
48 COMMUNICATIONS OF THE ACM | DECEMBER 2021 | VOL. 64 | NO. 12

practice

DATA PROVENANCE DESCRIBES the origins of a digital
artifact. It explains the creation of an object, as well
as all the modifications and transformations that
transpired over its lifetime. When the historical
record is detailed, spans long periods, or both, the
information collected can become voluminous.
Analysis of provenance is often used even while it
is continuously being extended through a series of
computations that act upon it. This necessitates
a framework that supports performant streaming
ingestion of new elements with concurrent querying
that yields responses that incorporate data as it
becomes available.

Operating systems and blockchains are two of
many domains where collection and analysis of big
provenance9 has had useful applications. In the case

of operating systems, system-call in-
formation collected by a kernel’s audit
framework can form the basis of trust-
worthy provenance metadata. This fa-
cilitates tracking all activity that occurs
across a machine or even a federated
system. This whole network provenance1
is particularly useful for applications
such as malware detection and ensur-
ing the reproducibility of computation.

Bitcoin is a blockchain-based cryp-
tocurrency where individuals can per-
form transactions with each other.
Each transaction between two or more
users contains payment information
that should be stored in the block-
chain. These records form the basis for
tracking the provenance of any given
digital object in the blockchain. In ad-
dition to its primary purpose of track-
ing currency ownership, the prove-
nance has other applications, such as
detecting anomalous behavior to iden-
tify illegal activity.

Provenance metadata may be stored
in a database to facilitate efficient que-
rying. The process of interrogating the
system must be intuitive and conve-
nient to use since finding the relevant
fragment in big provenance is akin to
the proverbial search for a needle in a
haystack. These goals must be met de-
spite the system’s use in a variety of do-
mains, from profiling complex applica-
tion workflows to performing forensic
and impact analyses after attacks on a
system have been uncovered.

Several interfaces exist for querying
provenance. Many of them are not flexi-
ble in allowing users to select a database
type of their choice. Some interfaces
provide query functionality in a data
model that is different from the graph-
oriented one that is natural for prove-
nance. Other interfaces have intuitive
constructs for finding results but have
limited support for efficiently chaining
responses, as needed for faceted search.
This article presents a user interface for
querying provenance that addresses
these concerns and is agnostic to the
underlying database being used.

First, relevant background on data
provenance is provided, along with

Digging
into Big
Provenance
(with SPADE)

DOI:10.1145/3475358

	� Article development led by
queue.acm.org

A user interface for querying provenance.

BY ASHISH GEHANI, RAZA AHMAD, HASSAAN IRSHAD,
JIANQIAO ZHU, AND JIGNESH PATEL

http://dx.doi.org/10.1145/3475358
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3475358&domain=pdf&date_stamp=2021-11-19

DECEMBER 2021 | VOL. 64 | NO. 12 | COMMUNICATIONS OF THE ACM 49

I
M

A
G

E
 B

Y
 L

.D
E

P
/S

H
U

T
T

E
R

S
T

O
C

K

how it is modeled and how the repre-
sentation is realized in an open source
implementation. Then the design of
the query surface is presented, its core
functionality outlined, illustrative use
cases described, and salient aspects of
the system highlighted.

Modeling Computational History
A common way of reporting data prov-
enance is to model it as a graph struc-
ture, where vertices represent elements
in a historical record, and edges repre-
sent events that relate and order the ele-
ments. A provenance graph G(V,E) then
contains a set of vertices, V, and edges, E.
A member, v, of the set V can be an agent,
process, or artifact that was involved in
an event. Each edge e belonging to set E
represents the operation that occurred
and relates two vertices, vi and vj.

Multiple data models have been de-

veloped to represent data provenance.
Notable variants are the OPM (Open
Provenance Model),11 published in
2010; the W3C PROV specification,13
released in 2013; and the DARPA Trans-
parent Computing program’s CDM
(Common Data Model),10 finalized in
2019. They have some similarity. Each
includes vertices for three categories of
elements: agents or principals; pro-
cesses, activities, or subjects; and arti-
facts, entities, or objects. They differ in
detail based on their intended domain
of use: OPM was designed to be do-
main-agnostic; W3C PROV was created
to aid the publication of semantically
enriched Web content; and CDM is fo-
cused on the specific domain of operat-
ing systems.

The semantics of the activity do-
main being monitored are captured
with a custom schema. By using a

property graph to represent the prov-
enance, these details can be embed-
ded directly. Vertices and edges are
each accompanied by a (possibly
empty) set, A, of domain-describing
annotations, A = a1, a2,…, an. Each an-
notation ai is a key-value pair—that
is, ai = keyi : valuei—that reports an as-
pect of the domain, such as
program:firefox or path:/etc/
passwd. In this manner, a prove-
nance graph captures the relative or-
der of events, as well as the salient as-
pects of the monitored domain.

As an example, consider a vertex
representing an operating system pro-
cess. This vertex could have annota-
tions conveying information such as its
name, identifier, or start time. An edge
could relate the process to a file that
has been read. In the case of bitcoin
provenance,7 a vertex representing a

50 COMMUNICATIONS OF THE ACM | DECEMBER 2021 | VOL. 64 | NO. 12

practice

Figure 1. The SPADE architecture has a kernel at its core.

filter interface

B
itc

oi
n

bl
oc

kc
ha

in
bu

ff
er

Li
nu

x
au

di
t

bu
ff

er

st
or

ag
e

in
te

rf
ac

e

SPADE
kernel

reporter interface

provenance collection thread

query thread

query
socket

SQL database
(Postgres/MySQL)

graph database
(Neo4j)

Graphviz
output

interactive query client

case of bitcoin, the lineage of a pay-
ment reveals details about the partici-
pating users and all the transactions
linked to them.

Another important operation con-
sists of searching for paths between a
pair of elements. Two variants of this
operation often arise in practice. The
first involves finding all the paths be-
tween two vertices, while the second
focuses on finding the shortest path
between them. A path between two ver-
tices demonstrates how different data
elements influence each other through
the events that have transpired in the
system. For example, finding a path be-
tween a Web browser application and a
file downloaded from the Internet
shows the complete set of steps re-
quired by the browser’s user for bring-
ing the file from a remote server to a lo-
cal machine. In the bitcoin context,
paths between two addresses can be
used to find the transactions that link
those two addresses. This, in turn, can
be used to calculate the assets that have
flowed from one user to another, even
when they go through intermediaries.

Provenance System Architecture
The open source SPADE project3 pro-
vides software for inferring, storing,
and querying data provenance. It is
cross-platform and can be used with
diverse sources such as blockchains,
online social networks, and multiple
operating systems, including Linux,
macOS, and Windows. The collection
of provenance is done without requir-
ing any change in the applications or
the target platform. SPADE is easy to
install and configure. It provides a sim-
ple mechanism for users to select from
many storage formats.

The architecture of SPADE is shown
in Figure 1. It is composed of multiple
modules, each playing an independent
role in processing provenance records.
These modules are managed by the
SPADE Kernel at the core. Provenance
graph elements are inferred about activ-
ity domains and sent to the Kernel by
Reporter modules. After being operated
on by any Filters present, the elements
are sent to Storage modules that insert
the elements into databases configured
with a custom schema. The presence of
independent threads for ingestion and
query processing allows clients to make
provenance inquiries while the underly-

transaction would have annotations
such as the hash that identifies it and
the earliest time it is valid. An edge could
relate unspent bitcoin to a payee with an
annotation specifying the amount.

Canonical Provenance Queries
The simplest provenance query con-
sists of searching for vertices that
match a specification, defined by an
expression over the annotations that
describe it. Such queries are useful
to locate vertices that can serve as the
starting point of more complex que-
ries, like the ones described in this arti-
cle. Akin to retrieving vertices are que-
ries for identifying individual edges.
For example, a user may want to learn
about all cases where the permissions
of a particular file were changed. Since
this is an atomic system event, the
user can search for all associated prov-
enance edges. Similarly, once an edge
(or a set of them) has been located, the
user can extract the endpoint vertices.
In the prior example, this would allow

the identification of processes that per-
formed the action.

Among the most frequently needed
functionality when operating on prov-
enance records is support for finding
the lineage of an element. In a lineage
query, the ancestry of a data artifact is
traced back a specified number of
steps. Similar functionality that oper-
ates in the other direction is useful for
identifying descendants. The ances-
tors or descendants of a given data arti-
fact are found by recursively locating
the parent or child vertices in the graph
structure, respectively. The ancestral
lineage of an item provides a picture of
what transpired leading up to the cre-
ation of that item, while the descen-
dant variant describes what was de-
rived from it after its creation. With
operating system provenance, the lin-
eage of a file can explain how, when,
and by whom that file was created. It
can support the enumeration of all the
system processes (and their owners)
that wrote to or read from a file. In the

DECEMBER 2021 | VOL. 64 | NO. 12 | COMMUNICATIONS OF THE ACM 51

practice

ing graph is changing. The various types
of modules are described further later.

A Reporter module acts as the pro-
ducer of provenance metadata. It re-
ceives streams of events from diverse
sources, extracts relevant information
from them, and infers provenance re-
lationships, constructing graph verti-
ces and edges in the process. SPADE
provides a multitude of reporters that
generate provenance about diverse do-
mains, including operating systems,
blockchains, intra-application calls,
and user-defined schema.

A Filter module acts on the prove-
nance stream emitted by a reporter. It
performs a selection operation on the
provenance according to programmed
criteria. For example, some filters al-
low only the vertices and edges that
match a specification to pass through.
Other filters abstract or remove infor-
mation in vertices or edges. The output
of a filter is the processed provenance
information that is meant to be persist-
ed. Several filters can be inserted to op-
erate sequentially on the output of
each preceding one.

A Storage module takes the final
output of the sequence of filters (if any
are present) and stores it in one of the
available databases. The module pro-
vides an abstraction over the underly-
ing persistent store. This subsystem
could be a relational database such as
MySQL or Postgres, a graph database
such as Neo4j, or any data store. The
module provides interfaces for storing
and retrieving data that are agnostic to
the underlying database.

An Analyzer module provides an in-
terface to the user for retrieving prove-
nance records stored in SPADE. It is re-
sponsible for receiving a query,
sending it to the appropriate storage,
processing the information, and shar-
ing the result with the user. The default
implementation receives queries from
the command line.

Design of the Query Surface
The first generation of SPADE and its
precursors introduced support for que-
rying a file’s lineage, specified by its
path and version (as of a given date and
time). It included several optimizations
for transferring provenance metadata
across hosts4 and accelerating crypto-
graphic verification of such records.5
It was not until the second generation6

that a richer query surface was added,
including support for retrieving verti-
ces, edges, paths, and lineage.

To make querying more usable for
navigating big provenance and per-
forming faceted searches, a new sur-
face was developed. Its name, Quick-
Grail, derives from the fact that its
design was inspired by the Grail proj-
ect2 and initially implemented atop the
Quickstep database.12 Subsequently,
SPADE added support for using Quick-
Grail with the Neo4j graph and Postgres
relational databases.

QuickGrail provides an abstraction
over the underlying database so that
users can work with a uniform query
language, regardless of the data model
and serialization below. This allows us-
ers to focus on the provenance analysis
task at hand without concern for how
the queries will be translated into the
native language of the database. In ad-
dition to being efficient, the surface
provides a uniform mechanism for ex-
porting responses for visualization and
other external uses.

The query interface provides a col-
lection of functions to search for prov-
enance records and manipulate the re-
sponses retrieved from the underlying
database. The databases supported are
Neo4j, Postgres, and Quickstep. Each
function in the query surface is imple-
mented in an intermediate representa-
tion that is translated into the query
language of the target database.

The system provides several fea-
tures that facilitate faceted search, al-
lowing the user to home in on informa-
tion of interest to them. One such
feature is the ability to assign a query
response to a graph variable. Such vari-
ables can be operated upon in subse-
quent queries to refine the search. An-
other feature that facilitates efficient
user interaction in the presence of big
provenance is the ability to limit the
size of responses. This allows users to
send queries and quickly receive par-
tial responses, which they can inspect
to refine their search.

Variables. A special variable, $base,
represents the entire provenance graph
stored in the currently selected data-
base. This variable serves as the universe
of provenance for most queries. When a
variable is used to store the response
graph from a query, it will appear on the
left-hand side of an assignment (denot-

SPADE provides
a multitude
of reporters
that generate
provenance
about diverse
domains, including
operating systems,
blockchains,
intra-application
calls, and
user-defined
schema.

52 COMMUNICATIONS OF THE ACM | DECEMBER 2021 | VOL. 64 | NO. 12

practice

affected by a particular element. In
both cases, this is done by starting
with the element, finding its parents
or children, respectively, and then re-
cursing. This is supported with the get-
Lineage function, which is generalized
to operate on a set of seed elements. It
takes three arguments: a set of seed
vertices; the maximum number of levels
to traverse from the seed vertices,
which must be a positive integer; and
the direction of traversal, which can be
ancestors, descendants, or both. The
example in Figure 2 extracts two levels
of the ancestral lineage of vertices with
a firefox annotation:

Connecting the dots. A preliminary
analysis (through a faceted search us-
ing increasingly specific constraints,
for example) may lead to two sets of ver-
tices being identified: One may consist
of the ingress points of network flows
into the system, while the second set
may have indicators of compromise,
such as processes whose privilege was
escalated or files whose ownership
changed in a particular window of time.

Knowing whether a connection ex-
ists between two sets is a key concern.
This can be ascertained with the get-
Path function, which takes three argu-
ments: a set of source vertices; a set of
destination vertices; and the maximum
path length between any source and
destination vertex, which must be a
positive integer. The semantics of prov-
enance imply that a path will be found
only when a destination is in the prove-
nance—that is, it is an ancestor—of a
source. The following example searches
for paths with a length of at most three
edges between a firefox process ver-
tex and the /etc/passwd file vertex:

%source = name == ‘firefox’

$firefox = $base.getVertex(%source)

%destination = path == ‘/etc/passwd’

$etc _ passwd = $base.

getVertex(%destination)

$paths = $base.getPath($firefox,

$etc _ passwd, 3)

If the set of paths discovered is
large, it can be refined by specifying
one or more sets of intermediate verti-
ces. For example, if it is known that a
$compromised_process set lies on
the paths of interest from $firefox
to $etc_passwd, the query can be
made more specific:

ed with =), and its name must start with
$. If a variable is used to define a query
constraint, its name must start with %.
Such variables are a convenience, pro-
viding a succinct way to represent con-
straints that may need to be passed re-
peatedly as arguments to queries.

Constraints. To scope the elements
that match a query, a selection con-
straint can be specified. In its most
basic form, it consists of an annota-
tion key, a relational operator, and a
value. (Recall that annotations were
introduced earlier in this article.) The
supported operators include ==, !=, <,
>, <=, >=, and LIKE. The last of these
facilitates matching a string (with %
used as a wildcard). For example,
name LIKE '/bin/%' will match verti-
ces with an annotation-key name that
has a value starting with /bin/. A con-
straint of uid == '0' can be used to
select vertices of processes that ran as
root (since its uid is 0). To simplify re-
use, constraints can be stored in vari-
ables—for example, %system _
procs = name LIKE '/bin/%'.

To support more complex filtering,
constraint expressions can be built by
combining constituents using the logi-
cal operators AND, OR, and NOT. This
allows the constraint expressions to be
framed over multiple annotations. In
addition, it allows the user to combine
an existing constraint with a new crite-
rion, thereby facilitating faceted
search. For example, consider the con-
straint %proc _ python = name ==
'python' used to find vertices repre-
senting python executions. The querier
may be interested in the subset that
ran as the root user. In this case, the
querier could define another con-
straint %proc _ root = uid == '0'.
The two constraints can then be com-
bined into a single expression

%proc _ python AND %proc _ root
for use in subsequent queries.

Extracting elements. Since prove-
nance graphs consist of vertices and
edges, the most basic functions pro-
vided are getVertex and getEdge.
They can be used with any existing
graph variable to extract a subset of el-
ements, as specified by a constraint.
The output of these functions must be
assigned to a graph variable. Note that
even though these functions result in
sets of vertices or edges, these sets are
treated as graphs. In the following ex-
ample, vertices are extracted from the
special variable $base, which repre-
sents the global graph. They are con-
strained to the subset with an annota-
tion type of Process:

%only _ processes = type == 'Process'

$all _ processes = $base.

getVertex(%only _ processes)

Similarly, every edge is extracted if it
has an annotation of operation with
value fork:

%all _ forks = operation == 'fork'

$fork _ edges = $base.getEdge(%all _

forks)

Using the set of edges just ob-
tained, the next query extracts the
processes that performed the fork op-
erations, as well as those that were
created as a result:

$fork _ vertices = $fork _ edges.

getEdgeEndpoints()

Identifying origins and impacts.
Given an element in a provenance
graph, a central concern is understand-
ing what gave rise to it. Of equal impor-
tance is understanding what has been

Figure 2.

%firefox = name == ‘firefox’
$init_vertex = $base.getVertex(%firefox)
$firefox_lineage = $base.getLineage($init_vertex, 2, ‘ancestors’)

Figure 3.

%firefox_threads = name LIKE ‘firefox%’
$firefox_skeleton = $base.getVertex(%firefox_threads)
$firefox_process = $base.getSubgraph($firefox_skeleton)

DECEMBER 2021 | VOL. 64 | NO. 12 | COMMUNICATIONS OF THE ACM 53

practice

$paths = $base.getPath($firefox,

 $compromised_process, 3, $etc_passwd,

3)

Filling in the missing pieces. Early in
an investigation, specific agents, activi-
ties, and artifacts may be known to be of
interest, but not all elements (including
the relationships between them) may be
known. In such cases, the analyst can de-
fine a set of interesting vertices and then
ask the system to describe how they are
related to each other. For example, a set
of suspicious network connections and
files with modified ownership may be
identified in a specified timeframe. The
analyst may then wish to know if and
how any of these elements are related.

In a generalization, the analyst can
include edges in the set to incorporate
information about known provenance
relations of interest. This can be effect-
ed in toto with the getSubgraph func-
tion, which takes as input a skeleton
graph. The skeleton is a set of vertices
and edges known to be of interest a
priori. The function returns the prove-
nance subgraph that spans all ele-
ments in the skeleton, as well as those
that lie on paths between vertices and
edge endpoints in the skeleton.

The example in Figure 3 shows the
provenance subgraph returned will
show a vertex for each thread of the sev-
eral dozen that Firefox creates, each
configuration and cache file that is ac-
cessed, and each socket used for inter-
process communication, as well as the
provenance relations between them.

Going native. Commodity databases
provide diverse query surfaces. The set
of primitives supported depends on
factors such as the data model em-
ployed and the indexing implemented
in the underlying engine. Relational da-
tabases such as Postgres and Quickstep
offer an interface based on SQL (Struc-
tured Query Language). Graph databas-
es, such as Neo4j, use Cypher, a graph-
oriented declarative analog. Since each
database may support custom queries
that could be useful to an analyst, a fa-
cility is provided to access them. If a
query is preceded with the keyword na-
tive, it will be passed unmodified to the
underlying database. The response will
be returned as lines of text rather than
as a graph. This allows arbitrary native
queries to be invoked.

As an example, consider an operat-

ing system provenance graph in OPM,
with Artifact vertices refined by sub-
type, including file, link, direc-
tory, block device, character
device, named pipe, unnamed pipe,
unix socket, and network socket.
In a preliminary analysis, the distribu-
tion of these elements may be of inter-
est to identify unusual patterns. In this
case, counts for each subtype can be
obtained from Postgres with a user-de-
fined function histogram:

native 'SELECT * FROM

histogram(vertex, subtype)'

Complex Provenance Analysis
When large data sets are analyzed, the
process is often iterative. An analyst
may construct numerous hypotheses,
checking whether each is valid or not by
querying the data. As an investigation
unfolds, maintaining the workflow’s
efficiency requires that intermediate
results are represented succinctly to
avoid I/O bandwidth becoming a bot-
tleneck. In practice, search is often fac-
eted, with the results of one step reused
in subsequent ones. It may also involve
backtracking and comparing the ex-
tracted subsets of data. When results
of potential interest are retrieved, visu-
alization or other external processing
may allow an analyst to obtain a broad
understanding of a selected subset.
The query surface has several features
that address these concerns. Together,
they facilitate agile exploration.

Efficient representation. SPADE
models provenance as a property
graph. The annotation schema is se-
lected to ensure hashing them will pro-
duce a unique content-based identifi-
er for each vertex and edge. When a
query is executed, only the identifiers

implicated in the response are associ-
ated with the graph variable used to
track a response. Effectively, only a
skeletal representation that consists of
an adjacency list for the corresponding
subgraph is constructed. The enriched
representation with graph properties
in the form of key-value annotations is
not immediately materialized. These
properties, which describe the domain
about which provenance was inferred,
use most of the storage needed to hold
the complete graph. Their retrieval is
avoided until a response is explicitly ex-
ported, either to the console or a file
with the dump command, respectively.
This allows an analyst to make queries
that may yield large responses without
disrupting their interactive workflow
(as would occur if the complete re-
sponse were to be materialized).

Consider the sequence in Figure 4.
The graph variables $sources, $desti-
nations, and $paths track only the
identifiers of the implicated vertices
and edges. Annotations of elements in
the graph $paths are retrieved from the
database only when dump $paths is ex-
plicitly issued, for example.

Response reuse. When the query cli-
ent initiates a session, a local work-
space is created to store the graph re-
sponses received. Each graph is bound
to a variable name, simplifying its re-
peated use. Such variables can be used
in one of two ways. First, since a vari-
able represents a graph, it can be treat-
ed as the universe that will be operated
upon by subsequent queries. Second,
the variable can instead be passed as
the argument of a query.

In Figure 5, the last query uses
$processes instead of $base as the
provenance universe in which to search
for all process vertices that have a name

Figure 4.

$sources = $base.getVertex(name == ‘firefox’)
$destinations = $base.getVertex(path == ‘/etc/passwd’)
$paths = $base.getPath($sources, $destinations, 3)

Figure 5.

%type_process = type == ‘Process’
$processes = $base.getVertex(%type_process)
%firefox_threads = name LIKE ‘firefox%’
$firefox_parents = $processes.getVertex(%firefox_threads)

54 COMMUNICATIONS OF THE ACM | DECEMBER 2021 | VOL. 64 | NO. 12

practice

Figure 8. Provenance relations between processes and artifacts.

name:firefox
unit:1

path:tcexec
permissions:0664

path:tcexec
permissions:0775

path:/etc/passwd

path:/etc/hosts

remote address:
192.168.143.1

remote port:50882

remote address:
192.168.143.1

remote port:50882

name:firefox
unit:0

event id:2
operation:

unit

event id:3
operation:

create

event id:5
operation:load

event id:6
operation:read

event id:7
operation:read

event id:8
operation:send

event id:4
operation: chmod

mode:+xevent id:4
operation:

chmod

event id:0
operation:

unit

event id:1
operation:

recv

name:firefox
unit:2

name:
tcexec

tor. The result contains a vertex set that
is the union of vertices in the operand
graphs. Similarly, the resulting edge set
is the union of edges in the operands.
Alternatively, the intersection of two
graphs can be calculated with the & op-
erator. The resulting graph will contain
only vertices and edges that were pres-
ent in both the operand graphs. Finally,
elements in a graph can be removed
based on the specification of a second
graph. This is effected with the differ-
ence operator.

Consider a situation where an ana-
lyst wishes to determine the set of pro-
cesses that changed their identity dur-
ing execution. First, they extract the set
of all edges that report a change in iden-
tity. Next, they extract the endpoints of
these edges, representing the processes
that issued the setuid() call. The sub-
set initially running as root, however, is
not of interest in this context. Hence,
such processes are removed by subtract-
ing the corresponding set in the last
step (see Figure 6).

Graph export. Since the graph that
results from a query may be large, it is
not immediately materialized. Instead,
a graph can be used in three ways. First,
it can be printed to the console in JSON
(JavaScript Object Notation) format.
The output is an array of vertices and
edges. Each element consists of one or
two identifiers—depending on whether
it is a vertex or an edge—and the anno-
tations that describe it.

In Figure 7, an analyst inspects a sub-
set of the contents of a graph. This is
done by extracting a sample (10 ele-
ments in this instance) using the limit
function and then printing them with
the dump command. This motif is in-
strumental during a faceted search,
where an analyst may iteratively refine
the queries based on a study of succes-
sive intermediate results.

The second way to use a graph is by
exporting it to a file or pipe in JSON for-
mat. This allows it to be imported or in-
gested by an external tool. To affect this,
an export directive is used to specify the
file-system path immediately before us-
ing dump. For example, the graph vari-
able $firefox _ vertices can be se-
rialized to file /tmp/firefox.json
with:

export > /tmp/firefox.json

dump $firefox _ vertices

that starts with firefox.
As a session progresses, the set of

currently defined variables can be
identified with the command list
graph. The stat command can be
used to get statistics about a particular
graph. For example, stat $paths re-
ports the number of vertices and edges in
the graph named $paths. The reuse of
variable names is supported by destroy-
ing a binding with erase <variable name>.
This eliminates the skeletal representa-
tion associated with the variable.

Set manipulation. Initial inspection
of the provenance may leave an analyst
with a collection of large subgraphs that
require further refinement. For exam-

ple, knowledge about the activity do-
main can be leveraged to identify sub-
sets of the graph that are of particular
interest, as described earlier. More spe-
cifically, queries framed over the do-
main-specific annotations can lift col-
lections of vertices and edges from the
underlying database into the workspace;
these seed sets may the n be expanded
through path and lineage queries.

To facilitate symbolic manipula-
tion of the graphs, a complementary
suite of operations is provided. They
realize intuitive mathematical set op-
erations in the setting of graphs. Pairs
of graphs can be transformed into a
union of constituents with the + opera-

Figure 6.

$setuid_operations = $base.getEdge(operation == ‘setuid’)
$chameleons = $setuid_operations.getEdgeDestination()
$privilege_escalated = $chameleons - $chameleons.getVertex(uid != 0)

Figure 7.

$firefox_vertices = $base.getVertex(name LIKE ‘firefox%’)
$firefox_sample = $firefox_vertices.limit(10)
dump $firefox_sample

DECEMBER 2021 | VOL. 64 | NO. 12 | COMMUNICATIONS OF THE ACM 55

practice

Finally, support is provided for ex-
porting the graph to the widely used
Graphviz DOT format. This allows it to
be visualized in several forms, depend-
ing on the layout tool used to render it.
The mechanics are like the previous
method, with an export (specifying
where the DOT data should be sent)
preceding use of the dump command:

export > /tmp/firefox.dot

dump $firefox _ vertices

Illustrative Use Cases
This section presents use cases from
two domains that were introduced ear-
lier: an operating system and a block-
chain. Provenance is queried in a post-
event analysis scenario.

Operating systems. Consider a set-
ting where provenance is inferred
from system calls, as it is with SPADE’s
Audit Reporter on Linux, OpenBSM
on macOS, and ProcMon on Win-
dows. The resulting graph captures
the interactions among users, pro-
cesses, and data artifacts. As a moti-
vating use case, consider the chal-
lenge a system administrator is faced
with after a compromise. The nature
and extent of the damage inflicted on
the target host must be identified.
This can range from determining a
malware infection’s source to identi-
fying which data has been exfiltrated
and which system configurations
have been modified.

Now consider an example inspired
by attacks seen in practice, as illustrat-
ed in Figure 8. Understanding the
steps of an attack is simplified by ana-
lyzing the abstracted provenance rela-
tions between processes and artifacts
in the system. Assume an application
(firefox) accepts a malicious request
via a remote connection. This exploits
an existing vulnerability in the pro-
gram. It causes the executing process
to be hijacked, with the adversary
gaining control of it. Data is written
to the location of a binary (tcexec).
The permissions of the modified file
are updated to ensure it is executable.
Subsequently, when this binary runs, it
accesses system files and exfiltrates
them to a remote host.

In Figure 9, a forensic analyst can
reconstruct what transpired with a set
of queries. At the outset, the analyst is

assumed to know a priori that it was
the firefox process that was hijacked
after browsing a malicious website.

Bitcoin is used in dark Web (and
other) markets.8 Each payment is
made to a specific address that de-
notes a user. Every successful transac-
tion is recorded in a block that be-
comes part of a public ledger, the
bitcoin blockchain. SPADE’s Bitcoin

Reporter can be used to infer the prov-
enance graph that relates individual
addresses, transactions, and blocks
together. The next example assumes
the blockchain has been imported
into a database supported by Quick-
Grail. This allows forensic analysts to
track the flow of funds through the bit-
coin ecosystem. For example, they
may wish to identify all the sources of

Figure 9.

1.	 Determine if a Web browser executed a file that was downloaded
from a remote network connection.
(a) Get the vertices that represent a Firefox Web browser.

$firefox = $base.getVertex(“command line” LIKE ‘%firefox%’)

(b) Get the vertices that represent a file that is world readable, writable, and executable.

$executableFiles = $base.getVertex(subtype
== ‘file’ AND permissions == ‘0777’)

(c) Get the vertices that represent network connections.

$networkConnections = $base.getVertex(subtype
== ‘network socket’)

(d) Get the paths where (1) a Firefox process reads data from a network connection, and

(2) the same Firefox process updates permissions of an executable file.

$potentialAttackersEntryPath
= $base.getPath($executableFiles, $firefox,
1, $networkConnections, 1)

(e) Get the files that were executable and written by Firefox.

$potentiallyExecutedFiles
= $potentialAttackersEntryPath &
$executableFiles

2.	� Determine whether any written files were executed by the Web browser.
(a) Get the vertices that represent processes.

$allProcesses = $base.getVertex(type == ‘Process’)

(b) Get the vertices that represent processes that were started by Firefox.

$firefoxChildren = $base.getPath($allProcesses,
$firefox, 1).getEdgeSource()

(c) Get the Firefox children that accessed the written files.

$firefoxChildrenAccessedExecutableFile
= $base.getPath($firefoxChildren,
 $potentiallyExecutedFiles, 1).getEdgeSource()

3.	 Determine whether a process accessed sensitive system files and then sent
information out through a network connection.

(a)	Get the vertices that represent system files /etc/passwd, /etc/group, and /etc/hosts.

$systemFiles = $base.getVertex(path
== ‘/etc/passwd’ OR path == ‘/etc/group’ OR path
== ‘/etc/hosts’)

(b)	 Get the paths from network connections that were written to by Firefox children
that read system files.

$exfiltrationPath = $base.
getPath($networkConnections,
$firefoxChildrenAccessedExecutableFile, 1,
$systemFiles, 1)

56 COMMUNICATIONS OF THE ACM | DECEMBER 2021 | VOL. 64 | NO. 12

practice

do not necessarily reflect the views of
the National Science Foundation.	

References
1.	 Ahmad, R., Jung, E., de Senne Garcia, C., Irshad, H.,

Gehani, A. Discrepancy detection in whole network
provenance. In Proceedings of the 12th USENIX
Workshop on the Theory and Practice of Provenance;
https://www.usenix.org/conference/tapp2020/
presentation/ahmad.

2.	 Fan, J., Gerald, A., Raj, S., Patel, J. The case against
specialized graph analytics engines. In Proceedings
of the 7th Biennial Conf. on Innovative Data Systems,
2015; http://cidrdb.org/cidr2015/Papers/CIDR15_
Paper20.pdf.

3.	 Gehani, A. SPADE; http://spade.csl.sri.com.
4.	 Gehani, A., Kim, M., Zhang, J. Steps toward managing

lineage metadata in grid clusters. In Proceedings
of the 1st Usenix Workshop on Theory and Practice
of Provenance, 2009, 1–9; https://dl.acm.org/
doi/10.5555/1525932.1525939.

5.	 Gehani, A., Kim, M. Mendel: Efficiently verifying the
lineage of data modified in multiple trust domains,
Proceedings of the 19th ACM Intern. Symp. High
Performance Distributed Computing 2010; https://
dl.acm.org/doi/abs/10.1145/1851476.1851503 227-
239.

6.	 Gehani, A., Tariq, D. SPADE: Support for
provenance auditing in distributed environments.
In Proceedings of the 13th ACM/IFIP/Usenix
Middleware Conf.; 2012; https://dl.acm.org/doi/
pdf/10.5555/2442626.2442634.

7.	 Gehani, A., Kazmi, H., Irshad, H. Scaling SPADE to
“Big Provenance.” In Proceedings of the 8th Usenix
Workshop on Theory and Practice of Provenance,
2016, 26–33; https://www.usenix.org/conference/
tapp16/workshop-program/presentation/gehani.

8.	 Ghosh, S., Das, A., Porras, P., Yegneswaran, V., Gehani,
A. Automated categorization of onion sites for
analyzing the dark web ecosystem. In Proceedings of
the 23rd ACM Intern. Conf. Knowledge Discovery and
Data Mining, 2017, 1793–1802; https://dl.acm.org/
doi/10.1145/3097983.3098193.

9.	 Glavic, B. Big data provenance: challenges and
implications for benchmarking. Revised Selected
Papers of the 1st Workshop on Specifying Big Data
Benchmarks 8163, 2012, 72–80; https://dl.acm.org/
doi/10.1007/978-3-642-53974-9_7.

10.	 Khoury, J., Upthegrove, T., Caro, A., Benyo, B.,
Kong, D. An event-based data model for granular
information flow tracking. Proceedings of the
12th Usenix Workshop on the Theory and Practice
of Provenance, 2020; https://www.usenix.org/
biblio-4496.

11.	 Moreau, L. et al. The Open Provenance Model core
specification. Future Generation Computer Systems
27, 6 (2011); https://dl.acm.org/doi/10.1016/j.
future.2010.07.005.

12.	 Patel, J., Deshmukh, H., Zhu, J., Potti, N., Zhang,
Z., Spehlmann, M., Memisoglu, H., Saurabh, S.
Quickstep: A data platform based on the scaling-up
approach. In Proceedings of the VLDB Endowment
11, 6 (2018), 663–676; https://dl.acm.org/
doi/10.14778/3184470.3184471.

13.	 W3C Working Group. PROV-overview, 2013; https://
www.w3.org/TR/prov-overview/.

Ashish Gehani is a principal computer scientist at SRI in
Menlo Park, CA, USA.

Raza Ahmad is a research engineer at DePaul University.
Chicago, IL,USA. He developed SPADE’s QuickGrail back
ends for Neo4j and Postgres.

Hassaan Irshad is a software engineer in the CS
laboratory at SRI, Menlo Park, CA, USA. He maintains
the SPADE framework.

Jianqiao Zhu is a software engineer at Google. He is a
technical lead on the kernel execution team of the F1
Query engine. He developed SPADE’s QuickGrail and its
back end for Quickstep.

Jignesh Patel is a CS professor at the University of
Wisconsin, Madison, WI, USA, and co-leads the Center
for Creative Destruction Labs.

Copyright held by authors/owners.
Publication rights licensed to ACM.

a particular transaction. Alternatively,
they may want to check if there is a path
from one bitcoin address to another.

In this example, the analysts start
with a bitcoin address found on a
website soliciting donations to support
illegal activity. Initially, they check
whether a specific address has sent any
payment. The search is limited to five
levels of indirection.

$donation _ address = $base.

getVertex(address

	� == '13Pcmh4dKJE8Aqrhq4ZZ-

wmM1sbKFcMQEE')

$payer _ candidate = $base.

getVertex(address

	� == 'ZwmbK4ZdKJ3PcQEmh-

8MEAqrhq41FcEM1s')

$paths = $base.getPath($donation _

address,

	 $payer _ candidate, 5)

Next, the analysts retrieve all payers
whose funds reached the donation ad-
dress either through direct payment or
via an intermediary.

$payers = $base.

getLineage($donation _ address, 2,

'descendants')

Life Cycle of a Query
Instructions to download, build, and
run SPADE are available online.3 As-
suming it is running, the query cli-
ent can be used interactively after it
is started with the command spade
query executed at the command line of
a shell. It is also possible to pipe com-
mands to it and responses from it by re-
directing standard input and standard
output, respectively.

The directive set storage <name>
can be issued in the client to change the
current default database. This assumes
that the corresponding SPADE storage
has been added previously. At this
point, a session is created. Any queries
made now will be sent to the selected
database. A query session will continue
until an exit command is issued.

Acknowledgments
This material is based on work sup-
ported by the National Science Foun-
dation under Grant ACI-1547467. Any
opinions, findings, and conclusions
or recommendations expressed in this
material are those of the authors and

Initial inspection
of the provenance
may leave
an analyst with
a collection
of large subgraphs
that require
further refinement.

