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DATA PROVENANCE DESCRIBES the origins of a digital 
artifact. It explains the creation of an object, as well 
as all the modifications and transformations that 
transpired over its lifetime. When the historical 
record is detailed, spans long periods, or both, the 
information collected can become voluminous. 
Analysis of provenance is often used even while it 
is continuously being extended through a series of 
computations that act upon it. This necessitates 
a framework that supports performant streaming 
ingestion of new elements with concurrent querying 
that yields responses that incorporate data as it 
becomes available.

Operating systems and blockchains are two of 
many domains where collection and analysis of big 
provenance9 has had useful applications. In the case 

of operating systems, system-call in-
formation collected by a kernel’s audit 
framework can form the basis of trust-
worthy provenance metadata. This fa-
cilitates tracking all activity that occurs 
across a machine or even a federated 
system. This whole network provenance1 
is particularly useful for applications 
such as malware detection and ensur-
ing the reproducibility of computation.

Bitcoin is a blockchain-based cryp-
tocurrency where individuals can per-
form transactions with each other. 
Each transaction between two or more 
users contains payment information 
that should be stored in the block-
chain. These records form the basis for 
tracking the provenance of any given 
digital object in the blockchain. In ad-
dition to its primary purpose of track-
ing currency ownership, the prove-
nance has other applications, such as 
detecting anomalous behavior to iden-
tify illegal activity.

Provenance metadata may be stored 
in a database to facilitate efficient que-
rying. The process of interrogating the 
system must be intuitive and conve-
nient to use since finding the relevant 
fragment in big provenance is akin to 
the proverbial search for a needle in a 
haystack. These goals must be met de-
spite the system’s use in a variety of do-
mains, from profiling complex applica-
tion workflows to performing forensic 
and impact analyses after attacks on a 
system have been uncovered.

Several interfaces exist for querying 
provenance. Many of them are not flexi-
ble in allowing users to select a database 
type of their choice. Some interfaces 
provide query functionality in a data 
model that is different from the graph-
oriented one that is natural for prove-
nance. Other interfaces have intuitive 
constructs for finding results but have 
limited support for efficiently chaining 
responses, as needed for faceted search. 
This article presents a user interface for 
querying provenance that addresses 
these concerns and is agnostic to the 
underlying database being used.

First, relevant background on data 
provenance is provided, along with 
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how it is modeled and how the repre-
sentation is realized in an open source 
implementation. Then the design of 
the query surface is presented, its core 
functionality outlined, illustrative use 
cases described, and salient aspects of 
the system highlighted.

Modeling Computational History
A common way of reporting data prov-
enance is to model it as a graph struc-
ture, where vertices represent elements 
in a historical record, and edges repre-
sent events that relate and order the ele-
ments. A provenance graph G(V,E) then 
contains a set of vertices, V, and edges, E. 
A member, v, of the set V can be an agent, 
process, or artifact that was involved in 
an event. Each edge e belonging to set E 
represents the operation that occurred 
and relates two vertices, vi and vj.

Multiple data models have been de-

veloped to represent data provenance. 
Notable variants are the OPM (Open 
Provenance Model),11 published in 
2010; the W3C PROV specification,13 
released in 2013; and the DARPA Trans-
parent Computing program’s CDM 
(Common Data Model),10 finalized in 
2019. They have some similarity. Each 
includes vertices for three categories of 
elements: agents or principals; pro-
cesses, activities, or subjects; and arti-
facts, entities, or objects. They differ in 
detail based on their intended domain 
of use: OPM was designed to be do-
main-agnostic; W3C PROV was created 
to aid the publication of semantically 
enriched Web content; and CDM is fo-
cused on the specific domain of operat-
ing systems.

The semantics of the activity do-
main being monitored are captured 
with a custom schema. By using a 

property graph to represent the prov-
enance, these details can be embed-
ded directly. Vertices and edges are 
each accompanied by a (possibly 
empty) set, A, of domain-describing 
annotations, A = a1, a2,…, an. Each an-
notation ai is a key-value pair—that 
is, ai = keyi : valuei—that reports an as-
pect of the domain, such as 
program:firefox or path:/etc/
passwd. In this manner, a prove-
nance graph captures the relative or-
der of events, as well as the salient as-
pects of the monitored domain.

As an example, consider a vertex 
representing an operating system pro-
cess. This vertex could have annota-
tions conveying information such as its 
name, identifier, or start time. An edge 
could relate the process to a file that 
has been read. In the case of bitcoin 
provenance,7 a vertex representing a 
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Figure 1. The SPADE architecture has a kernel at its core.
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case of bitcoin, the lineage of a pay-
ment reveals details about the partici-
pating users and all the transactions 
linked to them.

Another important operation con-
sists of searching for paths between a 
pair of elements. Two variants of this 
operation often arise in practice. The 
first involves finding all the paths be-
tween two vertices, while the second 
focuses on finding the shortest path 
between them. A path between two ver-
tices demonstrates how different data 
elements influence each other through 
the events that have transpired in the 
system. For example, finding a path be-
tween a Web browser application and a 
file downloaded from the Internet 
shows the complete set of steps re-
quired by the browser’s user for bring-
ing the file from a remote server to a lo-
cal machine. In the bitcoin context, 
paths between two addresses can be 
used to find the transactions that link 
those two addresses. This, in turn, can 
be used to calculate the assets that have 
flowed from one user to another, even 
when they go through intermediaries.

Provenance System Architecture
The open source SPADE project3 pro-
vides software for inferring, storing, 
and querying data provenance. It is 
cross-platform and can be used with 
diverse sources such as blockchains, 
online social networks, and multiple 
operating systems, including Linux, 
macOS, and Windows. The collection 
of provenance is done without requir-
ing any change in the applications or 
the target platform. SPADE is easy to 
install and configure. It provides a sim-
ple mechanism for users to select from 
many storage formats.

The architecture of SPADE is shown 
in Figure 1. It is composed of multiple 
modules, each playing an independent 
role in processing provenance records. 
These modules are managed by the 
SPADE Kernel at the core. Provenance 
graph elements are inferred about activ-
ity domains and sent to the Kernel by 
Reporter modules. After being operated 
on by any Filters present, the elements 
are sent to Storage modules that insert 
the elements into databases configured 
with a custom schema. The presence of 
independent threads for ingestion and 
query processing allows clients to make 
provenance inquiries while the underly-

transaction would have annotations 
such as the hash that identifies it and 
the earliest time it is valid. An edge could 
relate unspent bitcoin to a payee with an 
annotation specifying the amount.

Canonical Provenance Queries
The simplest provenance query con-
sists of searching for vertices that 
match a specification, defined by an 
expression over the annotations that 
describe it. Such queries are useful 
to locate vertices that can serve as the 
starting point of more complex que-
ries, like the ones described in this arti-
cle. Akin to retrieving vertices are que-
ries for identifying individual edges. 
For example, a user may want to learn 
about all cases where the permissions 
of a particular file were changed. Since 
this is an atomic system event, the 
user can search for all associated prov-
enance edges. Similarly, once an edge 
(or a set of them) has been located, the 
user can extract the endpoint vertices. 
In the prior example, this would allow 

the identification of processes that per-
formed the action.

Among the most frequently needed 
functionality when operating on prov-
enance records is support for finding 
the lineage of an element. In a lineage 
query, the ancestry of a data artifact is 
traced back a specified number of 
steps. Similar functionality that oper-
ates in the other direction is useful for 
identifying descendants. The ances-
tors or descendants of a given data arti-
fact are found by recursively locating 
the parent or child vertices in the graph 
structure, respectively. The ancestral 
lineage of an item provides a picture of 
what transpired leading up to the cre-
ation of that item, while the descen-
dant variant describes what was de-
rived from it after its creation. With 
operating system provenance, the lin-
eage of a file can explain how, when, 
and by whom that file was created. It 
can support the enumeration of all the 
system processes (and their owners) 
that wrote to or read from a file. In the 
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ing graph is changing. The various types 
of modules are described further later.

A Reporter module acts as the pro-
ducer of provenance metadata. It re-
ceives streams of events from diverse 
sources, extracts relevant information 
from them, and infers provenance re-
lationships, constructing graph verti-
ces and edges in the process. SPADE 
provides a multitude of reporters that 
generate provenance about diverse do-
mains, including operating systems, 
blockchains, intra-application calls, 
and user-defined schema.

A Filter module acts on the prove-
nance stream emitted by a reporter. It 
performs a selection operation on the 
provenance according to programmed 
criteria. For example, some filters al-
low only the vertices and edges that 
match a specification to pass through. 
Other filters abstract or remove infor-
mation in vertices or edges. The output 
of a filter is the processed provenance 
information that is meant to be persist-
ed. Several filters can be inserted to op-
erate sequentially on the output of 
each preceding one.

A Storage module takes the final 
output of the sequence of filters (if any 
are present) and stores it in one of the 
available databases. The module pro-
vides an abstraction over the underly-
ing persistent store. This subsystem 
could be a relational database such as 
MySQL or Postgres, a graph database 
such as Neo4j, or any data store. The 
module provides interfaces for storing 
and retrieving data that are agnostic to 
the underlying database.

An Analyzer module provides an in-
terface to the user for retrieving prove-
nance records stored in SPADE. It is re-
sponsible for receiving a query, 
sending it to the appropriate storage, 
processing the information, and shar-
ing the result with the user. The default 
implementation receives queries from 
the command line.

Design of the Query Surface
The first generation of SPADE and its 
precursors introduced support for que-
rying a file’s lineage, specified by its 
path and version (as of a given date and 
time). It included several optimizations 
for transferring provenance metadata 
across hosts4 and accelerating crypto-
graphic verification of such records.5 
It was not until the second generation6 

that a richer query surface was added, 
including support for retrieving verti-
ces, edges, paths, and lineage.

To make querying more usable for 
navigating big provenance and per-
forming faceted searches, a new sur-
face was developed. Its name, Quick-
Grail, derives from the fact that its 
design was inspired by the Grail proj-
ect2 and initially implemented atop the 
Quickstep database.12 Subsequently, 
SPADE added support for using Quick-
Grail with the Neo4j graph and Postgres 
relational databases.

QuickGrail provides an abstraction 
over the underlying database so that 
users can work with a uniform query 
language, regardless of the data model 
and serialization below. This allows us-
ers to focus on the provenance analysis 
task at hand without concern for how 
the queries will be translated into the 
native language of the database. In ad-
dition to being efficient, the surface 
provides a uniform mechanism for ex-
porting responses for visualization and 
other external uses.

The query interface provides a col-
lection of functions to search for prov-
enance records and manipulate the re-
sponses retrieved from the underlying 
database. The databases supported are 
Neo4j, Postgres, and Quickstep. Each 
function in the query surface is imple-
mented in an intermediate representa-
tion that is translated into the query 
language of the target database.

The system provides several fea-
tures that facilitate faceted search, al-
lowing the user to home in on informa-
tion of interest to them. One such 
feature is the ability to assign a query 
response to a graph variable. Such vari-
ables can be operated upon in subse-
quent queries to refine the search. An-
other feature that facilitates efficient 
user interaction in the presence of big 
provenance is the ability to limit the 
size of responses. This allows users to 
send queries and quickly receive par-
tial responses, which they can inspect 
to refine their search.

Variables. A special variable, $base, 
represents the entire provenance graph 
stored in the currently selected data-
base. This variable serves as the universe 
of provenance for most queries. When a 
variable is used to store the response 
graph from a query, it will appear on the 
left-hand side of an assignment (denot-

SPADE provides 
a multitude 
of reporters 
that generate 
provenance 
about diverse 
domains, including 
operating systems, 
blockchains,  
intra-application 
calls, and  
user-defined 
schema.
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affected by a particular element. In 
both cases, this is done by starting 
with the element, finding its parents 
or children, respectively, and then re-
cursing. This is supported with the get-
Lineage function, which is generalized 
to operate on a set of seed elements. It 
takes three arguments: a set of seed 
vertices; the maximum number of levels 
to traverse from the seed vertices, 
which must be a positive integer; and 
the direction of traversal, which can be 
ancestors, descendants, or both. The 
example in Figure 2 extracts two levels 
of the ancestral lineage of vertices with 
a firefox annotation:

Connecting the dots. A preliminary 
analysis (through a faceted search us-
ing increasingly specific constraints, 
for example) may lead to two sets of ver-
tices being identified: One may consist 
of the ingress points of network flows 
into the system, while the second set 
may have indicators of compromise, 
such as processes whose privilege was 
escalated or files whose ownership 
changed in a particular window of time.

Knowing whether a connection ex-
ists between two sets is a key concern. 
This can be ascertained with the get-
Path function, which takes three argu-
ments: a set of source vertices; a set of 
destination vertices; and the maximum 
path length between any source and 
destination vertex, which must be a 
positive integer. The semantics of prov-
enance imply that a path will be found 
only when a destination is in the prove-
nance—that is, it is an ancestor—of a 
source. The following example searches 
for paths with a length of at most three 
edges between a firefox process ver-
tex and the /etc/passwd file vertex:

%source = name == ‘firefox’

$firefox = $base.getVertex(%source)

%destination = path == ‘/etc/passwd’

$etc _ passwd = $base.

getVertex(%destination)

$paths = $base.getPath($firefox, 

$etc _ passwd, 3)

If the set of paths discovered is 
large, it can be refined by specifying 
one or more sets of intermediate verti-
ces. For example, if it is known that a 
$compromised_process set lies on 
the paths of interest from $firefox 
to $etc_passwd, the query can be 
made more specific:

ed with =), and its name must start with 
$. If a variable is used to define a query 
constraint, its name must start with %. 
Such variables are a convenience, pro-
viding a succinct way to represent con-
straints that may need to be passed re-
peatedly as arguments to queries.

Constraints. To scope the elements 
that match a query, a selection con-
straint can be specified. In its most 
basic form, it consists of an annota-
tion key, a relational operator, and a 
value. (Recall that annotations were 
introduced earlier in this article.) The 
supported operators include ==, !=, <, 
>, <=, >=, and LIKE. The last of these 
facilitates matching a string (with % 
used as a wildcard). For example, 
name LIKE '/bin/%' will match verti-
ces with an annotation-key name that 
has a value starting with /bin/. A con-
straint of uid == '0' can be used to 
select vertices of processes that ran as 
root (since its uid is 0). To simplify re-
use, constraints can be stored in vari-
ables—for example, %system _
procs = name LIKE '/bin/%'.

To support more complex filtering, 
constraint expressions can be built by 
combining constituents using the logi-
cal operators AND, OR, and NOT. This 
allows the constraint expressions to be 
framed over multiple annotations. In 
addition, it allows the user to combine 
an existing constraint with a new crite-
rion, thereby facilitating faceted 
search. For example, consider the con-
straint %proc _ python = name == 
'python' used to find vertices repre-
senting python executions. The querier 
may be interested in the subset that 
ran as the root user. In this case, the 
querier could define another con-
straint %proc _ root = uid == '0'. 
The two constraints can then be com-
bined into a single expression 

%proc _ python AND %proc _ root 
for use in subsequent queries.

Extracting elements. Since prove-
nance graphs consist of vertices and 
edges, the most basic functions pro-
vided are getVertex and getEdge. 
They can be used with any existing 
graph variable to extract a subset of el-
ements, as specified by a constraint. 
The output of these functions must be 
assigned to a graph variable. Note that 
even though these functions result in 
sets of vertices or edges, these sets are 
treated as graphs. In the following ex-
ample, vertices are extracted from the 
special variable $base, which repre-
sents the global graph. They are con-
strained to the subset with an annota-
tion type of Process:

%only _ processes = type == 'Process'

$all _ processes = $base.

getVertex(%only _ processes)

Similarly, every edge is extracted if it 
has an annotation of operation with 
value fork:

%all _ forks = operation == 'fork'

$fork _ edges = $base.getEdge(%all _

forks)

Using the set of edges just ob-
tained, the next query extracts the 
processes that performed the fork op-
erations, as well as those that were 
created as a result:

$fork _ vertices = $fork _ edges.

getEdgeEndpoints()

Identifying origins and impacts. 
Given an element in a provenance 
graph, a central concern is understand-
ing what gave rise to it. Of equal impor-
tance is understanding what has been 

Figure 2. 

%firefox = name == ‘firefox’
$init_vertex = $base.getVertex(%firefox)
$firefox_lineage = $base.getLineage($init_vertex, 2, ‘ancestors’)

Figure 3. 

%firefox_threads = name LIKE ‘firefox%’
$firefox_skeleton = $base.getVertex(%firefox_threads)
$firefox_process = $base.getSubgraph($firefox_skeleton)
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$paths = $base.getPath($firefox,  

  $compromised_process, 3, $etc_passwd, 

3)

Filling in the missing pieces. Early in 
an investigation, specific agents, activi-
ties, and artifacts may be known to be of 
interest, but not all elements (including 
the relationships between them) may be 
known. In such cases, the analyst can de-
fine a set of interesting vertices and then 
ask the system to describe how they are 
related to each other. For example, a set 
of suspicious network connections and 
files with modified ownership may be 
identified in a specified timeframe. The 
analyst may then wish to know if and 
how any of these elements are related.

In a generalization, the analyst can 
include edges in the set to incorporate 
information about known provenance 
relations of interest. This can be effect-
ed in toto with the getSubgraph func-
tion, which takes as input a skeleton 
graph. The skeleton is a set of vertices 
and edges known to be of interest a 
priori. The function returns the prove-
nance subgraph that spans all ele-
ments in the skeleton, as well as those 
that lie on paths between vertices and 
edge endpoints in the skeleton.

The example in Figure 3 shows the 
provenance subgraph returned will 
show a vertex for each thread of the sev-
eral dozen that Firefox creates, each 
configuration and cache file that is ac-
cessed, and each socket used for inter-
process communication, as well as the 
provenance relations between them.

Going native. Commodity databases 
provide diverse query surfaces. The set 
of primitives supported depends on 
factors such as the data model em-
ployed and the indexing implemented 
in the underlying engine. Relational da-
tabases such as Postgres and Quickstep 
offer an interface based on SQL (Struc-
tured Query Language). Graph databas-
es, such as Neo4j, use Cypher, a graph-
oriented declarative analog. Since each 
database may support custom queries 
that could be useful to an analyst, a fa-
cility is provided to access them. If a 
query is preceded with the keyword na-
tive, it will be passed unmodified to the 
underlying database. The response will 
be returned as lines of text rather than 
as a graph. This allows arbitrary native 
queries to be invoked.

As an example, consider an operat-

ing system provenance graph in OPM, 
with Artifact vertices refined by sub-
type, including file, link, direc-
tory, block device, character 
device, named pipe, unnamed pipe, 
unix socket, and network socket. 
In a preliminary analysis, the distribu-
tion of these elements may be of inter-
est to identify unusual patterns. In this 
case, counts for each subtype can be 
obtained from Postgres with a user-de-
fined function histogram:

native 'SELECT * FROM 

histogram(vertex, subtype)'

Complex Provenance Analysis
When large data sets are analyzed, the 
process is often iterative. An analyst 
may construct numerous hypotheses, 
checking whether each is valid or not by 
querying the data. As an investigation 
unfolds, maintaining the workflow’s 
efficiency requires that intermediate 
results are represented succinctly to 
avoid I/O bandwidth becoming a bot-
tleneck. In practice, search is often fac-
eted, with the results of one step reused 
in subsequent ones. It may also involve 
backtracking and comparing the ex-
tracted subsets of data. When results 
of potential interest are retrieved, visu-
alization or other external processing 
may allow an analyst to obtain a broad 
understanding of a selected subset. 
The query surface has several features 
that address these concerns. Together, 
they facilitate agile exploration.

Efficient representation. SPADE 
models provenance as a property 
graph. The annotation schema is se-
lected to ensure hashing them will pro-
duce a unique content-based identifi-
er for each vertex and edge. When a 
query is executed, only the identifiers 

implicated in the response are associ-
ated with the graph variable used to 
track a response. Effectively, only a 
skeletal representation that consists of 
an adjacency list for the corresponding 
subgraph is constructed. The enriched 
representation with graph properties 
in the form of key-value annotations is 
not immediately materialized. These 
properties, which describe the domain 
about which provenance was inferred, 
use most of the storage needed to hold 
the complete graph. Their retrieval is 
avoided until a response is explicitly ex-
ported, either to the console or a file 
with the dump command, respectively. 
This allows an analyst to make queries 
that may yield large responses without 
disrupting their interactive workflow 
(as would occur if the complete re-
sponse were to be materialized).

Consider the sequence in Figure 4. 
The graph variables $sources, $desti-
nations, and $paths track only the 
identifiers of the implicated vertices 
and edges. Annotations of elements in 
the graph $paths are retrieved from the 
database only when dump $paths is ex-
plicitly issued, for example.

Response reuse. When the query cli-
ent initiates a session, a local work-
space is created to store the graph re-
sponses received. Each graph is bound 
to a variable name, simplifying its re-
peated use. Such variables can be used 
in one of two ways. First, since a vari-
able represents a graph, it can be treat-
ed as the universe that will be operated 
upon by subsequent queries. Second, 
the variable can instead be passed as 
the argument of a query.

In Figure 5, the last query uses 
$processes instead of $base as the 
provenance universe in which to search 
for all process vertices that have a name 

Figure 4. 

$sources = $base.getVertex(name == ‘firefox’)
$destinations = $base.getVertex(path == ‘/etc/passwd’)
$paths = $base.getPath($sources, $destinations, 3)

Figure 5. 

%type_process = type == ‘Process’
$processes = $base.getVertex(%type_process)
%firefox_threads = name LIKE ‘firefox%’
$firefox_parents = $processes.getVertex(%firefox_threads)
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Figure 8. Provenance relations between processes and artifacts.

name:firefox
unit:1

path:tcexec
permissions:0664

path:tcexec
permissions:0775

path:/etc/passwd

path:/etc/hosts

remote address:
192.168.143.1

remote port:50882

remote address:
192.168.143.1

remote port:50882

name:firefox
unit:0

event id:2
operation:

unit

event id:3
operation:

create

event id:5
operation:load

event id:6
operation:read

event id:7
operation:read

event id:8
operation:send

event id:4
operation: chmod

mode:+xevent id:4
operation:

chmod

event id:0
operation:

unit

event id:1
operation:

recv

name:firefox
unit:2

name:
tcexec

tor. The result contains a vertex set that 
is the union of vertices in the operand 
graphs. Similarly, the resulting edge set 
is the union of edges in the operands. 
Alternatively, the intersection of two 
graphs can be calculated with the & op-
erator. The resulting graph will contain 
only vertices and edges that were pres-
ent in both the operand graphs. Finally, 
elements in a graph can be removed 
based on the specification of a second 
graph. This is effected with the differ-
ence operator.

Consider a situation where an ana-
lyst wishes to determine the set of pro-
cesses that changed their identity dur-
ing execution. First, they extract the set 
of all edges that report a change in iden-
tity. Next, they extract the endpoints of 
these edges, representing the processes 
that issued the setuid() call. The sub-
set initially running as root, however, is 
not of interest in this context. Hence, 
such processes are removed by subtract-
ing the corresponding set in the last 
step (see Figure 6).

Graph export. Since the graph that 
results from a query may be large, it is 
not immediately materialized. Instead, 
a graph can be used in three ways. First, 
it can be printed to the console in JSON 
(JavaScript Object Notation) format. 
The output is an array of vertices and 
edges. Each element consists of one or 
two identifiers—depending on whether 
it is a vertex or an edge—and the anno-
tations that describe it.

In Figure 7, an analyst inspects a sub-
set of the contents of a graph. This is 
done by extracting a sample (10 ele-
ments in this instance) using the limit 
function and then printing them with 
the dump command. This motif is in-
strumental during a faceted search, 
where an analyst may iteratively refine 
the queries based on a study of succes-
sive intermediate results.

The second way to use a graph is by 
exporting it to a file or pipe in JSON for-
mat. This allows it to be imported or in-
gested by an external tool. To affect this, 
an export directive is used to specify the 
file-system path immediately before us-
ing dump. For example, the graph vari-
able $firefox _ vertices can be se-
rialized to file /tmp/firefox.json 
with:

export > /tmp/firefox.json

dump $firefox _ vertices

that starts with firefox.
As a session progresses, the set of 

currently defined variables can be 
identified with the command list 
graph. The stat command can be 
used to get statistics about a particular 
graph. For example, stat $paths re-
ports the number of vertices and edges in 
the graph named $paths. The reuse of 
variable names is supported by destroy-
ing a binding with erase <variable name>. 
This eliminates the skeletal representa-
tion associated with the variable.

Set manipulation. Initial inspection 
of the provenance may leave an analyst 
with a collection of large subgraphs that 
require further refinement. For exam-

ple, knowledge about the activity do-
main can be leveraged to identify sub-
sets of the graph that are of particular 
interest, as described earlier. More spe-
cifically, queries framed over the do-
main-specific annotations can lift col-
lections of vertices and edges from the 
underlying database into the workspace; 
these seed sets may the n be expanded 
through path and lineage queries.

To facilitate symbolic manipula-
tion of the graphs, a complementary 
suite of operations is provided. They 
realize intuitive mathematical set op-
erations in the setting of graphs. Pairs 
of graphs can be transformed into a 
union of constituents with the + opera-

Figure 6. 

$setuid_operations = $base.getEdge(operation == ‘setuid’)
$chameleons = $setuid_operations.getEdgeDestination()
$privilege_escalated = $chameleons - $chameleons.getVertex(uid != 0)

Figure 7. 

$firefox_vertices = $base.getVertex(name LIKE ‘firefox%’)
$firefox_sample = $firefox_vertices.limit(10)
dump $firefox_sample
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Finally, support is provided for ex-
porting the graph to the widely used 
Graphviz DOT format. This allows it to 
be visualized in several forms, depend-
ing on the layout tool used to render it. 
The mechanics are like the previous 
method, with an export (specifying 
where the DOT data should be sent) 
preceding use of the dump command:

export > /tmp/firefox.dot

dump $firefox _ vertices

Illustrative Use Cases
This section presents use cases from 
two domains that were introduced ear-
lier: an operating system and a block-
chain. Provenance is queried in a post-
event analysis scenario.

Operating systems. Consider a set-
ting where provenance is inferred 
from system calls, as it is with SPADE’s 
Audit Reporter on Linux, OpenBSM 
on macOS, and ProcMon on Win-
dows. The resulting graph captures 
the interactions among users, pro-
cesses, and data artifacts. As a moti-
vating use case, consider the chal-
lenge a system administrator is faced 
with after a compromise. The nature 
and extent of the damage inflicted on 
the target host must be identified. 
This can range from determining a 
malware infection’s source to identi-
fying which data has been exfiltrated 
and which system configurations 
have been modified.

Now consider an example inspired 
by attacks seen in practice, as illustrat-
ed in Figure 8. Understanding the 
steps of an attack is simplified by ana-
lyzing the abstracted provenance rela-
tions between processes and artifacts 
in the system. Assume an application 
(firefox) accepts a malicious request 
via a remote connection. This exploits 
an existing vulnerability in the pro-
gram. It causes the executing process 
to be hijacked, with the adversary 
gaining control of it. Data is written 
to the location of a binary (tcexec). 
The permissions of the modified file 
are updated to ensure it is executable. 
Subsequently, when this binary runs, it 
accesses system files and exfiltrates 
them to a remote host.

In Figure 9, a forensic analyst can 
reconstruct what transpired with a set 
of queries. At the outset, the analyst is 

assumed to know a priori that it was 
the firefox process that was hijacked 
after browsing a malicious website.

Bitcoin is used in dark Web (and 
other) markets.8 Each payment is 
made to a specific address that de-
notes a user. Every successful transac-
tion is recorded in a block that be-
comes part of a public ledger, the 
bitcoin blockchain. SPADE’s Bitcoin 

Reporter can be used to infer the prov-
enance graph that relates individual 
addresses, transactions, and blocks 
together. The next example assumes 
the blockchain has been imported 
into a database supported by Quick-
Grail. This allows forensic analysts to 
track the flow of funds through the bit-
coin ecosystem. For example, they 
may wish to identify all the sources of 

Figure 9. 

1. Determine if a Web browser executed a file that was downloaded  
from a remote network connection. 
(a) Get the vertices that represent a Firefox Web browser.

$firefox = $base.getVertex(“command line” LIKE ‘%firefox%’)

(b) Get the vertices that represent a file that is world readable, writable, and executable.

$executableFiles = $base.getVertex(subtype  
== ‘file’ AND permissions == ‘0777’)

(c) Get the vertices that represent network connections.

$networkConnections = $base.getVertex(subtype  
== ‘network socket’)

(d) Get the paths where (1) a Firefox process reads data from a network connection, and 

(2) the same Firefox process updates permissions of an executable file.

$potentialAttackersEntryPath  
= $base.getPath($executableFiles, $firefox,  
1, $networkConnections, 1)

(e) Get the files that were executable and written by Firefox.

$potentiallyExecutedFiles  
= $potentialAttackersEntryPath &  
$executableFiles

2.  Determine whether any written files were executed by the Web browser. 
(a) Get the vertices that represent processes.

$allProcesses = $base.getVertex(type == ‘Process’)

(b) Get the vertices that represent processes that were started by Firefox.

$firefoxChildren = $base.getPath($allProcesses,  
$firefox, 1).getEdgeSource()

(c) Get the Firefox children that accessed the written files.

$firefoxChildrenAccessedExecutableFile  
= $base.getPath($firefoxChildren,  
    $potentiallyExecutedFiles, 1).getEdgeSource()

3. Determine whether a process accessed sensitive system files and then sent  
information out through a network connection.

(a) Get the vertices that represent system files /etc/passwd, /etc/group, and /etc/hosts.

$systemFiles = $base.getVertex(path  
== ‘/etc/passwd’ OR path == ‘/etc/group’ OR path  
== ‘/etc/hosts’)

(b) Get the paths from network connections that were written to by Firefox children  
that read system files.

$exfiltrationPath = $base. 
getPath($networkConnections,  
$firefoxChildrenAccessedExecutableFile, 1,  
$systemFiles, 1)
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a particular transaction. Alternatively, 
they may want to check if there is a path 
from one bitcoin address to another.

In this example, the analysts start 
with a bitcoin address found on a 
website soliciting donations to support 
illegal activity. Initially, they check 
whether a specific address has sent any 
payment. The search is limited to five 
levels of indirection.

$donation _ address = $base.

getVertex(address

  == '13Pcmh4dKJE8Aqrhq4ZZ-

wmM1sbKFcMQEE')

$payer _ candidate = $base.

getVertex(address

  == 'ZwmbK4ZdKJ3PcQEmh-

8MEAqrhq41FcEM1s')

$paths = $base.getPath($donation _

address,

 $payer _ candidate, 5)

Next, the analysts retrieve all payers 
whose funds reached the donation ad-
dress either through direct payment or 
via an intermediary.

$payers = $base.

getLineage($donation _ address, 2, 

'descendants')

Life Cycle of a Query
Instructions to download, build, and 
run SPADE are available online.3 As-
suming it is running, the query cli-
ent can be used interactively after it 
is started with the command spade 
query executed at the command line of 
a shell. It is also possible to pipe com-
mands to it and responses from it by re-
directing standard input and standard 
output, respectively.

The directive set storage <name> 
can be issued in the client to change the 
current default database. This assumes 
that the corresponding SPADE storage 
has been added previously. At this 
point, a session is created. Any queries 
made now will be sent to the selected 
database. A query session will continue 
until an exit command is issued.
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