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Abstract—The popularity of blockchain-based currencies, such
as Bitcoin and Ethereum, has grown among enthusiasts since
2009. Relying on the anonymity provided by the blockchain,
hustlers have adapted offline scams to this new ecosystem. As
a result, Ponzi schemes are proliferating on Ethereum, dressed
up as secure investment schemes. They reward early investors
with funds from the later ones before collapsing, leaving the
last investors empty handed. Illegal in the offline world, they
are creating thousands of victims on Ethereum, while stealing
millions of dollars worth of ether. We use data mining to provide
a detection model for Ponzi schemes on Ethereum, improving
over prior work. We built a dataset of likely benign Ethereum
smart contracts, in addition to known Ponzi scheme smart
contracts, and designed features based on their compiled code
and transactions. Using Weka to benchmark several classification
algorithms, we obtained models that achieve both high precision
and high recall. Our 0-day model can be used as soon as a
smart contract is uploaded on the blockchain. The full-feature
model continued to show high performance for almost 250
days. A detailed analysis on top-strength features provides novel
perspectives on Ponzi scheme behavior.

Index Terms—Blockchain, Smart Contract, Ponzi Schemes,
Ethereum

I. INTRODUCTION

In 2009, Satoshi Nakamoto came up with a protocol en-
abling value transfer among non-trusting individuals: the Bit-
coin [1]. A peer-to-peer network enabling financial exchanges
between users, based on economic incentives rather than
trusted authorities. It operates on the blockchain: a public
ledger keeping track of all the transactions in an immutable
way using novel ideas such as Nakamoto consensus using
proof of work. While all transactions are recorded on the
blockchain and retrievable by any participant, Bitcoin still
ensures the anonymity of its users who identify themselves
solely with public keys, signing transactions with associated
private keys.

Benefiting from the anonymity, criminals quickly took ad-
vantage of its popularity to rip off other users by creating mul-
tiple scams. An empirical analysis of Bitcoin-based scams in
2015 showed that at least $11 million was stolen from 13,000
victims [2]. Unlike scams before Bitcoin, cryptocurrencies
are not yet subject to any government regulations, making it
difficult to seek recompense for damages caused by fraud. Due
to the immutability of the blockchain and the anonymity of
users, it is nearly impossible to revert a fraudulent transaction.
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Most scams are inspired by offline precedents such as
Ponzi schemes: a 150-year-old deceit emulating an investment
program with high returns, of which one can cash out only
if there are enough new users to pay its profit with their
investment. As a result, early investors cash in on the backs of
the most recent ones, who end up empty-handed. These scams
damage the reputation of the whole cryptocurrency ecosystem,
including Ethereum. While Bitcoin also has a simple scripting
language, Ethereum’s Solidity language and the Ethereum
Virtual Machine (EVM) provided Turing-completeness for the
first time on blockchains. Now users can write smart contracts:
pieces of code stored on the blockchain that implement
applications capitalizing on distributed consensus as well as
anonymity, such as escrow services. The combination of the
blockchain’s immutability and smart contracts opens a new
chapter of applications. Now users do not have to place trust
in institutions or authorities to behave correctly, but trust the
code that is publicly viewable and potentially auditable. A
number of projects were released as smart contract auditors
and verifiers, such as QuantStamp [3] and CertiK [4]. In
fact, “The code is the law” was the motto of the Distributed
Autonomous Organization (DAO) [5]. Ethereum’s smart con-
tracts opened another level of potential use of blockchain
and cryptocurrencies, but unfortunately they also attracted ill-
intentioned users.

Ponzi schemes are profitable on Ethereum thanks to the
blockchain’s popularity. An empirical analysis in 2015 [2]
showed that fraudulent transactions already represents 60% of
the transaction volume in USD and may increase even more.
Successful Ponzis impact few users who make high contribu-
tions, creating particularly unfortunate victims. Smart Ponzi,
the Ponzi scheme smart contract, preys upon the transparency
provided by the blockchain as a show of faith to draw in
inexperienced customers who cannot identify the the deceit
and flaws in the implementation.

Prior work [6], [7], [8] showed that data mining-based Ponzi
scheme detection is feasible. There are two types of features:
0-day features and behavior-based features. 0-day features are
available as soon as the smart contract is uploaded to the
blockchain, such as the bytecode and the size of the smart
contract. Behavior-based features are based on the “behavior”
of the contract, such as paying the early investors from the pay-
ments later investors make. We used a set of smart contracts



with verified source code and present new features. We also
used them to build new behavior-based, 0-day and combined
classification models with improved performances. Our 0-day
model shows 0.98 precision and 0.89 recall, compared to 0.90
and 0.80, respectively, by Chen et al. [8]. Our full-feature
model shows 1.00 precision and 0.90 recall, compared to 0.94
and 0.81, respectively, in prior work [8]. While these results
are strong, active attackers may get hold of the model and
its features, and manipulate their smart contracts to evade
the detection by the classifiers. We considered a model with
selective features that are less controllable and predictable by
active attackers and showed results of 0.97 precision and 0.78
recall.

The rest of the paper is organized as follows. Section II
summarizes prior work using classification to detect Ponzi
scheme smart contracts on Ethereum. Section III provides a
brief explanation of the Ethereum platform including smart
contracts. Section IV describes how the data sets are collected,
how the features are defined, and the classification models are
trained. Section VI briefly discusses directions for future work
and summarizes the paper.

II. RELATED WORK

Financial scams in cryptocurrencies are different from finan-
cial scams outside blockchain platforms in the sense that most
transactions relevant to the scams are publicly viewable, with
some exceptions such as Zcash [9] and Monero [10]. Kamps
and Kleinberg took advantage of this public transaction data
in detecting a classic financial fraud, pump and dump price
manipulation in cryptocurrencies and showed posthumous
detection is possible [11].

Nikolic et al. surveyed smart contracts in Ethereum with
vulnerabilities inspired by Parity hack [12]. In particular, they
found 1,423 suicidal contracts out of 34,200 they collected.
We found that some Ponzi scheme smart contracts from the
public dataset [13] were suicidal. Nikolic et al. conjectured that
the smart contracts with the suicide codes are likely to have
vulnerabilities. They also found that out of 1,495 contracts
classified as suicidal, there were only 403 distinct contracts,
which suggests that the contracts with vulnerabilities are often
reused.

Bian et al. analyzed the smart contracts written for Initial
Coin Offerings (ICOs) and related information such as white
papers to give scores to ICO offers [14]. Our approach only
uses the information in the Ethereum blockchain and considers
all Ponzi schemes, not just fraudulent ICOs.

Vasek and Moore studied 1,780 Bitcoin-based Ponzi
schemes from http://bitcointalks.org and showed
the social interaction between scammers and victims affect the
lifetime of the scams [15].

In [6], Bartoletti et al. analyzed Ponzi scheme smart
contracts’ behavior on Ethereum, using similarities between
contracts bytecode to locate 191 of them. In total, the con-
tracts collected almost half a million USD from more than
2000 distinct users. [6] highlights characteristics of Ponzi
schemes behavior such as a high Gini coefficient, a measure

of inequality in the distribution of money made by contracts
to investors.

The approach in [7] reuses this characteristics to apply data
mining techniques to Ponzi schemes implemented on Bitcoin.
Their best classifier manages to detect 31 Ponzi schemes out
of 32 with 1% of false positives. It detects Ponzi schemes
using features computed over a contract’s lifetime, narrowing
the range of countermeasures that can be implemented against
such schemes because tokens can not be refunded nor flagged
as stolen. Rahouti et al. [16] surveyed machine learning and
data mining-based approaches in anomaly detection in Bitcoin,
including [7].

Nevertheless, its approach has inspired [8] which describes
a similar approach using Account features but also added
Opcode features based on the contract’s code stored on the
blockchain. They built three classification models, Account,
Opcode, and Account+Opcode using XGBoost, and the best
performance comes from Account+Opcode model, precision
at 94% and recall at 81%.

While Chen et al.’s [8] approach is the most similar to ours,
we took three different steps in building our classification
models. First, we only used smart contracts with verified
source codes on Etherscan [17] that has at least 10 incoming or
outgoing transactions as our non-Ponzi data set. The creators
of these contracts submit the source code to Etherscan and
Etherscan confirms that the source code compiles to the same
code as what is uploaded to the blockchain. Many Ethereum
users see this as an indicator that it is safe to use these
contracts. Etherscan started this service in March 2016, so our
non-Ponzi data set only contains contracts posted on Ethereum
blockchain after March 2016. This resulted in a smaller non-
Ponzi data set than what was used in [8], but this way it is
less likely to have wrongly-labeled data in our training data
set. Second, we added more Account features, which we call
behavior-based features. Third, we used different classification
models and achieved better performance. The details of these
features and classification models are in Section IV.

III. ETHEREUM PLATFORM

This section elaborates on Ethereum smart contracts and
how Ponzi schemes exploit their characteristics. To enable
the implementation of blockchain applications, Ethereum [18]
integrates an Ethereum Virtual Machine (EVM), a run-time
environment for EVM bytecode, to its platform. Thus, creating
an Ethereum application boils down to writing its source code
in a high-level language such as Solidity!, compiling it into
EVM bytecode and eventually uploading it on the Ethereum
blockchain. Once the contract has been uploaded, it is active:
it can fired and receive transactions but most importantly, its
bytecode is immutable.

Ponzi smart contracts capitalize on this immutability to at-
tract users, claiming that because the contract will run forever
without being interfered with, investors are assured to make
a profit. Yet, they fail to mention that smart contract creators

Thttp://solidity.readthedocs.io/en/develop/



may modify its parameters such as the fee required for each
investment or that, as explained in [6], smart contracts are not
proven to be without flaws. In other words, the immutability
of the blockchain only ensure that the code execution is
automatically enforced.

Ethereum has two types of accounts: contract and externally
owned. Each account has a unique 20-bytes address pointing
at four fields used to guarantee the uniqueness of each of its
state:

o the nonce: incremented at each transaction to ensure it is
processed only once;

o the account balance: current amount of ether of the
account;

« the contract bytecode: immutable because it is stored on
the blockchain;

« the account storage.

An externally owned account is controlled by a private
key (accordingly by its owner) as opposed to contract ac-
counts controlled by their contract code. Each time a contract
account receives a transaction, it activates itself using the
payload as input: reading and writing to internal storage,
sending transactions or creating contracts in turn. For instance,
when a Ponzi smart contract receives a transaction containing
a sufficient amount of Ether, Ethereum’s cryptocurrency, it
triggers payment transactions to previous participants. In this
context, the transaction received by the smart Ponzi is called a
normal transaction as opposed to the one it fires called internal
transactions. We use features from both transactions in smart
contract classification.

To broadcast transactions to the whole network, they are
packaged into blocks which are executed and verified by
miners. Ethereum miners solve a hash puzzle to create the
next block and earn the block reward. They are encouraged to
include transactions in the block they create as they can collect
transaction fees from included transactions. For transactions
that need computation, i.e. transactions that invoke smart
contracts, fees are proportional to the amount of computation
required for the execution of the transaction. This computation
fee is calculated as the multiplication of gas limit and gas
price. The higher the price, the more eager miners will
be to execute the transaction. If there is not enough gas,
the execution fails, it runs out of gas: all side effects are
reversed but the fee is lost. After the execution, transactions are
validated block by block using a consensus protocol similar to
Bitcoin, ensuring the safety of the system unless an attacker
manages to own more than 51% of the computing power of
the whole network.

IV. CLASSIFICATION MODEL
A. Data collection

First of all, we need a training dataset of both Ponzi and
non-Ponzi smart contracts in Ethereum. For fraud detection
projects, the data collection is often the most laborious step,
requiring strenuous manual verification and research to dis-
tinguish fraud and non-fraud instances. Thanks to [6], an

open-source dataset containing 184 Ponzi scheme addresses is
available at [13].> We were only able to retrieve the bytecode
of 172 of them, as 8 of them executed self-destruct code. Each
address has been manually inspected to confirm whether it is a
Ponzi scheme by both [6], [8], thus we consider these contracts
as ground truth. The oldest Ponzi smart contract was posted in
Ethereum blockchain on August 7th, 2015 and the latest one
was posted on August 27th, 2017.

We used a web scrapper to collect 3,203 addresses of smart
contracts with source codes verified by Etherscan, involved in
at least 10 transactions, while trying to match the time frame of
Ponzi scheme. When a developer creates a new smart contract
on Ethereum, she has an option of submitting the source
code to Etherscan. Then Etherscan verifies the source code to
prove the code has deterministic and verifiable builds. Many
Ethereum users take this verification as a vote of confidence
on the smart contract code. Since Etherscan started to provide
this service in March 2016, the oldest non-Ponzi smart contract
with verified source code was posted on February 11th, 2016.
The latest non-Ponzi smart contract we used was posted on
June 7th, 2018, based on the date of the last transaction from
the Ponzi smart contracts.

We also ruled out the smart contracts with fewer than 10
transactions so that we will capture the behavior of non-Ponzi
smart contracts that have substantial interactions with other
accounts. However, it does not prevent the code from having
flaws. We were not able to manually confirm all 3,203 smart
contracts but performed a spot check and did not encounter
any smart contract that was a Ponzi scheme.

We also collected all the transactions interacted with these
contract addresses using Etherscan APIs. These transactions
contain information such as which account paid how much
Ether to the smart contract in question when. This information
is later used to monitor the behavior of smart contract and
turn them into features for classification. Then through Web3
python interface 3, the EVM bytecode was recovered from the
blockchain.

B. Classification models

In order to come up with a classification model as effec-
tive as possible, several well-known classification algorithms
competed representing different learning strategies:

e J48: a decision tree which enables visualization of the
decision process exhibiting which features are used and
how;

« Random Forest (RF): a decision forest, it aggregates
the prediction of individual trees. It has proven to be an
excellent classifier for other fraud detection [19];

o Stochastic Gradient Descent (SGD): iterative method
for optimizing a differentiable objective function.

Since we aim to detect Ponzi schemes, models will be
evaluated using three metrics below:

2The original data set used in [6] contained 152 Ponzi contracts, and the
authors added more to the dataset in January 2019.
3github repository: https://github.com/ethereum/web3.py



o precision: the ratio of actual Ponzi instances to those
classified as Ponzi.
TruePositive

Tecision =
P TruePositive + FalsePositive

« recall: the ratio of correctly classified Ponzi instances to
all Ponzi smart contracts.
TruePositive

Il =
reca TruePositive + FalseNegative

o F-score
Precision x Recall

F— =2x
seore Precision + Recall

Note that we focus on the precision and recall of Ponzi
instances. The training dataset is highly unbalanced with 3,203
non-Ponzi instances and only 172 Ponzi instances. As a result,
the ZeroR algorithm, which simply classifies every instance
as non-Ponzi, correctly classifies 94.9% of the all instances.
However the precision of ZeroR algorithm would be impossi-
ble to compute (divided by 0) and its recall would be 0. Since
our goal is to protect Ethereum users from Ponzi schemes, we
optimize for precision and recall of Ponzi instances.

C. Features and their robustness

Feature selection is a crucial upstream work to have an
efficient classification model. The following approach is moti-
vated by previous works [6], [8], [20], [21] which shed light
on two types of features. Both [6], [8] granted a significant
share of their work to the contracts’ bytecode to create
features or to find similar contracts, while [8], [7], [20],
[21] characterized contracts by their interactions with their
environment. We call the former as code features and the latter
behavior-based features. Since the code features are available
as soon as the contracts are uploaded to the blockchain, we
use code features to build our 0-day classification model that
is usable as early as day 0, when the contract is uploaded.

1) Code (0-day) features: Using evmdis*, an open source
disassembler, each contract bytecode has been turned into its
equivalent in opcodes. Opcode is the abbreviation of operation
code in Ethereum Virtual Machine. Figure 1 is a portion of
disassembled bytecode from a smart Ponzi.

Then, the frequency of each opcode in the contract code
is computed and stored in the database. We merged the
frequencies of some opcodes in the same category into one,
such as DUP1 and DUP2 into one DUP12 feature. The size of
the bytecode of each contract in bytes is stored too to create
the size_info feature.

Top 10 code features Here we explain the top-10 strong
code features in our classification models. The full list of the
EVM opcodes is available at [22].

¢ SSTORE writes a (u)int256 value to storage according to

its key.

e POP pops a (u)int256 off the stack and discards it.

e« MSTORE writes a (u)int256 to memory at its offset.

o« SWAPI swaps the last two values on the stack.

4github repository: https://github.com/Arachnid/evmdis

# Stack: []
Bxd4 MSTORE(@x40, Bx68)
Bl JUMPI(:label®, !CALLDATASIZE())

# Stack: []

Bx13 PUSH({CALLDATALOAD (Bx@) / Ox2 == @xE@)
Bx18 DUP1

Bx1E JUMPI(:labell, POP(@@x13) == Bx72EA4BBC)

ilabel®

# Stack: []

2x28 PUSH(:label2)

Bx23 PUSH{CALLVALUE(})

Bx24 PUSH([@x@)

Bx26 DuP1

Bx27 DUPL

Bx31 DUP4

Bx36 JUMPI{:label6, POP{@0x23) = OxDE@BEB3AT640000)

# Stack:
Bx37
Bx39
Bx3B
Bx3C
B30
Bx3E
Bx3F
Bx48
Bx41
Bx43
D44
Bx45
Bx46
Bx47
Bx4B
BxdE

[@x@ @x@ 8x@ @@x23 :label2
PUSH(@x1)
DUP1
DUP1
PUSH(POP(@x1) + SLOAD(POP(@x1)))
SWAP1
DUP2
SWAP1
SSTORE(POP({@x1), POP(@ax3C))
PUSH(@x3)
DUP1
PUSH(SLOAD(POP(@x3)))
PUSH(CALLER(})
SWAP2
SWAP1
DUPZ

JUMPI(@x2, !(POP(@Px3C) = POP(@8x44)))

Fig. 1: Disassembled bytecode for contract

0x109c4f2ccc82c4d77bdel15£306707320294aca3f

TABLE I: Statistics of Top Code Feature Frequency

Opeode Ponzi non-Ponzi
avg stdev avg stdev
SSTORE 15.25 12.05 | 036 | 3.50
POP 57.35 61.67 | 3.42 | 29.20
MSTORE | 32.50 48.74 | 2.33 | 18.16
SWAPI 95.88 84.86 | 4.24 | 34.76
STOP 1.08 0.70 0.03 | 0.38
DUP9 4.03 3.46 0.10 | 0.95
RETURN 2.92 1.37 0.13 1.02
SWAP2 35.86 35.88 1.65 | 13.63
DUPI2 13539 | 129.22 | 6.64 | 52.47
JUMP 19.45 15.00 1.41 | 1141

o STOP halts execution of the contract

o DUP9 duplicates the 10th value in the stack.

o RETURN returns from this contract call

e SWAP2 swaps the top of the stack with the 3rd last
element

o« DUPI2 DUPI1 clones the last value on the stack and
DUP2 clones the 2nd last value on the stack

o JUMP unconditional jump

Table I shows the average and standard deviation of their
frequencies in Ponzi and non-Ponzi smart contracts.

Our top-10 code features are very different from top-10
important features in [8]: with the exception of MSTORE,
which is ranked at 10th important feature in [8], our top-10 do
not overlap with their top-10 important features. As our non-
Ponzi data set only consists of contracts with verified source
code with minimum 10 transactions from the same timeframe
as Ponzi data set, our non-Ponzi data set is much smaller than
theirs and the Opcode distributions are very different, which



results in different features in top 10.

2) Behavior-based features: Behavior-based features use
the interactions of the smart Ponzi with its users, i.e. trans-
actions. These features capture logical and relevant ideas
reflecting how Ponzi schemes behave.

Previously used features

The literature [8], [7], [20], [21] provides a range of
behavior-based features which characterize Ponzi smart con-
tracts behavior.

o nbr_tx_in (resp. nbr_tx_out): the number of transactions
which transferred ether to (resp. from) the smart contract;

o Tot_in (resp. Tot_out): the total amount of Ether trans-
ferred to (resp. from) the smart contract;

o mean_in (resp. mean_out): the average value of Ether
transferred to (resp. from) the smart contract;

o sdev_in (resp. sdev_out): the standard deviation of Ether
transferred to (resp. from) the smart contract;

Strength and robustness: We found that most of these
features were not very strong, with the exception of the
nbr_tx_in. This observation concurs with the findings
in [8]. We speculate that an experienced Ponzi smart contract
creators use several Ethereum wallet addresses to mask the
number and amount of transactions in and out of the Ponzi
smart contract to camouflage its fraudulent nature.

New behavior-based features

Ponzi schemes are considered as fraud mainly because the
sooner a user invests, the bigger the reward, to the extent that
some investors never see their money back. Early investors
receive huge amount of money while later investors receive
very limited ones. This distribution of money is unequal and
therefore characterized by a high Gini coefficient.

The Gini coefficient, ranging from O to 1, characterizes
inequality among a given distribution: the closer it is to 1
the more unequal the distribution is. For a given distribution
a among n participant, it is computed through the following

formula: " ) .
Gla) = Yot (21; n —‘l)a(z)
ny ., a(i)
Furthermore, Ponzi smart contracts tend to slow down in

the transaction frequency as shown in [6], hence the Gini_time
features.

o avg_time_btw_tx: average amount of time between two
transactions;

« lifetime: time between the first and the last transactions;

o Gini_amt_in (resp. Gini_amt_out): the Gini coefficient
computed over the Ether amount of transactions to (resp.
from) the smart contract;

o overlap_addr: the number of addresses that paid to the
contract and also were paid by it.

o Gini_time_in (resp. Gini_time_out): the Gini coefficient
computed over the time of the transactions paid (resp. was
paid by) the smart contracts;

e num_addr_in (resp. num_addr_out): the number of
addresses (accounts) that paid to (resp. were paid by)
this contract;

TABLE II: Statistics of Top 8 Behavior-based Feature Fre-
quency

Feature Ponzi non-Ponzi
avg stdev avg stdev
size_info (bytes) 3848.47 3619.51 12514.90 7560.74
nbr_tx_in* 107.60 186.42 9594.61 40253.79
lifetime (sec) 23M 3IM 21M 15M
num_addr_in 107.60 186.42 8349.56 38549.43
gini_amt_in 0.53 0.34 0.60 0.43
overlap_addr 6.98 16.39 13.83 220.48
gini_time_out 0.0003 0.0013 0.0002 0.0005
avg_time_btw_tx | 526079.02 | 1612850.48 | 79009.68 | 153799.81

TABLE III: 0-day model performance comparison

Model Precision | Recall | F-score
J48 0.97 0.93 0.95
Random Forest 0.96 0.96 0.96
SGD 0.98 0.94 0.96
[8] 0.90 0.80 0.84

Table II shows the statistics of top 8 behavior-based features
frequency in Ponzi and non-Ponzi smart contracts. Except for
nbr_tx_in*, the rest of the top behavior-based features are new
features.

V. PERFORMANCE EVALUATION

This section presents our behavior-based, 0-day, and full-
feature model’s performances compared to corresponding
models in [8]. We also show that our full-feature model
maintains high precision and recall from day O to day 248
of a smart contract’s lifetime. Each model was trained and
tested using 10-fold cross-validation. Metrics may vary with
the random seed used for the cross-validation. Therefore, aver-
ages of precision and recall were computed. All performance
evaluations were done with Weka 3.8.3 [23].

A. 0-day model for early detection

Our 0-day model only uses features that are available on
0t day — i.e. as soon as the smart contract is uploaded to
the blockchain. Table III shows how accuracy and recall of
all three classification models compares to the opcode-only
model in prior work [8]. The best performance numbers are
shown in bold. The strong performance of our 0-day model
continues not only on day O but also on the following days
as all the features rely on immutable properties of the smart
contract. In other words, the 0-day model is effective not only
for early detection but also Ponzi-scheme detection during the
entire lifetime of a smart contract.

Table I above shows the top-10 strong features in O-day

model using information gain’.

B. Behavior-based model

Table IV shows our behavior-based models’ performance
compared to the behavior-based model in prior work [8]. J48
shows the best recall of 0.872 among three classifier models.
Random Forest shows precision greater than Chen et al. [8].

Shttps://en.wikipedia.org/wiki/Information_gain_ratio



TABLE IV: Behavior-based model performance comparison

Model Precision | Recall | F-score
J48 0.93 0.87 0.90
Random Forest 0.98 0.84 0.91
SGD 1.00 0.08 0.15
[8] 0.74 0.32 0.44

While SGD resulted in better precision, the recall renders this
model unusable, as shown by its F-score. Overall, the model
using only behavior-based features did not perform as well
as our own 0-day model but our new behavior-based features
improved the classification effectiveness.

Table II above shows top-8 behavior-based features ac-
cording to their information gain. Note that size_info is
the only feature included in both behavior-based and 0-day
models, as this feature is available as soon as the contract is
uploaded but also reflects the way the contract is written. The
statistics in Table II provide insight into why these features
help a model discriminate. We discuss two of our new features
and their strengths in detail.

1) size_info: Figure 2 illustrates the Ponzi smart contracts
with a standard deviation less than half of the standard
deviation of the non-Ponzi smart contracts. Our conjecture
is that Ponzi smart contracts are often reused by different
attackers as any smart contract can be downloaded from
the blockchain and re-uploaded by a different user, which
results in the significantly smaller standard deviation. If the
classification model is known to the attackers, they may
add unreachable or no-op codes to their smart contracts to
change the smart contract sizes. However, such change is only
feasible if the attackers have the source code to begin with.
So the attackers who are copying and re-uploading existing
Ponzi smart contracts are less likely to be able to defeat the
classification model.

2) lifetime: Figure 3 shows lifetime histograms for both
Ponzi and non-Ponzi instances. Table II also shows that the
standard deviation of non-Ponzi smart contracts is less than
half of that of Ponzi ones. Lifetime is relatively easy to
manipulate for attackers as they can pay the smart contract
or get paid by the smart contract at a later date. However,
all transactions require a transaction fee to be added to the
canonical chain. The attackers would have to pay for lifetime
change. This may discourage them from issuing transactions
and changing the lifetime too often.

3) avg_time_btw_tx: Table Il shows a rather different result
from the intense activity of the Ponzi schemes described in
earlier work [6], showing much longer average elapsed time
between transactions associated with Ponzi smart contracts
than non-Ponzi — i.e., 526K versus 79K. This is due to some
Ponzi schemes firing transactions a year after their last sign
of activity. The first quartile of smart Ponzi is smaller than 6
minutes compared to 70 minutes for non-Ponzi, an observation
that supports prior analysis [6]. Even when the classification
model is known to the attackers, it will be difficult for an
attacker to manipulate this feature as the attacker with many
addresses can fire transactions to shorten the elapsed time
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Fig. 2: Bytecode size histograms

TABLE V: Full-feature model performance comparison

Model Precision | Recall | F-score
J438 0.98 0.97 0.97
Random Forest 0.93 0.92 0.93
SGD 0.99 0.94 0.96
[8] 0.94 0.81 0.86

between transactions, but cannot prevent transactions from
happening and elongate the time between transactions.

C. Full-feature model

Table V shows our full-feature model’s performance, com-
bining both code and behavior-based features. The best per-
formance numbers are shown in bold.

We tested the full-feature model on days O to 248 from
when the smart contract had been posted on the blockchain.
Both precision and recall (and thus F-score as well) continued
to show similar performance of over 0.98 precision and 0.94
recall. The performance over the first 40 days from when the
smart contract was uploaded is shown in Figure 4.

Overall, the full-feature model shows little improvement
over the best performance of 0-day models. In fact, the
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Fig. 4: Full-feature model’s perf. over the first 40 days

TABLE VI: Rankings of top 20-30 features on Days 0 and 50

day 0 day 50
size_info size_info
SWAP7 SWAP7
Gini_amt_in overlap_addr

SWAPS5 Gini_amt_in
overlap_addr SWAPS
lifetime mean_in
SWAP6 SWAP6
nbr_tx_in gini_time_out
mean_in DUP7
gini_time_out sdev_in
DUP7 Tot_in

size_info feature is only listed at the 20" position in infor-
mation gain ranking, while the top 19 features are all code
features. Table VI shows how the top 20-30 features’ ranking
changed from day 0 to day 50.

Interestingly, avg_time_btw_tx is not listed as a top
behavior-feature in the full-feature model. Instead, the average
amount of investment (mean_in) is useful on the first day. Our
conjecture is that non-Ponzi smart contracts are more likely to
have investments starting on day O than Ponzi smart contracts.
While this feature remains strong on day 50, lifetime becomes
less important on day 50. Note that our lifetime feature is in
seconds, and may differ greatly even in one day. By day 50,
the discrimination power of lifetime is not as strong as sdev_in
or Tot_in, which provide more information on investment
patterns.

VI. CONCLUSION

While the blockchain is considered the next digital revo-
lution, it is also perceived as an opportunity for exploitation
by scammers. Ponzi smart contracts are presented as high-
return investment opportunities, while the risks involved are
barely mentioned. We built data mining-based Ponzi detection
models. The 0-day model can be used to flag Ponzi smart
contracts as soon as they are uploaded to the blockchain. It
has a precision of 0.98 and recall of 0.96, improved from
0.90 and 0.80 in prior work [8]. Our behavior-based model
has precision of 0.98 and 0.87, greatly improved from the
earlier work’s 0.74 and 0.32, respectively. We also discussed
behavior-based features in the case of active attackers who
manipulate the smart contracts to evade the classifier-based
detection.

Our full-feature model exhibits a precision of 0.99 and recall
of 0.97, improving over the prior work’s 0.94 and 0.81. In
practice, this model can be used to flag suspicious contracts
so potential investors know about their risk. By testing on the
thousands of contracts already on the blockchain and doing
so over almost 250 days, we validated the usefulness of the
models. Both our 0-day model and the full-feature model
maintain high precision and recall (over 0.90) from the first
day the smart contract is uploaded (day 0) to day 248. Data
mining-based Ponzi detection can server as the first line of
defense against fraudulent smart contracts.
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