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ABSTRACT
Current projects that automate the collection of provenance infor-
mation use a centralized architecture for managing the resulting
metadata - that is, provenance is gathered at remote hosts and sub-
mitted to a central provenance management service. In contrast, we
are developing a completely decentralized system with each com-
puter maintaining the authoritative repository of the provenance
gathered on it. Our model has several advantages, such as scal-
ing to large amounts of metadata generation, providing low-latency
access to provenance metadata about local data, avoiding the need
for synchronization with a central service after operating while dis-
connected from the network, and letting users retain control over
their data provenance records. We describe the SPADE project’s
support for tracking data provenance in distributed environments,
including how queries can be optimized with provenance sketches,
pre-caching, and caching.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval
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1. INTRODUCTION
The provenance of a piece of data is of utility to a wide range

of domains. This is demonstrated by the numerous research and
industrial initiatives to develop “provenance-aware” systems [41,
34, 16, 15, 44, 27]. Of particular interest are applications in which
the data and workflow are distributed among several heterogeneous
and autonomous information systems and are often combined to
make useful analysis. A key issue when automating the collection
of provenance information is how to record the metadata, especially
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when it concerns data that is flowing across system boundaries. An
equally important question is how to query this metadata efficiently
[9, 35, 18]. Current provenance recording systems [41, 15, 34, 16,
1] use a centralized architecture for managing the resulting meta-
data - that is, provenance is gathered at remote hosts in a distributed
system and periodically submitted to a central provenance man-
agement service that ensures the consistency of data. However, it
is increasingly being observed that the centralized approach is not
scalable. Provenance metadata, when audited at finer granularity,
grows exponentially in the number of recorded steps. Often it be-
comes larger than the actual data [6]. Transporting large amounts
of metadata to a central service introduces significant system-wide
network overhead and creates substantial latency in responses to
provenance queries [17].

Provenance metadata, similarly to data, must be distributed when
large volumes of it are being handled. A distributed provenance
model has several attractive advantages, such as low-latency access
to provenance metadata about local data, no need for synchroniza-
tion with a central service after operating while disconnected from
the network, and maintenance of user privacy - that is, users retain
complete control over their data provenance records. The latter as-
pect is particularly vital for distributed healthcare applications.

A distributed provenance model introduces challenges as well.
The first question that arises is how to audit the movement of files
so that there is no loss of coupling between the file content and the
associated metadata. Even if a file moves and its metadata (due to
its large size) does not, a user should be able to subsequently re-
trieve the file’s associated metadata. Further, tracking distributed
application-agnostic provenance requires fine-grained auditing of
processes and network connections. Ideally, the auditing should not
require modification of extant user programs. Another challenge
is how to efficiently trace back distributed provenance. The audit
metadata can be viewed as a directed graph data structure. Trac-
ing a path in a directed graph by recursively querying antecedents
is known to be a computationally expensive operation [20]. In the
case of distributed provenance, it becomes expensive in terms of
network operations as well, since the provenance metadata is un-
likely to be located locally.

SPADE (Support for Provenance Auditing in Distributed Envi-
ronments) [44] is a decentralized system in which each computer
node maintains the authoritative repository of the provenance gath-
ered on it. The system performs fine-grained passive monitoring
with a user-space driver for the Linux kernel by interceding on spe-
cific system calls to record data flow between processes, filesys-
tems, and network connections. For each computing node, the col-
lected provenance data is stored locally in a relational database.
Applications are oblivious to SPADE’s provenance collection and
metadata distribution. Distributed provenance queries are answered
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Figure 1: By tracking the data flow between processes and the filesystem, a provenance graph representation can automatically be
created.

transparently and efficiently. SPADE relies on two crucial mecha-
nisms for optimizing query execution: (i) local caches that can store
provenance data from other computing nodes, and (ii) sketches for
efficient storage of provenance metadata to answer path queries.

We provide background on provenance systems in Section 2.
Section 3 outlines our data model for capturing fine-grained prove-
nance information in distributed repositories. Section 4 outlines
mechanisms for improving the latency of provenance queries in
wide-area systems. We describe related caching work in Section
5 and conclude in Section 6.

2. BACKGROUND
Provenance gathering systems can be divided into three cate-

gories, depending upon whether (i) both data and metadata are cen-
trally located, (ii) data is distributed, but metadata is transported to
a central location on a periodic basis, or (iii) both data and metadata
are distributed.

The central data and metadata model was introduced by the Lin-
eage File System (LFS) [42], which inserts printk statements in a
Linux kernel to record process creation and destruction, operations
to open, close, truncate, and link files, initial reads from and writes
to files, and socket and pipe creation. The output was periodically
transferred to a local SQL database. Harvard’s Provenance-Aware
Storage System (PASS) [41] audits a superset of the events moni-
tored by LFS, incorporating a record of the software and hardware
environments of executed processes. It provides a tighter integra-
tion between data and metadata by storing its records using an in-
kernel port of Berkeley DB [26]. Both LFS and PASS are designed
for use on a single node, although their designs can be extended
to the file server paradigm by passing the provenance records (and
queries about them) from the clients to the server in the same way
that other metadata is transmitted. This architecture is also em-
ployed by the PASOA project [34]. The more recent ES3 model
[16] extracts provenance information automatically from arbitrary
applications by monitoring their interactions with their execution
environment and logs them to a customized database. While ES3
records at a much coarser granularity than PASS, it follows the
same centralized model of metadata logging.

In most workflow execution systems [43] output data and meta-
data are transported to a central location. A disadvantage of the
workflow-based approach for collecting metadata is the require-
ment that computations be restricted to those that are expressible
in a specific workflow language. In addition to limiting the scope
of possible computations, this requires users of these systems to
master and then exclusively use a specific workflow authoring en-
vironment [16].

In several systems, provenance needs to be traced across mul-

tiple system boundaries. Such a requirement has been described
in centralized model systems, such as PASS [30] and ES3 [16],
as well as several distributed healthcare [3] and e-commerce ap-
plications [19]. Distribution of provenance metadata is primarily
to allow coordination of data between several heterogeneous and
autonomous information systems. In Grid environments, the distri-
bution of metadata is considered necessary for efficiently answer-
ing queries about data. For example, the Replica Location Service
(RLS) [10] provides a mechanism for registering the existence of
replicas and discovering them. Its metadata lookup service is dis-
tributed, reducing the update and query load, and it relies on pe-
riodic updates to keep its state from becoming stale. In another
example, the Storage Resource Broker is a federated database that
stores metadata as name-value pairs and is divided into zones for
scalability [40].

Efficient schemes for querying provenance data have also re-
ceived considerable attention recently. Harvard’s PQL [21] de-
scribes a new language for querying provenance and leverages the
query optimization principles of semi-structured databases. IBM
researchers have proposed a provenance index that improves the ex-
ecution of forward and backward provenance queries [27]. Query
optimization techniques on compressed provenance data have also
been considered [20] recently. In all these methods, the underlying
architecture is of a single central provenance store. We describe
challenges in querying distributed provenance where network costs
dominate.

3. RECORDING PROVENANCE METADATA
IN DISTRIBUTED ENVIRONMENTS

We do not assume that hosts within a distributed environment
have a common filesystem, allowing each host the freedom to main-
tain an independent filesystem and accompanying namespace. Such
distributed environments correspond to a general framework for
distributed computation where data is shared across organizational
boundaries. The provenance recording infrastructure then overlays
a coherent framework that facilitates reasoning about the origins of
data in the distributed environment. In particular, the infrastructure
tracks data flows within a host - that is, intra-host dependencies,
and across hosts - that is, inter-host dependencies.

Recording provenance by tracking data flows requires the system
to (i) identify the sources and consumers of each piece of data, and
(ii) define the granularity at which a piece of data will be tracked.
On a single host, the immediate source of a piece of data will be a
process, which may in turn (recursively) have used data written by
other processes that have executed on the same host. In addition to
the data flowing within a single host, processes may have read data
from other hosts through network connections. In such an event,
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Figure 2: Each vertex shown with a circle represents the execution of a process while every vertex shown with a rectangle represents
a file. A network vertex, depicted using a rectangle with round corners, represents a data flow through a protocol such as ssh, FTP,
HTTP, or Java RMI.

the provenance of any data modified by a process must also include
the provenance of the data read from the remote host. We adopt
the convention of identifying data by both its location in the system
and the time at which it was last modified. This ensures that the
previous statement holds true even if multiple processes modify a
file since they will do so at different points in time if a single kernel
is mediating access to the local filesystem even if there are multiple
cores on the same host.

The granularity at which we track the provenance of a data ob-
ject affects the overhead that will be introduced in the system. The
advantage of finer-grain auditing, at the level of assembly instruc-
tions or system calls, for example, is that information flow can be
traced more precisely, allowing an output’s exact antecedents to be
ascertained by reconstructing the exercised portion of the control
flow graph of the relevant process. The disadvantage is that the
system’s performance will perceptibly degrade and the monitoring
will generate large volumes of provenance metadata. Since persis-
tent data is managed at file granularity, a reasonable compromise
on the level of abstraction at which to track data provenance is to
define it in terms of files read and written.

3.1 Intra-host Dependencies
The first type of element in a provenance graph is the file ver-

tex, which can include in it various attributes associated with a file,
such as its pathname in the host’s filesystem, the size of the file,
the last time it was modified, and a hash of its contents. When the
provenance of a file is being discussed, the root of the associated
provenance graph will be the vertex corresponding to the file. We
adopt the convention of identifying a file using both its logical lo-
cation and its last time of modification to disambiguate different
versions of the same file, which avoids cycles in the provenance
graph.

The second type of element in a provenance graph is the process
vertex. It can contain a range of attributes, such as the name of
the process, its operating system identifier, owner, and group. The
vertex can also include aspects such as the parent process, host on
which the process is running, creation time of the process, com-
mand line with which it was initiated, and values of environment
variables.

Edges in a provenance graph are directed, signifying the direc-

tion in which data is flowing. An edge from a file vertex indicates
the file being read, while an edge into a file vertex is a write to the
file. Analogously, an edge leading into a process is a read operation
performed by the process while an edge out of a process vertex is
a write operation. Consequently, read and write operations to and
from the filesystem by a process can be modeled by a data flow
graph, as depicted in Figure 1.

In the context of provenance, we define the semantics of a primi-
tive operation to be an output file, the process that generated it, and
the set of input files it read in the course of its execution. For exam-
ple, if a program reads a number of data sets from disk, computes
a result and records it in a file, a primitive operation has been per-
formed. If a process modifies a number of files, a separate instance
of the representation is used for each output file.

Primitive operations are combined into a compound operation.
For instance, if the result of appending together several data sets
(by a program such as UNIX cat) is then sorted into a particular
order (using another program, such as UNIX sort, that executes as
a separate process), then the combination of appending and sorting
is a compound operation. Thus, the provenance of every file can
be represented by a compound operation that is a directed acyclic
graph, consistent with the model used by Grid projects [46].

3.2 Inter-host Dependencies
We now consider a simple example where an operation spans

multiple hosts. A user with identity user on the machine named
host.domain uses ssh to connect to the remote host and run the
UNIX cat program to output the contents of the file remote.data.
The output is redirected into the file local.data in the filesystem
of the host where the ssh command was invoked. This effectively
copies the contents of the remote file to the local file.

% ssh user@host.domain cat remote.data > local.data

Similar commands and analogous file transfer utilities like sftp,
FTP, or GridFTP are commonly used in large distributed computa-
tions to move input data to idle processors and to retrieve the results
after the execution completes. If the provenance tracking was re-
stricted to inter-host dependencies, queries about the provenance of
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Figure 3: Sketches facilitate path query responses without reconstructing the entire provenance graph.

the file local.data would not be able to establish its connection to
the file remote.data on the machine host.domain.

One approach to addressing the gap described above is to record
information about the host on which each process runs and where
each file is located. Users can then be provided a mechanism for
transferring the provenance metadata when a file moves from one
computer to another. Records that refer to the part of the prove-
nance graph that originated on a remote host will be explicitly dis-
ambiguated using the host attribute. While this scheme ensures
that all provenance queries can be answered at the destination host,
it incurs considerable storage overhead [17].

An alternate approach would avoid replicating the provenance
records at the destination host to which the file is being transferred.
Instead, the provenance store at the destination would be provided
with a pointer back to the relevant provenance metadata on the
source host. However, provenance queries at the destination would
require the source hosts to be contacted, slowing the response time
and decreasing reliability (since remote hosts may be unreachable).

In the above example, distributed data flows takes the form of
a file transfer. In practice, data may also flow through network
connections directly from one process to another, as is the case in
service-oriented architectures. In such systems, a series of HTTP
calls is made from one host to another, each passing XML doc-
uments that include requests and arguments, and corresponding
XML responses with return values. To accommodate such flows,
we introduce a fourth type of element in provenance graphs - the
network vertex.

Figure 2 depicts a simplified version of the provenance graph
for the file local.data that would arise after execution of the ssh
command described earlier. The key point to note is that the prove-
nance vertex for the network connection (between ssh and sshd in
the example) can be independently constructed by both the hosts
at the two ends of the network connection. This allows complete
decentralization of the provenance recording in the distributed sys-
tem, with each host’s provenance infrastructure operating indepen-
dently. Yet at the same time, the provenance records generated can
be pieced together to yield a coherent and complete reconstruction
of the distributed data flows.

4. QUERYING PROVENANCE
SPADE [44] allows a user to ask a wide range of questions about

the data stored and the programs run in a system. These include
queries in the Provenance Challenge of the International Prove-
nance and Annotation Workshop [36], as well as queries such as

- Which program was used to create this file?
- When the program ran what were the other files it wrote?
- What files did the program read?
- Could any data have flowed from this file to that file?
- What is the sequence of process executions, and files read and
written that led to the flow?

The above queries can be classified into queries that require ac-
cess to (i) the entire provenance graph of the output file, (ii) just a
subgraph of the provenance, or (iii) a path in the provenance graph
between specific input and output vertices. A user who wishes to
ask such queries can employ the SPADE query tool to interact with
the local provenance store. If the query cannot be resolved with
local information, then the user must contact the source computers
through the network. A typical provenance graph associated with a
file will span numerous computers, necessitating a commensurate
number of (high latency) network connections to reconstruct the
entire provenance record. To improve the efficiency of executing
distributed provenance queries, SPADE currently implements two
approaches that reduce the latency of the queries. First, it optimizes
the query execution through the use of summary structures, as de-
scribed in Section 4.1. Second, it employs pre-caching of prove-
nance records from remote hosts when files are transferred using
an overloaded namespace [18]. Sections 4.2 and 4.3 describe pre-
caching and caching strategies that are still at the design stage.

4.1 Provenance Sketches
Current provenance querying infrastructures [1, 6] assume ac-

cess to the entire provenance graph before running a query on it.
Since this assumption has an associated metadata retrieval cost in
decentralized systems, SPADE is exploring a scheme that exploits
the semantics of the query type to avoid the retrieval of prove-
nance information when possible. The benefit of this is easily seen



Inputs:
Vertices: Provenance records in local and remote stores
Choices: Do nothing | Replicate at remote node | Transfer to remote node | Evict at both nodes

Output:
Mapping: ∀vertex ∈ V ertices,∃choice ∈ Choices : vertex → choice

Procedure:
Initialize bestMapping = currentMapping;
while (gain improves)

Unlock all vertices;
while (∃ unlocked vertex)

Find best vertex and choice;
Perform choice and lock vertex;
if( gain(currentMapping) > gain(bestMapping) )

bestMapping = currentMapping;
endif;

endwhile;
currentMapping = bestMapping;

endwhile;

Figure 4: Strategy for pair-wise exchange of records between distributed provenance stores in the system.

through an example, depicted in Figure 3. Consider the case where
the provenance graph consists of a tree with t levels and fan-in f
at each vertex (except the leaves). A path query needs information
from at most t computers rather than all O(f t) present in the en-
tire graph. As f and t grow, retrieving metadata from as many as
t computers instead of as many as O(f t) computers reduces the
delay substantially.

One strategy to effect path query optimization is to implement
provenance sketches that contain a space-efficient representation
of the metadata attributes of a file’s ancestors. When a process
modifies a file, a combination of its inputs’ sketches will be stored
as the output’s provenance sketch. Consequently, when trying to
determine from which computer a particular input originated, the
provenance sketches can be used to pick the correct one. This in
turn allows provenance queries to be resolved by traversing back
from the sink to a source without inspecting any irrelevant paths
that may require network connections to computers from where the
data did not originate. A salient feature of the approach is that the
provenance sketches are opaque, allowing them to be propagated
without compromising the privacy of the provenance sources.

4.2 Decentralized Pre-Caching
Global knowledge about the provenance of all the files in the dis-

tributed system facilitates optimal selection of where to pre-cache
replicas, enabling the development of the clustering approach that
we have previously described [18]. However, in many settings
such access to all the metadata is not feasible. We were made
aware of this fact when we began to investigate the needs of the
NIGHTINGALE project [38], which aims to let monolingual users
query information from newscasts and documents in multiple lan-
guages. Input data is transformed multiple times for automatic
speech recognition, machine translation between languages, and
distillation to extract responses to a query.

The NIGHTINGALE pipeline of operations has several steps,
and they can be performed by multiple versions of software being
developed in parallel by experts from 15 universities and corpo-
rations. Since the functionality of different revisions of the same
tool can also differ, the description of the tool that produced a
piece of data serves as an input for subsequent tools in the pipeline.
This metadata is currently maintained in a file that accompanies the

data. If low latency access to the provenance of data were available,
maintenance of the accompanying file would be obviated. The low
latency is of significance because the metadata would enable query-
ing to determine which combinations of tools in the pipeline have
yielded a better-quality output.

Since the project is a loose collaboration between researchers
from independent domains, an approach that relied on access to ev-
eryone’s provenance metadata a priori would face administrative
challenges. Instead, a more scalable approach would bootstrap the
system by optimizing the metadata caching within clusters where
sharing was occurring in practice. Subsequently, as data crossed
domains, the system could augment its record of provenance meta-
data using information from other domains. This would also allay
privacy concerns by limiting provenance stores to communication
only with domains that are trusted.

Provenance Gossip
Instead of collecting all the provenance records from the entire sys-
tem and attempting to decide where replicas should be placed, the
decentralized approach operates as follows. A gossip protocol can
be used where provenance stores on pairs of hosts in the system
periodically interact with each other. The algorithm builds on the
Kernighan-Lin (KL) [28] and Fiduccia-Mattheyses (KL-FM) [14]
algorithms used for circuit design. The KL-FM algorithm attempts
to minimize the wires between chips when a circuit is partitioned
among them. In contrast to KL-FM, our algorithm replicates a ver-
tex in a different partition, potentially evicting an extant one, if the
gain warrants the action.

Caching Choices
In the original KL-FM algorithm, the only action possible when
considering two vertices from different partitions was to either swap
them or do nothing. In our framework we wish to allow these but
also introduce the possibility of replicating each vertex in the other
partition. Further, to address the fact that there is a finite amount of
storage that can be used for caching copies of provenance metadata
about operations that occurred on remote hosts, we must also allow
a vertex to be deleted - that is, evicted from the local cache - if it
does not correspond to an operation that was performed on the lo-
cal host. (Vertices of local operations must never be deleted since
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Figure 5: Provenance metadata flows between a query client and a provenance store through a cache. The cache is transparent to
the client. We aim to minimize the total network traffic generated from the provenance store - that is, the sum of traffic to load and
update the cache, and the query results that bypass the cache and are sent directly to the client.

they are the definitive copy that may be retrieved if all other copies
have been evicted.)

Gain Function
To decide which action to take for each vertex, a gain function is
utilized. The gain is defined as the difference between the benefit
and cost functions. The KL-FM framework is agnostic to the spe-
cific functions used, allowing us to consider multiple criteria, such
as query response times, host reliability, and the joint probabilities
of requests originating from multiple hosts. A simple benefit func-
tion would compute the maximum likelihood that a query would
use the vertex in consideration while the host from which the ver-
tex originated is not reachable within a predefined time. Similarly,
the cost could be defined as the sum of the storage used for all
the vertices, weighted by their probability of being used to answer
a query. The system can even be architected to use host-specific
gain functions that depend on the expected application and query
workloads, although the efficacy of such a strategy remains to be
validated.

Mapping Algorithm
As in the original KL-FM framework, we can use two nested loops
to perform the mapping of provenance vertices to associated caching
and eviction actions. In the inner loop, all the actions on all the
vertices are compared to estimate which would result in the great-
est gain. If none would yield a gain, the one that would impose
the least penalty is selected. This ensures that the algorithm is not
subject to local maxima. The selected vertex is locked, signifying
that it is not considered during successive iterations of the inner
loop. While unlocked vertices are available, the inner loop pro-
ceeds. When it completes, the choices for each vertex are used to
compare the current mapping of vertices to the computed mapping.
If the new mapping yields a higher cumulative gain, it replaces the
choices in the current mapping. The outer loop continues as long as
gains can be improved by running the inner loop. At the outset of
each iteration of the outer loop, the vertices are all unlocked. The
essence of the process is illustrated in Figure 4.

4.3 Caching Between Client and Store
Clients making provenance queries may be on hosts different

from the ones on which provenance is being gathered. For ex-
ample, provenance may be gathered on all the nodes in a Grid
cluster where a computation has been farmed out, but the desk-
top machines where scientists are performing data analysis may
not be running a provenance auditing system. In such situations,

provenance-aware caches can be placed between the clients and
provenance stores. These provide a twofold benefit, by transfer-
ring computational load from the provenance store to the cache and
improving query latencies because of reduced congestion result-
ing from the drop in network traffic. Queries through provenance-
aware caches can be processed locally by fetching the necessary
vertices and evaluating the query at the cache. Alternatively, the
queries can be passed to the provenance store where they are eval-
uated with the results returned directly to the client. A third option
is to use semantic caching [12] where the queries are partially eval-
uated with the remainder being shipped to the provenance store.

Caching strategies used in Web proxies [23, 24, 11, 22, 50, 49,
37] do not translate well to the provenance context. The cache
managers do not exploit the relationships between the pages - that
is, the link structure in the Web - to make caching decisions. The
objective in the Web proxy case is to maintain a popular set of files
in the cache in order to maximize hit ratios and minimize expected
remote access costs for files requested but not found in the cache
[49, 37]. Such caches make the assumption that each request is
associated with exactly one file. In the case of provenance caches,
each request involves multiple vertices in the provenance graph.
Further, queries can be serviced only after all the relevant vertices
are in the cache. Since each of the vertices is independent and can
be shared by multiple requests it is vital for the cache to exploit the
link structure to make more informed caching decisions.

Bypassing the Cache
Our caching strategy aims to load the cache with a set of vertices
that will maximize the probability that an arriving request can find
all the vertices it needs in the cache. Previous caching research as-
signs equal importance to all the objects and greedily caches those
that provide the most network savings. Our approach diverges from
previous caching research in two ways. First, we aim to exploit the
link structure between vertices to determine the most important ver-
tices to cache. Second, we do not attempt to just greedily cache all
the vertices that improve the latency and throughput of the queries,
but instead balance these goals against the amount of network traf-
fic that the cache manager generates. Greedy caching policies can
be detrimental to the performance of applications that use prove-
nance queries in at least three possible cases. In each instance, it
would be preferable for the result to bypass the cache and be re-
turned directly to the client instead, as illustrated in Figure 5. The
first such case occurs when future queries that use the retrieved ver-
tices are expected to produce relatively little network data traffic.
The second case arises when the incoming vertices are expected to



have a short lifetime in the cache. The third case materializes when
different versions of the same file are rapidly being generated, in-
validating the results of some provenance queries. In every case,
the benefit from serving future requests from the cache will not be
worth the cost of evicting other vertices to load the cache with the
retrieved vertices. It is therefore preferable to force future queries
to retrieve the vertices from the provenance store.

Exploiting Link Structure
We introduce the concept of a LineageRank to be employed by
provenance-aware caches to determine the “importance” of ver-
tices. The well-known PageRank [8, 7] used by Google treats a link
from page A to page B as a vote from A to B. Highly linked pages
are more important than pages with few links to them. Further,
back links from pages with high PageRank count more than links
from pages with low PageRank. LineageRank follows PageRank in
that a vertex has high rank if the sum of the ranks of its back links is
high. However, LineageRank also measures the depth of the vertex
in the provenance graph. Thus, if two vertices have back links with
the same PageRank but one is more recent or has a deeper ances-
try, LineageRank can distinguish this and give that vertex a higher
ranking. Unlike PageRank, LineageRank does not suffer from the
rank-sink problem as it is computed over directed acyclic graphs
[8].

Accounting for Network Utility
LineageRank captures as good an approximation to “usefulness”
as can be derived from just the directed link structure of the prove-
nance graph. However, it does not capture the network utility of a
vertex, which is an important measure for reducing latency. We can
capture this by measuring the probability of access and the quantity
of vertex-related data that is actually used by a provenance query.
Since the queries may filter out and aggregate partial information
from the vertices, such fine-grained accounting can make a sub-
stantial difference to the efficacy of the cache eviction policy. Sim-
ilarly, when calculating network utility, we assign variable benefits
to vertices depending upon their frequency of access and how much
of the data is actually used in query results.

5. RELATED WORK
The Web and Grid environments adopt an object caching model

[22, 11, 33] in which items of variable size and cost are cached. The
Greedy-Dual algorithm [50] first introduced variable fetch costs
in the I/O paging model. The Greedy-Dual-Size (GDS) algorithm
then adapted the technique to variable-size objects for Web caching
[22, 11]. It has been found that GDS compares favorably to more
heavily parameterized algorithms that handle variable sizes and re-
trieval costs [37, 49]. Popularity-aware versions of GDS add richer
semantic information to GDS by tracking access frequency [23,
24]. Otoo [39] further improved object caching by recognizing that
requests often arrive for different combinations of files, known as
bundles, rather than just single files. The provenance model is simi-
lar to the object caching model in that items of variable size and cost
need to be cached to improve the performance of queries. However,
provenance queries differ from Web requests since the objects in a
provenance graph are linked to each other in a structured manner
that the caching mechanism must account for in order to exploit the
available locality of reference. This is especially true for caching
recursive lineage queries.

Centralized database management systems have also addressed
scalability concerns by using caching mechanisms. Times Ten [48]
and DBCache [2] use middle-tier caching to avoid bottlenecks at
the central back-end server. DBProxy [4] supports structured data

caching at edge servers. It caches a large number of overlapping
and dynamically changing materialized views. Hierarchical, multi-
level, Web-style caches have been constructed for Online Analyt-
ical Processing (OLAP) systems [25]. The primary goal in most
database caching solutions is to improve application performance -
that is, query latency. Reducing network traffic is considered sec-
ondary. Provenance data caching requires reduction in both latency
and networking costs.

Scientific database federations [47, 32, 45], being geographically
distributed and network bound, have addressed the combined issue
of latency and network traffic. Bypass-Yield caches [33] tailor the
Web object-caching model to the needs of wide-area distributed
scientific federations to dramatically reduce bandwidth demands
and improve latency. However, scientific database federations do
not witness the explosion in the number of objects that occurs with
provenance metadata. Relational database objects also do not ex-
hibit the graph structure seen in provenance metadata.

The graphical structure of the provenance metadata is analo-
gous to large-scale Web graphs as managed by Google and social
networking Web sites such as FaceBook [13] and LinkedIn [31].
Google’s PageRank [7, 8] algorithm has provided an effective rank-
ing mechanism for large graph-based structures. Other link-based
ranking algorithms for Web pages include Klienberg’s HITS algo-
rithm [29], which is now used at Ask.com [5]. Current research
on handling Web-scale graphs does not examine the interaction of
Web page ranks on cache management policies.

6. CONCLUSION
SPADE is a system for auditing fine-grained provenance in dis-

tributed environments. We described how SPADE stitches prove-
nance graphs collected at different hosts and uses summary data
structures and caching strategies to answer distributed provenance
queries. SPADE adopts a decentralized model for recording prove-
nance where the metadata is kept local to the host that generated
it and is only moved on demand by a user. SPADE thus reduces
the cost of expensive network transfers of metadata and provides
complete control to users over their local provenance records.
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