
Access-Based Carving of Data for
Efficient Reproducibility of Containers

Rohan Tikmanya, Aniket Modia, Raffay Atiqb, Moaz Reyada, Ashish Gehanic, Tanu Malika
aSchool of Computing, DePaul University, Chicago, IL, USA

b Lahore University of Management Sciences, Lahore, Pakistan
c SRI International, CA, USA

Email: {rtikmany, amodi10, mabdelh4@depaul.edu, raffayatiq2341@gmail.com, gehani@csl.sri.com, tanu.malik@depaul.edu}

Abstract—Scientific applications often depend on data pro-
duced from computational models. Model-generated data can
be prohibitively large. Current mechanisms for sharing and
distributing applications, such as containers, assume all model
data is saved and included with a program or is downloaded
during build time to support its successful re-execution. However,
including model data increases the sizes of containers. This
increases the cost and time required for deployment and further
reuse. We present ABCD (Access-Based Carving of Data), a frame-
work for specializing I/O libraries which, given an application,
automates the process of identifying and including only a subset
of the data accessed by the program. To do this we show how such
specialization can be achieved at two levels of granularity: at a
library level and at a system call level. The different levels help to
include data for a single parameter run or over several parameter
runs. We show several orders of magnitude reduction in data
size via the specialization of HDF5 I/O libraries associated with
model-based data-intensive applications, such as those operating
on precipitation and geophysical data.

Index Terms—Reproducibility of results, Application virtual-
ization, Big Data applications

I. INTRODUCTION

Reproducible applications reduce the time for validation.
This increases the trust in their results. However, reproducing
data-intensive applications continues to be a challenge in
the domain sciences. We consider data-intensive applications
that can be entirely reproduced when provided along with
their code, data, and environment specifications. We focus
particularly on applications that access a large amount of
structured data, using custom I/O-optimized libraries. Such
applications are common in the scientific domain, where data
is stored in formats such as NetCDF4 (1), HDF5 (2), or
UniProt (3). Most of these formats are self-descriptive, that
is, the data and metadata are stored in the same file. Being
self-descriptive, they require specific I/O libraries for reading
and writing these formats to be included with the application.

Consider such a scientific application, consisting of a simu-
lation and analysis phase. The simulation phase uses a compu-
tational model to simulate a physical phenomenon, and usually
generates large volumes of multi-dimensional data consisting
of attributes such as latitude, longitude, temperature, pressure,
and humidity. The analysis phase projects future changes in the
environment, such as improving weather or flood forecasting.
Our experience with such analysis applications shows that

applications often do not use all the datasets generated from
the simulation phase, but only a few of them. However, in
a containerized form, all data generated from the simulation
phase are entirely packaged into a single file leading to
container bloat.

Container bloating, in general, can arise due to application
code, libraries, data files, or all three. For example, machine
learning software like TensorFlow (4), Scikit-learn (5) bundle
a large number of libraries to be used by a variety of
applications. Similarly, HDF5 (2) and Avro (6) data formats
allow multiple data files/datasets to be bundled together. There
is also a tendency by well-known agencies to include and
disseminate extra data in standard data files of which only a
small part may ever be accessed by a given application. Several
recent works (7; 8; 9; 10) have determined that containerized
versions of even simple applications come close to or above a
gigabyte, leading to high storage and network transfer costs,
and increased security risk (10).

Common methods to reduce bloat are compression and
deduplication. Deduplication, however, only removes repeat-
ing data from a dataset. Compression reduces the size of
the containers but compressed data must be decompressed
for use within a container. An alternative way is to use
lineage-based methods (11; 12; 13) which analyze data access
patterns, but these methods also work at the coarse-grained
level of identifying whether a data file is accessed or not,
not what portions of it are accessed. Consequently, container
bloat overall remains a pressing challenge in research and in
practice.

By interposing on I/O calls and adding wrapper functions
that re-map I/O access from the original data file to the carved
file, we can introduce arbitrary specialized behavior. Since
analysis applications access simulation data, which is stored in
self-describing files, we consider two types of specialization
of I/O calls – either by interposing at the format-specific
I/O library level or by interposing, generically, at the system
call level. The advantage of the latter is that it is a precise
interposition leading to necessary and sufficient data accessed
by the application and introduces no changes to the binary
of the source code; the former interposition, however, is often
preferred especially if the application is meant to be distributed
such that it can be re-executed repeatedly with different input



parameters. In both cases, however, the carved data is robust
only to the subset of dataset objects accessed and used. Any
data not accessed but needed for peruse purposes must be
dynamically loaded.

We now present Access-Based Carving of Data (ABCD),
which monitors accesses to relevant data and extracts and
stores a single copy of only necessary data based on given
program parameters. These are data chunks accessed by the
application while executing with the specified user inputs.
ABCD provides two levels of interception: system-level and
object-level. System-level interception determines the neces-
sary and sufficient data for a given reference execution of
input parameters. Object-level interception determines objects
accessed at the level of self-describing data files used by the
application.

The approach of interposition adopted in ABCD is distinct
and orthogonal to both deduplication and compression, com-
monly used methods for data reduction. In these methods,
duplicate data chunks not needed are eliminated via hashing
of current data chunks, and if necessary data chunks can be
compressed within a container. While ABCD does not suffer
from the issue of fragmentation, which is a major limitation
of deduplication algorithms (14; 15; 16), it can still adopt
deduplication.

The paper makes the following contributions:
• Developing a system call interception method that identi-

fies bytes of data read and written. Only non-overlapping
extracted bytes of data are stored in a debloated/carved file
using an interval binary search tree index. The carved data
file is stored within the container, and repeated executions
are mapped to offsets in the carved file. We describe how
write operations maintain the consistency of the file. We also
describe an implementation which works at the granularity
of data chunks, the lowest granularity of access in HDF5-
based data files. [Section III].

• Developing an object interception method that identifies and
extracts data objects read during application execution. The
object interception method operates at the I/O library level.
This method is complementary to system call interception
method in that it provides coarser granularity of carved data
file (i.e. more data is carved), which can be useful when
re-executing the container with varying input parameters.
[Section IV].

• Building a complete containerized system that includes the
application along with the carved file and mechanisms to
interpose and map to carved file. [Section III-C and IV-B].

• We evaluate our framework on realistic and synthetic bench-
mark applications across multiple configurations. These
applications operate on NASA datasets (in the order of giga-
bytes) in two different data formats with varying data access
patterns to demonstrate the wide range of applicability of
ABCD. [Section V].
Our results show that ABCD can achieve up to 97% reduction

on accessed data while still identifying and including all
required data for the provided user inputs to ensure repro-
ducibility of application executions.

Application
High-level
interface

(e.g. h5py)

System
library (e.g.

glibc)

I/O Library
(e.g. HDF5

library) Storage

Fig. 1: Application stack

II. CONTAINER STORAGE DEBLOATING PROBLEM

Consider an application A that accesses a data file D
using input parameters T . An execution of an application can
be described as the result of the analysis performed by the
application, such that ∀Ti, A(Ti) accesses subset D′ ⊆ D.
The goal of debloating is to extract the subset D′ to achieve
reduction in container storage and distribution footprint, with
guaranteed re-execution of the application for the particular
set of parameters.

We explore two approaches that operate at different levels in
the application stack. One approach operates at the granularity
of byte offsets at the file level, which can be obtained from
system calls. Let Bi be the set of all bytes read by an
application, where bytes may refer to data bytes or metadata
bytes. With this approach, the debloated subset of the data file
would be as follows:

D′ =

n⋃
i=1

Bi

The other approach operates at the granularity of data
objects at the library level. Let Oi be the set of data objects
read by an application. In this case, the debloated subset of
the data file would be as follows:

D′ =

n⋃
i=1

Oi

Considering the example of the HDF5 library, in which one
of the key data objects are datasets (17) so D′ corresponds to
the set of HDF5 datasets accessed by the application.

We leverage library interposition to operate at different lev-
els in the application stack, as shown in Figure 1. Specifically,
to achieve debloating at the granularity of byte offsets, D′

B ,
we interpose at the system call level, and to achieve debloating

at the granularity of data objects, D′
O, we interpose at the

I/O library level. Debloating data at different granularities
leads to different container size reductions. High-level data
objects are at a coarser granularity and consist of bytes which
are at a sharper granularity i.e. D′

B ⊆ D′
O.

Figure 2 shows an example of an analysis application that
accesses a data file, but ‘uses‘ some part of it only. For
example, for the source code shown in Figure 2, lines 6-
7 indicate access of whole data objects whereas lines 8-
9 indicate access of the subset of those data objects via
index-based subsetting and range-based subsetting. Now this



1 import h5py
2

3 def analysis(HDF5_filename):
4 HDF5_file = h5py.File(HDF5_filename, ’r’)
5

6 data_object_1 = HDF5_file[’data_object_1’]
7 data_object_2 = HDF5_file[’data_object_2’]
8

9 data_object_subset_1 = data_object_1[0:1000]
10 data_object_subset_2 = data_object_2 > 50
11

12 return result(data_object_subset_1, data_object_subset_2)

Fig. 2: Application Source Code

application, when re-executed may access data in different
ways, which can include varying the data objects that are
accessed or the range criteria which defines the subset of data
objects that are accessed.

To determine the necessary and sufficient data, we can
define the execution context of the application. The execution
context motivates the need to interpose at a particular level.
If the execution context operates at lines 6-7, it means that
the execution context of the application varies the data objects
accessed and the application intends to perform analysis on
a fixed subset of data corresponding to data_object_1 and
data_object_2. Since the subset of data objects accessed are
fixed in this case, it makes D′

B suitable for the given execution
context as this will debloat at the granularity of the subset
of data objects. On the other hand, if the execution context
operates at lines 9-10, it means that the execution of the
application varies the subset of specific data objects and the
application intends to perform analysis on the subset of those
particular data objects. Since the data objects are fixed in this
case, it makes D′

O suitable for the given execution context as
this will debloat at the granularity of data objects.

In addition, each level of the application stack exposes
different functionality which dictates the mechanism of de-
bloating. For example, at the system call level, additional
metadata needs to be maintained in the form of an audit trace
after application execution in order to extract the subset of data
accessed. On the other hand, at the object level, I/O libraries
often allow complete access to data objects which allows the
interposition to extract the subset during application execution,
without the need for additional metadata.

III. SYSTEM CALL LEVEL INTERPOSITION

We describe how system call function interposition helps
to determine the minimum amount of data accessed (Sec-
tion III-A). Given a representation of the minimum amount
of data accessed, we describe how a carved datafile corre-
sponding to the minimum amount of data accessed is created
and mapped during re-execution (Section III-B). Finally, we
describe a complete architecture and implementation details
of system call function interposition (Section III-C).

A. Determining Minimum Data Accessed

To determine the minimum amount of data accessed, we
define each file I/O related system call that is interposed as an
event, defined as:

Definition 1. Event. A file I/O event is a six-tuple <
id, t, c, l, sz, h > consisting of the following elements:

• id identifies the subject that generated the event and the
object or subject it affects,

• t represents the logical timestamp of the event,
• c signifies the type of system call,
• l marks the start offset location in the file which the event

affects,
• sz denotes the size of the file affected by the event starting

from l, and
• h represents the SHA-256 hash of the buffer contents

during read and write events.

Events are predominantly read or write or lseek events
and they determine the byte offsets and size of data accessed.
Each application execution results in an ordered set of events
that fully captures all events during the execution of a given
application A. Formally, A = {e1, . . . , en}. Events in a trace
can be merged if they overlap as per a merge operation defined
as:

Definition 2. Merge. Two events, e1 and e2, with the same
id, type, and dependency, are considered merged if:

• e2(t) < e1(t), and
• e2(l) ≤ e1(l) < e2(l) + e2(sz).

If all file I/O events are audited, then the application audit
trace is deemed complete. Further, if traced I/O events are
merged, then the resulting trace corresponds to a carved file
or the minimal data requirement of a deterministic application,
defined as:

Definition 3. Minimum Data Requirement. The minimum
data requirement (MDR) of application A, with user param-
eters T, on dataset D, is the minimum subset of data from
dataset D, which is required to execute application A with
user parameters T such that both produce consistent results
R.

There are two issues however in computing the minimum
data requirement. First, during the execution of the application,
there may be modifications to the data file. These changes
can pose integrity and accuracy challenges when creating
an appropriate subset for re-execution. Second, with a large
number of events, it is important to minimize event lookup
overhead during merge operation and during application re-
execution to check validity of an event. It is important to
choose a data structure that balances lookup efficiency and
memory usage. We describe how we address these concerns.

1) Management of Writes: Writes alter the original data
file D, which creates issues during the creation of the MDR.
Thus it is important to preserve the state of D pre-execution.
In our data debloating process, we consider two approaches
for MDR creation based on the availability of the dataset
D post-execution, i.e., if D is preserved in the same state
as it was pre-execution. If the dataset D is available post-
execution (for e.g., it can still be downloaded), we only need
the audit trace to identify the accessed offsets and generate the



0-110

RT

0-110

RT

0-110

RT

0-80

RT

130-150

100-110

80-100

WT

80-100

Backup

(a) Event 1 (b) Event 2 (c) Event 3

(d) Event 4

0-80

RT

130-150

100-120

80-100

WT

80-100

Backup

(e) Event 5

0-70

RT

130-150

70-130

WT

80-100

Backup

(f) Event 6

70-80 100-120

130-150

Fig. 3: Read Tree and Write Tree as the events in the audit trace of Table I are processed. Blue boxes present changes in the tree from the
previous event.

MDR. However, if D has been overwritten during execution
and the original state of D cannot be obtained, then we need to
maintain backups of the portions of data that were overwritten
so we can generate the MDR correctly. Currently, ABCD leaves
it for the user to decide whether or not to create backups.

To create backups ABCD identifies overlapping writes defined
as:

Definition 4. Overlapping writes There is a read-write over-
lap when:

• e1(c) = Read and
• e2(c) = Write and
• e2(t) > e1(t) (e2 happens after e1) and
• e2(l) ≤ e1(l) < e2(l) + e2(sz) or e2(l) < e1(l) +
e1(sz) ≤ e2(l) + e2(sz)

the event e2 is said to be an overlapping write.

ABCD creates backups for those portions of the file that are
about to be overwritten by an overlapping write as defined
in Definition 4. These backups serve as snapshots of the
original content before any overlapping write is made. By
preserving the original data, we ensure that the necessary
portions required for accurate re-execution are available even
if overlapping writes occur during application execution. After
the execution is completed, we can utilize the backups created
in the previous step to restore the original portions of the
file. By replacing the modified sections with the corresponding
backups, we can recreate the exact state of the file as it was
during the initial read operations. This allows for accurate re-
execution of the application, as the required data is restored
to its original state.

2) Lookup Data Structures: To effectively track the offsets
that have been read and written(these can be in the order of
millions), we consider interval binary search trees (BST). By
treating the read and write offsets as intervals, an interval
BST has logarithmic time complexity for searching, inserting,
and deleting intervals. To track offsets, we utilize two interval
trees: a read tree RT for read offsets that have been purely

read and a write tree WT for write offsets that have been
overwritten. In addition to the interval trees for tracking read
and write offsets (RT and WT ), we also maintain a linked
list for backups to store original data portions.

The trees are updated as the events arrive. For the ith

read event, we ensure that only the offsets that have not
been modified or overwritten are included in RT . This avoids
looking up into the write tree during a read event and obtaining
the offsets that have not been written over during the audit
phase. In this form, the read tree represents the offsets in the
file’s original state.

For the ith write event, ABCD creates a backup for any write
operation that is overlapping any previous read which has not
yet been overwritten. Thus, ABCD identifies the offsets that are
both in write ei and in RT , indicating the portion of the file
that is being overwritten. A backup is created for this section
to preserve the original data. For the same write event, ABCD
adds the write offset interval into the WT . It then removes
the section written to by the write event from the read interval
tree RT . This update reflects that the corresponding portion
of the file has been modified and is no longer considered part
of the original file that has been read.

By performing these operations, we create backups for
writes over previous reads, update the write interval tree, and
update the read interval tree by removing the sections that have
been written to. These steps help maintain the integrity of the
data and accurately reflect the modifications made during the
write operations. Note backups store the actual data and are
like versions preserving the original data before a write. Writes
themselves need not be preserved as they will happen again.

We use an example to describe the state of the trees and
the backups created. Table I shows a sequence of read/write
events from an application to a data file D, with their start
offsets and the data size affected. Figure 3 shows the state
of the read and write tree and backup list as the events are
processed. The second read event is completely overlapping
and leads to no change in the read tree. The two write events



lead to creation of backup data. The state of the write tree at
the end of events is the total written offsets which is 80-100
and 70-130, and the state of read tree is unwritten offsets. The
backup is incremental and can lead to any intermediate state
of the file D.

TABLE I: Sample Application Read/Write Events

Event # Type Offset
1 R 0–110
2 R 70–100
3 R 130–150
4 W 80–100
5 R 90–120
6 W 70–130

Let the original dataset be D. After the ith write event eWi
let the modified dataset be Di. Let the union of all the reads
between the write event eWi and eWi+1 be Ri. Using this we
can represent our audit trace as:

D
eW1−−→
R0

D1
eW2−−→
R1

D2...
eWn−−−→

Rn−1

Dn

As all writes can be dynamically generated during runtime
we can express the minimum data requirement as:

MDR = R0 ∪ (R1 ∪ (. . . Rn−1))− w2)− w1 (1)

For any two consecutive version of the dataset Di and Di+1

created due to write events eWi and eWi+1, if we subtract the
region of impact of eWi+1 which is {eWi+1(l), e

W
i+1(l)+eWi+1(sz)}

from the dataset version Di+1 then the leftover parts of
the dataset are a subset of Di. As we subtract all eWi we
can recursively apply the formula above to show that MDR
contains only the data elements from D.

B. Re-execution with Minimum Data Required

To re-execute with the minimum data required, it is suf-
ficient to combine the metadata corresponding to accessed
offsets of the read tree and the backups since per equation 1
only those offsets are needed. Also, intuitively, these offsets
represent the original data file. Figure 4 shows the combined
tree of offset ranges at the top. At the bottom, the correspond-
ing data offset chunks from the RT and the backups is shown,
where in the solid boxes represent ranges from the RT , and
the grey boxes represent the backups, which are combined
to range 0-120. Note, if there were no writes issued by the
original application A there will be no grey boxes.

We term it the combined metadata tree, as ABCD adds further
information to this tree, such as file names or identifiers,
which facilitates the accurate alignment of the subset data with
the corresponding sections of the original dataset. During re-
execution, as each system call is intercepted again, ABCD looks
into the ranges of the combined metadata tree M to find the
appropriate data chunk. Thus for example for each read event,
ABCD simply intersects the requested offsets in the read event
{eRi } with the metadata tree M , to obtain the relevant metadata
nodes associated with the read operation. Since offsets may be
scattered, ABCD concatenates the retrieved data and returns it

to the application. This ensures that the application receives
the necessary data for the read operation.

0-120

M

130-150

0-70 70-80 80-100 100-120 130-150

Fig. 4: Combined Metadata Tree

For write operations, since this is the re-execution phase,
all such write operations are needed if the user wishes to
explore the update file. However, the user should also have
the option to perform repeated re-execution. Thus, on the ith

write event, denoted as eWi , ABCD flushes the corresponding
write operation to a write cache and updates the metadata tree
to reflect that the corresponding chunks of data are unavailable
for the subsequent read. We note that there is no change to
the carved data file at this stage and such bookkeeping is only
at the level of metadata.

Figure 5 shows re-execution and state of M for sample
execution in Table I.

0-120

M

130-150

0-80

M

130-150

80-100 100-120

0-70

M

130-150

70-130

(a) Metadata Tree after Events 1-3

(b) Metadata Tree after Event 4-5

(c) Metadata Tree after Event 6
Fig. 5: State of Metadata Tree during Re-execution. Blue boxes
represent the state of the Write Cache represented in the Metadata
Tree.

We finally want to state that the recording and lookup data
structures and metadata subset tree create two structurally
preserving executions, one on the original data file and the
carved data file. In other words the order of events generated
from a deterministic program on the original data file with a
given set of input parameters, is homomorphic to the order of
events generated from the same deterministic program on the
carved data file with the same set of input parameters.



Audit Phase

Results
R

User Parameters
T

Program
P

Dataset
D

Trace

Backups

Re-execution Phase

Results
R

User Parameters
T

Program
P

Write
Cache

Reexecution Library

Data Carving Phase

Logging Library

Subset
Tree 

Trace

Carver

Subset
D’

Fig. 6: Full Architecture of System Call-level interposition

C. Architecture of System Call Level Interposition.

Figure 6 shows the architecture of the system call interpo-
sition method. The initial phase, known as the audit phase,
involves monitoring the application while executing and cap-
turing the I/O lineage at a byte-level granularity, forming the
Trace. By employing function interposition (via LD_PRELOAD),
our tool dynamically inserts a library into the application.
Following the Audit Phase, the ABCD uses the recorded events
to create a carved data file. In this data carving phase, the
tool creates a combined metadata/subset tree which has the
necessary mapping to map the calls to the original dataset (D)
to the newly created subset/carved file (D’). The data carving
phase occurs immediately after application execution is over
and the trace is generated. In the final phase, referred to as
the re-execution phase, the application re-executes with (D′).
This phase also uses function interposition (via LD_PRELOAD)
to dynamically insert a library into the application to intercept
all I/O calls and redirect the reads to the carved file (D′) and
writes to the write cache. In this architecture, it is possible
to combine the audit and data carving phase, though we keep
them separate and take a lazy procedure to carve data files to
not impact the application performance.

Thus given the example program shown in Figure 2, the
user whitelists the paths of the data files that are to be utilized
by the application. It then audits the Python script as:

LD_PRELOAD=./auditLib.so python3 global_prec.py

By setting the LD_PRELOAD environment variable to the
audit library, the library is loaded before the program’s ex-
ecution and thus all system call events are interposed and
recorded. A subsequent script automates the carving process
and creation of D′. The application is then re-executed using
the optimized dataset created, but this time loads a repeat
library shared object, repeatLib.so, into the application’s
execution environment using the LD_PRELOAD directive, as
illustrated below:

LD_PRELOAD=./repeatLib.so python3 global_prec.py

The application is then launched with the optimized dataset,
ensuring accurate execution and improved re-execution time.

IV. I/O OBJECT LEVEL INTERPOSITION

Interposition at the library object level forces the finding
of the minimal data requirement to the implementation of
the library itself. This restricts the data debloating to high-
level data objects defined by the library, as well as the library
functions.

We consider such data objects at the HDF5 library call
level. We wrap additional functionality around the original
functionality of library functions to carve the exact subset
of data accessed. Through this approach, we achieve data
debloating at the granularity of HDF5 data objects without
modifying the application. The application can be re-executed
with the carved HDF5 file with guaranteed reproducibility.
The system additionally implements fallback machinery to
maintain correctness should the application access data outside
of the subset accessed in the original execution.

A. Identifying and Carving HDF5 Library Objects

The HDF5 library defines a data model that includes two
primary data objects: groups and datasets. Groups are contain-
ers that hold datasets and other groups, providing structure and
organization in an HDF5 file. Datasets are multidimensional
arrays that store data. HDF5 also provides small metadata
objects called attributes that can be attached to groups and
datasets. Attributes make HDF5 a self-describing format,
allowing complicated data to be stored with all the information
needed to describe the data.

Data objects in an HDF5 file are organized as nodes in
a directed graph structure rooted at the “/” group, and each
object is connected via named links. This structure allows the
objects in the HDF5 file to be accessed in a syntax similar to
how directories are accessed in Unix file systems.

The HDF5 library parallels its data model by following an
object-oriented approach in its function naming convention.
Each function is prefixed with "H5" denoting the HDF5
library, followed by the object it operates on, and ending
with the purpose of the function. For example, the function
H5Gopen is used to open groups. Since each application
that uses HDF5 interfaces with the library, it presents an
opportunity to strategically interpose at particular function
calls to implement additional functionality. This is leveraged
for the purpose of carving data that is accessed.

We interpose on three functions: H5Fopen, H5Dread, and
H5Oopen. For each of these functions, additional function-
ality is wrapped around the original functionality via library
interposition, as follows:
• H5Fopen. This function is used to open HDF5 files. The

additional functionality includes making an identical “skele-
ton" copy of the HDF5 file via a depth-first search into the
directed graph structure, as shown in Figure 7a. The copy
is a carved version of the original HDF5 file and includes
all groups, datasets, and attributes of the original file but
excludes the contents of the datasets.

• H5Dread. This function is used to read datasets from an
opened HDF5 file. The additional functionality includes
monitoring which datasets have been accessed and populat-
ing the empty datasets in the carved file with the contents of
the datasets accessed in the original file, as shown in Figure
7b.

• H5Oopen. This function is used to open an object within an
HDF5 file, serving as a preliminary call to fetch the identifier
of the object to be accessed. The additional functionality



H5Fopen

Carved HDF5 file

dataset1

attribute1

group1 group2

/

dataset2

Original HDF5 file

dataset1

attribute1

group1 group2

/

dataset2

Empty dataset

(a) H5Fopen interposition

H5Dread

Carved HDF5 file

dataset1

attribute1

group1 group2

/

dataset2

Original HDF5 file

dataset1

attribute1

group1 group2

/

dataset2

Empty dataset
Accessed in original execution

(b) H5Dread interposition

H5Oopen

Empty dataset
Accessed in original execution

Accessed in re-execution

Carved HDF5 file

dataset1

attribute1

group1 group2

/

dataset2

Original HDF5 file

dataset1

attribute1

group1 group2

/

dataset2

(c) H5Oopen interposition
Fig. 7: HDF5 library call interposition

includes determining whether the datasets accessed during
re-execution were the same as in the original run. If the
datasets were accessed previously, the carved version of the
HDF5 file is used. Otherwise, fallback machinery is invoked.

An HDF5 file may be available in a persistent repository.
Carving and including content from such a file provides
multiple benefits, including reducing the storage footprint
of a container, improving access latency (and hence re-
execution runtime), and eliminating the dependency on ex-
ternal content, making the resulting package self-contained.

In the event that program parameters during re-execution
differ significantly from the original run, datasets may be
needed that are not present in the carved version. Internally,
the HDF5 library uses a collection of different drivers, de-
pending on how the content is being accessed. For example,
local files are accessed with the SEC2 driver (18) by default.
Files hosted on Amazon S3 storage are accessed via the
ROS3 driver (19). This allows alternative behavior to be
defined in the case of missing datasets.

Currently, missing datasets in S3-hosted HDF5 files are
automatically retrieved. In the future, support can be added
to allow the user to map the location of local HDF5 files
to a fallback URL. This approach allows the correctness of
re-executing applications to be ensured in as wide a set of
circumstances as feasible, as shown in Figure 7c.

B. Architecture of Library Object Interposition

The carving system operates in two modes: execution and
re-execution.

In execution mode, the application is run with the original
HDF5 file. ABCD outputs a carved version of the original HDF5
file that contains only the subset of data accessed by the
application. Let Sreduction be the reduction in container storage
size, Doriginal be the size of the datasets in the original HDF5
file, and Daccessed be the size of the datasets accessed in the
original execution. The total reduction in the storage size of
the container is equivalent to the complement of the subset of
data accessed, as follows:

Sreduction = Doriginal −Daccessed

In re-execution mode, the application is run with the carved
HDF5 file instead of the original HDF5 file. The original
HDF5 file is only opened if the application attempts to use
data outside the subset accessed in the original execution.

Name Data Format Language Description
AIST HDF5 Python (20)
Krigging HDF5 Python (21)
GlobalPre HDF5 Python (22)

TABLE II: Real Life Applications

V. EXPERIMENTS

In this section, we detail the comprehensive experiments
conducted to evaluate the efficacy of ABCD in discerning
data bloat within programs. The experimentation encompassed
two distinct categories: real-life applications and synthetic
benchmarks. All tests were executed on a Ubuntu 22.04 ma-
chine boasting eight cores, 15GB of memory, and an Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz, ensuring a standardized
computing environment.

Implementation All programs involved in the experiments
utilized HDF5 data files. ABCD system is developed in Python
3.8 and C, with the C language used for system call auditing
and redirection, and Python used for the intermediate data
store creation. For system call interception, the system uses
LD_PRELOAD mechanism to determine accessed environ-
ment and data files. During re-execution the system maps
a system call’s arguments to the appropriate offset of the
debloated file. For library interception calls to H5Fopen,
H5Dread and H5Oopen are recorded along with input ar-
guments which are subsequently stored in a data store as a
debloated file.

A. Real Life Applications

To provide a robust assessment of our data debloating sys-
tem’s capabilities, we subjected it to three real-life applications
sourced from precipitation domains. Table IV provides details
of these three applications describing the format of data that
they access, the GitHub repository from where they were
acquired, and the programming language they were developed
in.

B. Synthetic Benchmark

We used four micro-benchmarks programs available from
the h5bench library (23). H5bench is a suite of parallel I/O
benchmarks or kernels representing I/O patterns commonly
used in HDF5 applications on high-performance computing
systems. I/O patterns i.e., the order in which locations in the
data file are accessed and how much data is read in one



CS LDC RDC PRL

TABLE III: Illustrations of the benchmark patterns

Pattern Parameter Description
CS/LDC/RDC BLOCK_SIZE Data block size along dim_1
CS/LDC/RDC BLOCK_SIZE_2 Data block size along dim_2
CS STRIDE_SIZE Data block stride along dim_1
CS STRIDE_SIZE_2 Data block stride along dim_2
PRL BLOCK_SIZE Frame Size along dim_1
PRL BLOCK_SIZE_2 Frame size along dim_2

TABLE IV: Synthetic Benchmark Parameters

access are supported via a stencil data abstraction (24) and
an apply function. Intuitively, a stencil represents a geometric
neighborhood of an array in an HDF5 data file. Two types
of stencils are provided: A solid rectangular shape and a
rectangular shape with a hole. An I/O pattern is obtained when
a program applies the stencil in different patterns. Two patterns
are supported: In the fixed pattern, the application subsets a
stencil worth of data from a set of specific locations in the
file and in the iterative pattern it subsets by incrementally
iterating (in a ‘for’ loop) over a set of different locations
defined by a constraint in the program. The suite consists of
four different micro-benchmark programs illustrated in Table
III. Each micro-benchmark program within the suite mimics
a scientific application.

Each pattern is detailed below:
1) CS: Cross Stencil pattern, involving a fixed-sided block

with a specified stride in each dimension. Data is read
from the HDF5 file till the end.

2) LDC: Left Diagonal Corner pattern, reading data from
two identical blocks positioned in the top-left and bottom-
right corners of the 2D HDF5 file.

3) RDC: Right Diagonal Corner pattern, similar to LDC but
with blocks in the top-right and bottom-left corners of the
2D HDF5 file.

4) PRL: Peripheral pattern, reading data from the periphery
of the file, forming a fixed-width and height frame around
the dataset.

To run these benchmarks the C program accepted additional
parameters required in the configuration for each pattern as
listed in Table IV.

We run the benchmarks against a ptrace based interposition
method. This interposition method is used in container pruning
tools such as (25). The whole file is either included or
excluded from the ptrace based interposition method. In our
experiments, we measure the storage reduction because it is
the main objective of ABCD. But we also measure the audit and
re-execution time to ensure that both solutions work without
excessive overhead costs.

Figure 8 shows the storage reduction percentage using byte-
level and object-level methods for each program in the bench-
mark and real applications with respect to the original file.
The system call level interposition gives a very high reduction

-25

-5

15

35

55

75

95

Aist Krigging GlobalPre PRL LDC CS RDC

R
e

d
u

ct
io

n
 %

System call level interposition Library-level interposition

Fig. 8: Reduction Percentage

percentage. This is because the debloating at file I/O level
uses low-level tracing of system calls to find the near to exact
size of the required dataset. The library-level interposition
depends on the attributes chosen by the application. In the
case of GP, the difference is stark as the program further
subsets on the chosen attributes which is identified by the
byte-level interposition but not the object-level interposition.
ptrace-based interposition is not shown as the reduction % is
negative. The interposition increases the storage cost due to
extra metadata per call that is included in the container.

For measuring the time cost, we show the audit time in
Figure 9 and the re-execution time in Figure 10. Both figures
show the time in the log scale. We calculated the time for
the synthetic benchmark by taking the average of 10 runs
with various parameters to the benchmark. The Audit and Re-
Execution for the real-life applications is done without varying
their parameters, hence there is no need to take an average and
we reported the exact time value. Due to lack of space, we have
combined the real and synthetic programs. We see positive log
values for real applications as they access large data files and
are compute-intensive. We see negative log values for synthetic
benchmark programs which read small data files.

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

Aist Krigging GlobalPre PRL LDC CS RDC

Lo
g(

A
ve

ra
ge

 T
im

e
)

System call level interposition

Library-level interposition

ptrace-based interposition

Fig. 9: Average Audit Time

We notice a significant difference between the real applica-
tions and the synthetic benchmark. The real applications take



more than one second, so their log time is positive, while
the synthetic benchmark runs in less than one second, hence
their log time is negative. During the audit time, the system
call-level interposition will always take more time than the
library-level interposition because the number of system calls
is significantly larger than the number of library calls. ptrace-
based interposition auditing time is higher in the synthetic
benchmark, but it is lower in the case of real applications.

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

Aist Krigging GlobalPre PRL LDC CS RDC

lo
g(

R
e

 E
xe

cu
ti

o
n

 T
im

e
)

System call level interposition

Library-level interposition

ptrace-based interposition

Fig. 10: ReExecution Time

The re-execution of both ABCD approaches takes less time
than the ptrace-based interposition baseline. This is because
ptrace-based interposition makes redundant system calls,
while the ABCD provides a smaller debloated file specialized
for this application. The container storage is reduced on the
disk, and the run-time becomes significantly faster.

VI. RELATED WORK

We focus on related work primarily relating to debloating.
Data-based Debloating. Redundant downloading of data

within each layer is a known issue in container-based deploy-
ments, resulting in large size images (26). This has triggered
research in the direction of data based debloating in user space.
A related tool, Slacker (8), uses deduplication of file blocks to
create more efficient container systems. However, block-level
deduplication techniques do not eliminate data redundancies
within structured arrays. Whereas, ABCD is designed to remove
unused data in structured array-based data formats such as in
NetCDF4 (1). Another work, LLIO (27), improves runtime
performance of applications through elimination of filesystem
accesses. However, it does so by lifting entire files. Such an
approach becomes untenable for large data sets. In an attempt
to mitigate this limitation, ABCD demonstrates the possibility
of lifting only subsets of data (instead of entire files) and
packaging it along with data-intensive applications.

Code-based Debloating. Study of code bloat in software
with consequent debloating has received a lot of attention in
the recent past. Xin et. al. (28) have analyzed the tradeoffs
between code reduction and function generality in debloated
software. Jiang (29; 30) have studied the issue of software
bloat in real-world Android applications and have proposed

static analysis based techniques to remove dead code. OC-
CAM (31) and Trimmer (32) have demonstrated that configu-
ration based debloating can be applied to modern applications.
These techniques primarily work on code written in C/C++
by automatically building them into LLVM bitcode. Unlike
these code-based debloating techniques, ABCD explores data-
based debloating for efficient storage space utilization and
application reproducibility.

Program Specialization. A prior work on program special-
ization by Medicherla (33) has been used to verify whether
or not a program ‘conforms’ to the specified format and to
specialize the code to the ’restricted’ file format. This is
program specialization being used for verification. As opposed
to this, program specialization is being used for data reduction
in ABCD.

Lineage Methods. A precise lineage model informs about
data flows of an application. There are several provenance
models for capturing system call lineage (34). In this paper,
we adopt the system-event trace analysis process which is also
used in other whole system provenance tracking methods (11;
13; 35). None of these models, however, log and infer on data
subsets in the system-event trace.

I/O level monitoring and access patterns. Darshan (36)
is an I/O characterization tool used to profile and analyze I/O
behavior in high-performance computing (HPC) applications.
It is designed to collect detailed information about I/O pat-
terns, file access patterns, and other relevant metrics to help
users understand how their applications interact with the file
system. Darshan’s DXT module (37) can also instrument I/O
calls in the application code to collect data on file operations.
Thus, Darshan can be used to profile an application for I/O
in the context of debloating. However, Darshan will also need
to carve the byte-level information and reuse it. Determining
how Darshan can interact with the carving and re-execution
phase remains part of our future work.

Scientific computing programs supported by libraries like
HDF5 often perform data subsetting. Several shapes of I/O
access patterns are explored in (24; 38; 39). However,
automatically examining the amount of data subsetting is
unexplored. We have used available benchmarks based on
these patterns to analyze how much data must be subset and
containerized.

VII. CONCLUSION

In this paper, we presented the container storage debloating
problem with examples from real-life use cases. Two solu-
tions for this problem based on specializing I/O libraries are
discussed in detail. While both solutions can significantly
reduce the container storage footprint, each has advantages
and disadvantages. We performed experiments to identify the
differences between the two approaches and show when each
can be more suitable.

The general solution both systems follow is to audit an
application at runtime to discover its data-access requirements
and create a specialized storage version for this specific ap-
plication. By observing the application’s calls, the specialized



storage is optimized to respond only to the application needs
later in the re-execution phase.

Our results will guide scientists and engineers who imple-
ment reproducibility for data-intensive applications through
containerization. Storage debloating can positively affect other
areas in high-performance computing, such as computing cost
efficiency, improved security, simplified distributed systems,
and reduced energy consumption. We plan to study some of
these areas in our future work.

ACKNOWLEDGEMENTS

This work is supported by NASA under grant NASA-AIST-
21-0095 and National Science Foundation under grants CNS-
1846418, NSF ICER-1639759, ICER-1661918.

REFERENCES

[1] R. Rew et al., “Netcdf-4: Software implementing an enhanced
data model for the geosciences,” in 22nd International Confer-
ence on Interactive Information Processing Systems for Meteo-
rology, Oceanograph, and Hydrology, vol. 6, 2006.

[2] M. Folk et al., “An overview of the hdf5 technology suite and its
applications,” in Proceedings of the EDBT/ICDT 2011 workshop
on array databases, 2011, pp. 36–47.

[3] “Uniprot: the universal protein knowledgebase in 2023,” Nucleic
Acids Research, vol. 51, no. D1, pp. D523–D531, 2023.

[4] M. Abadi et al., “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: www.tensorflow.org

[5] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[6] Apache avro. [Online]. Available: avro.apache.org
[7] X. Wu et al., “Totalcow: Unleash the power of copy-on-write

for thin-provisioned containers,” in Proceedings of the 6th Asia-
Pacific Workshop on Systems, 2015, pp. 1–7.

[8] T. Harter et al., “Slacker: Fast distribution with lazy docker
containers,” in 14th USENIX Conference on File and Storage
Technologies (FAST 16), 2016, pp. 181–195.

[9] V. Rastogi et al., “Cimplifier: automatically debloating con-
tainers,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 476–486.

[10] H. Zhang et al., “Machine learning containers are bloated and
vulnerable,” arXiv preprint arXiv:2212.09437, 2022.

[11] A. Gehani et al., “SPADE: Support for Provenance Auditing in
Distributed Environments,” in Middleware, 2012.

[12] Q. Pham et al., “LDV: Light-weight database virtualization,” in
ICDE’15, 2015, pp. 1179–1190.

[13] M. Stamatogiannakis et al., “Looking inside the black-box:
capturing data provenance using dynamic instrumentation,” in
IPAW. Springer, 2014, pp. 155–167.

[14] L. Lin et al., “Inde: An inline data deduplication approach
via adaptive detection of valid container utilization,” ACM
Trans. Storage, nov 2022. [Online]. Available: doi.org/10.1145/
3568426

[15] D. Zhang et al., “Improving the performance of deduplication-
based backup systems via container utilization based hot
fingerprint entry distilling,” ACM Trans. Storage, vol. 17, no. 4,
oct 2021. [Online]. Available: doi.org/10.1145/3459626

[16] N. Zhao et al., “DupHunter: Flexible High-Performance
deduplication for docker registries,” in 2020 USENIX
Annual Technical Conference (USENIX ATC 20). USENIX
Association, Jul. 2020, pp. 769–783. [Online]. Available:
www.usenix.org/conference/atc20/presentation/zhao

[17] docs.h5py.org/en/stable/quick.html, HDF5 APIs.

[18] Hdf5 virtual file layer. [Online]. Available: bit.ly/3V6Iuxn
[19] Cloud storage options for hdf5. [Online]. Available: www.

hdfgroup.org/2022/08/cloud-storage-options-for-hdf5/
[20] Pomd-pf aist notebook. [Online]. Available: bit.ly/3TrxwkO
[21] Krrigging application. [Online]. Available: bit.ly/43cEQE1
[22] Global percepitation notebook. [Online]. Available: bit.ly/

3v3m6dt
[23] T. Li et al., “h5bench: HDF5 I/O Kernel Suite for Exercising

HPC I/O Patterns,” in Proceedings of Cray User Group Meeting,
CUG 2021, 2021.

[24] B. Dong et al., “Terabyte-scale particle data analysis: an ar-
rayudf case study,” in Proceedings of the 31st International
Conference on Scientific and Statistical Database Management,
2019, pp. 202–205.

[25] R. Ye et al., “Jslim: Reducing the known vulnerabilities
of javascript application by debloating,” in Emerging Informa-
tion Security and Applications, W. Meng et al., Eds. Cham:
Springer International Publishing, 2022, pp. 128–143.

[26] A. Verma et al., “Large-scale cluster management at google with
borg,” in Tenth European Conference on Computer Systems,
2015.

[27] C. Smowton, “I/o optimisation and elimination via partial
evaluation,” Ph.D. dissertation, University of Cambridge, 2014.

[28] Q. Xin et al., “Studying and understanding the tradeoffs be-
tween generality and reduction in software debloating.” in
The 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE) 2022, 2022.

[29] Y. Jiang et al., “Jred: Program customization and bloatware
mitigation based on static analysis.” in Proceedings of the IEEE
40th Annual Computer Software and Applications Conference,
2016.

[30] Y. JIANG et al., “Reddroid: Android application redundancy
customization based on static analysis.” in IEEE International
Symposium on Software Reliability Engineering, 2018.

[31] G. Malecha et al., “Automated software winnowing,” in 30th
ACM Symposium on Applied Computing, 2015.

[32] H. Sharif et al., “Trimmer: Application specialization for code
debloating,” in ASE, 2018.

[33] R. K. Medicherla et al., “Program specialization and verification
using file format specifications,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME),
2015, pp. 191–200.

[34] M. Stamatogiannakis et al., “Trade-offs in automatic provenance
capture,” ser. IPAW 2016. Berlin, Heidelberg: Springer-Verlag,
2016.

[35] N. Balakrishnan et al., “{OPUS}: A lightweight system for
observational provenance in user space,” in 5th {USENIX}
Workshop on the Theory and Practice of Provenance (TaPP
13), 2013.

[36] P. Carns et al., “Understanding and improving computational
science storage access through continuous characterization,”
ACM Transactions on Storage (TOS), vol. 7, no. 3, pp. 1–26,
2011.

[37] C. Xu et al., “Dxt: Darshan extended tracing,” Argonne National
Lab.(ANL), Argonne, IL (United States), Tech. Rep., 2017.

[38] J. Lofstead et al., “Six degrees of scientific data: Reading
patterns for extreme scale science io,” in Proceedings of the
20th international symposium on High performance distributed
computing, 2011, pp. 49–60.

[39] B. Dong et al., “Real-time and post-hoc compression for data
from distributed acoustic sensing,” Computers & Geosciences,
vol. 166, p. 105181, 2022.

www.tensorflow.org
avro.apache.org
doi.org/10.1145/3568426
doi.org/10.1145/3568426
doi.org/10.1145/3459626
www.usenix.org/conference/atc20/presentation/zhao
docs.h5py.org/en/stable/quick.html
bit.ly/3V6Iuxn
www.hdfgroup.org/2022/08/cloud-storage-options-for-hdf5/
www.hdfgroup.org/2022/08/cloud-storage-options-for-hdf5/
bit.ly/3TrxwkO
bit.ly/43cEQE1
bit.ly/3v3m6dt
bit.ly/3v3m6dt

	Introduction
	Container Storage Debloating Problem
	System Call Level Interposition
	Determining Minimum Data Accessed
	Management of Writes
	Lookup Data Structures

	Re-execution with Minimum Data Required
	Architecture of System Call Level Interposition.

	I/O Object Level Interposition
	Identifying and Carving HDF5 Library Objects
	Architecture of Library Object Interposition

	Experiments
	Real Life Applications
	Synthetic Benchmark

	Related Work
	Conclusion

