.

Our future work for our intrusion response problem is twofold. The model described in this paper is nonadap-
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tive – that is, each time we are given a risk tolerance level we recompute a solution that reduces the risk level of

the system below the risk tolerance level. As the first future work direction, we want to introduce the adaptive

version of this problem. In the adaptive version, there is a cost associated with changing the encapsulation status

of an asset as well as a cost with changing the exposure status of a permission. Thereby, our algorithms will favor

a solution that does not change the security posture much from the previous configuration.

As our second future research direction, we want to establish the computational complexity of the Partial

Vertex Cover problem on bipartite graphs. Although the Vertex Cover problem is known to be polynomial time

solvable on bipartite graphs, the computational complexity of the Partial Vertex Cover problem on bipartite

graphs is currently unknown. Our research will also focus on obtaining approximation algorithms for the Partial

Vertex Cover problem on bipartite graphs with a provable bound less than (1+
√

2
2 ). In this paper, we presented a

(1 +
√

2
2 + ε)-approximation algorithm for the Partial Vertex Cover problem on bipartite graphs, but the question

of whether there is a polynomial time algorithm that guarantees a better solution on all instances of the problem

has both theoretical and practical (as demonstrated by this paper) merits for research.
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