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ABSTRACT The data generated by large scale scientific systems such as NASA’s Earth Observing System
Data and Information System is expected to increase substantially. Consequently, applications processing
these huge volumes of data suffer from lack of storage space at the execution site. This poses a critical
challenge while sharing data and reproducing application executions w.r.t. specific user inputs in data-
intensive applications. To address this issue, we propose TOSPReD (I/O Specialized Packaging of Reduced
Datasets), a data-based debloating framework, designed to automatically track and package only necessary
chunks of data (along with the application) in a container. IOSPReD uses the specific inputs provided by
the user to identify the necessary data chunks. To do so, the high level user inputs are mapped down to low
level data file offsets. We evaluate IOSPReD on different realistic NASA datasets to assess (i) the amount
of data reduction, (ii) the reproducibility of results across multiple application executions and also (iii) the

impact on performance.

INDEX TERMS Data management, data-intensive applications, data-based debloating, I/O specialization,

containerization, reproducibility.

I. INTRODUCTION

The enormous increase in the rate of data collected by
current scientific instruments generates large volumes of data.
Per Earth Science Data System (ESDS) approximation, the
rate of data input into the Earth Observing System Data
and Information System (EOSDIS) is expected to grow
annually by massive proportions. Figure 1 shows that this
rate of growth will consume exceedingly large volumes of
space in the EOSDIS archive by 2025 [5]. The projected
increase in the amount of data and the corresponding
volume required to store such huge data poses a herculean
challenge for applications processing these datasets. This
is an example of a system where enormous amounts of
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data are generated, accessed and processed by scientific
applications. Considering the cloud environment that is
evolving to accommodate such extensive demand for data
assimilation and storage, technologies with scope for data
reduction are the need of the hour.

Multi-dimensional scientific data such as meteorological,
geophysical data that contain a number of parameters like
latitude, longitude, temperature, pressure, humidity usually
range in the order of gigabytes in size. Efficient repro-
ducibility of applications is increasingly sought for in the
domain of geo-sciences to validate experimental results and
their inferences [28]. A typical scientific application consists
of two phases — an analysis phase which projects future
changes in the environment for improving weather or flood
forecasting and a simulation phase which simulates a physical
phenomenon such as temperature, pressure, humidity in
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FIGURE 1. Projected Data Increase: Between 2017 and 2025, the volume
of data in the EOSDIS archive (blue area) is expected to grow
dramatically, accompanied by an order of magnitude increase in the rate
of data ingest (orange area). NASA EOSDIS graphic [5].

Earth’s land surface using a computational model. The
simulation phase usually generates large volumes of data
from the computational models, making these scientific
applications data-intensive.

A major challenge in reproducing data-intensive scientific
applications [36], such as kriging swath data [13], [31],
is allocation of available storage space at application
execution sites [23]. So, for efficient reproducibility of
data-intensive scientific applications and optimal usage
of available storage space, data reduction techniques are
required.

In order to reproduce application executions w.r.t. specific
input scenarios, we do not need the additional irrelevant data
that will not be accessed. The question is can we create
a code and data package that has only the necessary
data for efficient sharing and reproducibility of data-
intensive applications? To this end, we propose a data-
based debloating framework, TOSPReD (I/O Specialized
Packaging of Reduced Datasets), that automatically tracks,
extracts and stores only the necessary data chunks along
with a data-intensive application. Based on the specific high
level inputs provided by the user, IOSPReD maps them down
to low level data file offsets to identify the necessary data
chunks. Then, to access data from the reduced datastore,
TOSPReD also modifies (i.e., specializes) I/O calls related to
data read and write operations. TOSPReD finally generates
a complete containerized system that packages the reduced
data and specialized library dependencies together with the
application to facilitate efficient sharing and reproducibility
of application executions for specific user inputs.

While our framework can be applied to any type of data-
intensive application with scope for data reduction, here
we focus on scientific applications. Our preliminary work,
MiDas [37], used a naive approach for I/O specialization
to ‘lift’ the necessary datachunks into the LLVM bitcode
of application libraries. This replaces only the read I/O
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calls directly with actual datachunks at the callsites while
ignoring data redundancy, which could potentially increase
the overall data size. IOSPReD builds on MiDas and makes
the following additional contributions:

1) Identifying and extracting data chunks pertaining to
both read and write I/O operations [Section IV-A].

2) Completely eliminating data redundancy during stor-
age by computing file offset intervals so as to
extract and store only non-overlapping data chunks
[Section IV-B].

3) Support for storing datachunks in two types of
datastores — (i) LLVM bitcode, (ii) a new reduced file
[Section IV-C].

4) Support for two different modes of write operation in
case of the LLVM bitcode datastore i.e., persistent and
non-persistent data writes after each execution of the
specialized application [Section IV-E].

5) Support for two modes of specialization i.e., complete
specialization of all data files and partial specialization
of only certain user-specified data files [Section IV-F].

6) Building a complete containerized system that includes
the application along with the specialized library
dependencies containing only the necessary data
chunks [Section IV-G].

We evaluate our framework on realistic applications across
multiple configurations. These applications operate on
NASA datasets (in the order of gigabytes) in two different
data formats with varying data access patterns to demonstrate
the wide range of applicability of TOSPReD. Our results
show that TOSPReD can achieve upto 97% reduction on
these datasets while still identifying and including all
required datachunks for the provided user inputs to
ensure reproducibility of application executions. Also,
our results show that there is no performance degradation
while there is a slight speedup of upto 1.004 for debloated
(i.e., I/O specialized) applications compared to the original
applications.

1. MOTIVATION
Recently, data reduction to efficiently utilize the storage
space has gained much focus in the domain of data-intensive
computing. However, the currently existing data reduction
technique, deduplication, removes only repeating data from
a dataset. Our proposed framework, TOSPReD, is distinct
from deduplication in that the scope of data reduction is
beyond eliminating only repeating data. TOSPReD extracts
and stores a single copy of only necessary data chunks based
on given user inputs. These are data chunks accessed by the
application while executing these specified user inputs. Rest
of the data chunks, duplicate and otherwise, are classified as
unnecessary and are removed. Also, the reduced datastore,
created as part of TOSPReD, does not suffer from the issue
of fragmentation, which is a major limitation of deduplication
algorithms [32], [43], [45].

Programmers often prefer tools and techniques that allevi-
ate the complexity of programming and help them complete
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FIGURE 2. 10SPReD: Automated identification and inclusion of relevant datachunks to generate a containerized package with specialized code and

necessary data w.r.t specified user inputs.

coding quickly [20], [25]. Standard software libraries
designed to manipulate scientific data, e.g., NetCDF4 and
HDF5 libraries [9], [16] can be used to generate reduced
datasets. However, the challenge lies in reusing the given
application with these reduced datasets — users are currently
required to manually modify the program to access the
reduced datasets correctly. To eliminate the need for manual
modification, our tool, IOSPReD, automatically rewrites the
underlying I/O calls (via I/O specialization) in the program to
access the reduced data accurately.

lll. BACKGROUND

A. LLVM

We use the LLVM [11] toolchain for compilation and static
analysis of code. Its C/C4-+/Objective-C source frontend,
clang, is used to produce bitcode. The modular LLVM
optimizer and analyzer, opt is then used to analyze and
transform the bitcode. Finally, the transformed bitcode is
compiled into native code using clang.

B. HDF5 AND NetCDF4 DATA

As mentioned previously, IOSPReD is a generalized frame-
work applicable to any data-intensive application with scope
for data reduction. In this paper, we look at scientific
applications that operate on data in the formats used by
NASA Earth Observing System (EOS) — HDF5 [8] and
NetCDF4 [15]. HDFS format uses a ’file directory’ like
structure to organize data [8]. NetCDF4 stores data in an
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array-based format [15]. Both these are hierarchical data
formats with ’self-describing’ data structure. This means that
metadata, i.e., data descriptions, are also included along with
the data in the file. These formats are used to store various
types of data such as climate data, terrain data and geospatial
imagery.

IV. IOSPReD
IOSPReD automatically tracks, extracts and packages only
the necessary data chunks for efficiently reproducing appli-
cation executions with respect to specific user inputs along
with the data-intensive application. This is accomplished
in two important phases — Data Identification and Data
Integration as shown in Figure 2. As part of the initial
phase, the relevant datachunks are identified by mapping
high level user inputs to low level data file offsets. Next,
to integrate the data with the application in the second
phase, first the datachunks are extracted and stored in
an appropriate datastore. Then the application and related
libraries are specialized, i.e., I/O calls are modified, to access
data from the new reduced datastore. Finally TOSPReD
creates a contanerized package of the reduced datastore and
specialized code. The design of TOSPReD is fail-fast, i.e.,
when the requested datachunk is not available, the application
throws a run time error and aborts execution.

Assumptions. We make the following assumptions:
(i) The program accesses data in a deterministic manner, i.e.,
for the same high-level user inputs, the program accesses
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data at the same locations across multiple executions. (ii)
There is only sequential access to data and no parallel
access. In particular, when data is shared among multiple
processes, we assume that data is manipulated by one process
at a time.

Consider a small toy example shown in Figure 3a. This
code reads multiple data chunks from filel.txt and writes them
to file2.txt. The file offsets and the corresponding data chunks
accessed vary based on the high-level user inputs, startoff
and bytes. We will use this example throughout this section
to demonstrate the various steps used as well as the features
supported by TOSPReD.

A. DATA IDENTIFICATION

The source code containing I/O calls is compiled into LLVM
bitcode. We design an LLVM transformation pass, /O Track,
to instrument this bitcode as seen in Figure 2. In partic-
ular, we add custom functions for relevant I/O calls —
read, write, open, close, lseek, stat and
their variants in order to track the file offsets accessed in
the data files. These custom functions take arguments, return
values and caller function names corresponding to the I/O
calls to log the following attributes: (i) file path, (ii) start file
offset, (iii) number of bytes and (iv) callsite ID. Callsite ID is a
combination of the called function name, the calling function
name and a unique integer. This is used to identify the I/O call
location in the bitcode.

When I/O calls are directly present in the application, the
instrumented bitcode of the application is further compiled
into native code. Otherwise, if the I/O calls are part of
a library used by the application, then the instrumented
bitcode of this library is compiled into a shared object
(.so0) and integrated with the application. On executing the
instrumented application along with inputs specified by the
user, execution traces containing the above information (i.e.,
file names, file offsets efc.) are generated. These traces thus
identify the necessary datachunks to execute the application
for the set of inputs provided by the user. Let’s consider the
instrumented toy example being executed with four different
user inputs — (i) 12 and 2, (ii) 5 and 3, (iii) 10 and 6, (iv) 3 and
4. The execution traces generated are shown in Figure 3c and
the callsite IDs for the I/O calls to be specialized are shown
in Figure 3d.

B. DATA EXTRACTION

We design an LLVM transformation pass, Data Extract,
to extract and store data chunks in a datastore as shown in
Figure 2.

Generating Non-Overlapping File Offsets. The extracted
data is based on the offsets generated from the execution
traces in the previous step. From these offsets, we compute
and store only the overlapping unique data chunks to
eliminate data redundancy. This is done using the sort-merge
algorithm. First the file offset ranges are sorted in ascending
order of the start offset. Then, these offset intervals are
merged to produce unique offset intervals. Referring back
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int main(int argc, char xxargv) {

1

2 int startoff = atoi(argv[l]);

3 int numbytes = atoi(argv[2]);

4 int fd, sz;

5 char* buf;

6 buf = (charx)malloc (nbytes,sizeof (char));
7 //file to be specialized

8 fd = open("filel.txt", O_RDONLY);

9 lseek (fd, startoff, SEEK_SET) ;

10 sz = read(fd, buf, nbytes);
1 close (£fd) ;

12 //file to be skipped

13 fd = open("file2.txt", O_WRONLY);
14 sz = write (fd, buf, nbytes);

15 close (fd);

16 }

(a) Toy example source code: I/O calls highlighted in red are the ones
to be specialized and replaced.

1 This is a sample input text file containing
2 random text

(b) Contents of filel.txt.

filel.txt 12 2
filel.txt 5 3
filel.txt 10 6
filel.txt 3 4

~

AW oo =

(c) Traces from four executions of the instrumented toy example with
various user provided high-level inputs.

1 main;open;1
2 main; lseek;?2
3 main; read; 3
4 main;close; 4
5 main;open;1
6 main; lseek;?2
7 main; read; 3
8 main;close; 4
9 main;open;1
10 main; lseek;2
1 main; read; 3
12 main;close; 4
13 main;open;1
14 main; lseek;?2
15 main; read; 3
16 main;close; 4

(d) Traces from four executions of the instrumented toy example with
callsite IDs corresponding to the callsites to be specialized.

1 filel.txt:
2 [3, 8, "s is a"], [10, 16, "sample "]

(e) LLVM Bitcode Datastore: Hashtable with filename as key and list
as value containing information related to datachunk — start offset,
end offset and actual datachunk in the bitcode datastore.

1 filel.txt:
2 [3, 8, 01, [10, 16, 6]

(f) File Datastore: Hashtable with filename as key and list as value
containing information related to datachunk — start offset, end offset
in the original file and start offset in the new file datastore.

FIGURE 3. Toy example reading and writing data to files.

to the toy example, the file offset ranges from the execution
traces are 12-14, 5-8, 10-16 and 3-7. After applying merge-
sort on them, we get two ranges namely 3-8 and 10-16.
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C. DATA STORAGE
Next, for efficient storage and retrieval of the extracted
datachunks, we use a combination of a hash table with
lists. Here the key is the file name and the value is the list
containing information related to these data chunks. These
are stored as global data structures in the LLVM bitcode.
LLVM Bitcode Datastore. For moderately large datachunks,
the LLVM bitcode is chosen as the datastore. In this case, the
information in the global data structures include the starting
and ending offsets and a pointer to the actual data chunk. For
the toy example, the extracted datachunks are stored as shown
in Figure 3e.
File Datastore. When the size of datachunks is extremely
large (on the order of gigabytes), it is not efficient to store
them as part of the LLVM bitcode and load them into RAM.
Also, LLVM does not permit extremely large block sizes
in bitcode [12]. Therefore, the choice of datastore here is
a file. In such a scenario, the information in the global
data structures includes the starting and ending offsets with
reference to the original data files and the starting offset of the
datachunk in the new file. In the toy example, the extracted
datachunks are stored as shown in Figure 3f.

In both the above cases, the list is ordered by original file
start offset for easy retrieval via linear search.

D. 1/0 SPECIALIZATION

We design an LLVM transformation pass, /O Spec as shown
in Figure 2, to replace I/O calls and their variants to access
datachunks stored in the relevant datastore instead of the
original data files. It is to be noted that we only replace
calls at call sites seen in execution traces identified using
unique callsite IDs as described previously. The replaced
specialized functions are provided with all arguments of the
corresponding original I/O functions. The various I/O calls
are replaced as follows:

1) open, fopen, fdopen, fileno, 1lseek, fseek,
rewind, ftell, close, fclose I/O calls and
variants. These are replaced with custom functions
that associate the file specific calls with unique integer
IDs instead of standard file descriptors or file pointers.
These integer IDs are used to access data related
information in the global data structures and the
corresponding datachunks in the reduced datastore.

2) fstat, ferror, clearerr, flock I/O call
and variants. These are simply replaced with custom
functions to return the success value.

3) read, pread, fread, write, pwrite,
fwrite I/0 calls and variants. They are
replaced with custom functions designed to access
data from the new reduced datastore. To do so, these
functions are also provided with a pointer to the
global hash table. The filename and file offsets from
the original I/O call are matched with the metadata
stored as global variables in the bitcode to identify
the locations of the datachunks. The corresponding
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datachunks are then read from or written to the new
reduced datastore.

E. MODES OF OPERATION

In reference to the LLVM bitcode datastore, TOSPReD
supports two modes of operation — (i) persistent and (ii) non-
persistent data writes to the datastore after each execution
of the specialized application. User can choose either mode
depending on the requirement of the application to be
specialized. To ensure the persistent write mode of operation,
all new data writes to the data store must be recorded in a log
file during execution of the specialized application.

We design an LLVM transformation pass, Write Persist,
to update datachunks in the bitcode data store using the
log file. In particular, this pass deletes all previous global
variables related to the datachunks in bitcode and inserts new
ones in their place. It creates data structures similar to the
Data Extract pass in Figure 2, namely a hash table containing
file name as key and a list with information pertaining to the
data chunks stored.

F. MODES OF SPECIALIZATION

We support two modes of specialization — (i) complete
specialization of all data files and (ii) partial specialization of
only certain user-specified data files. The latter is especially
useful when an application generates output data files to be
used in future. Here, the user would not prefer such data files
to be specialized and integrated with the program code. The
list of files to be specialized (i.e., non-skip files) is provided
by the user to our framework as shown in Figure 2. IOSPReD
then uses this list to only specialize call sites specific to these
non-skip files. Going back to the toy example in Figure 3a,
filel.txt is an input data file that needs to be specialized (i.e.,
non-skip file) and file2.txt is an output file that must not
be specialized, i.e., it must be skipped. Therefore, callsites
pertaining to filel.txt on lines 8-12 are specialized whereas
those on lines 15-17 corresponding to file2.txt are not to be
specialized (i.e., skip file). This is shown in Figure 3d.

In real world data-intensive applications, more often than
not a call site handles all files including skip and non-
skip files. For instance, consider the H5FD_sec2_open
function in HDFS5 library. This function opens all HDF5 data
files for reading and writing in an application. In such cases,
TIOSPRebD first checks whether the file is a skip file or not.
Ifitis not a skip file, then the call is directed to our specialized
functions otherwise the call is directed to the original I/O
functions.

G. CONTAINERIZATION OF CODE AND DATA
The specialized bitcode of the application is further compiled
into native code if I/O calls are directly present in the
application. The specialized bitcode of a related library is
compiled into a shared object (.so) to be used along with the
application in case the I/O calls are part of the library.

After specializing the application and the libraries to
store only required data chunks, we finally produce a
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Docker container image [2] as the end product (Figure 2)
that packages the specialized library dependencies and
data together with the application to ensure easier sharing
and efficient reproducibility. This Docker container image
includes data chunks necessary for application executions
for the input configurations provided by the user at the time
of specialization to TOSPReD. Application executions will
succeed as long as high level user inputs map down to access
data present in the package’s minimized datastore.

Also, note that the containers will work correctly even in
case of directory restructuring as filename (and not file path)
is the key attribute in identifying datachunks.

V. EVALUATION
Our evaluation intends to address the following research
questions:

1) Research Question 1. Has TOSPReD extracted all the
necessary datachunks for the workloads specified by
the user?

2) Research Question 2. Are the application executions
reproducible for the given scenarios?

3) Research Question 3. What is the amount of data
reduction achieved by TOSPReD?

4) Research Question 4. Is there a performance
degradation?

A. REALISTIC NASA DATASETS

1) EXPERIMENTAL SETUP

We conduct our experiments on a virtual machine with
121GB of RAM, 4-core Intel Xeon(R) CPU E3-1220 v5 at
3.00GHz and running Ubuntu 16.04. We use this system
for specialization and creation of a container image with
the application, libraries and reduced data. We evaluate
IOSPReD on the two data formats used by NASA Earth
Observing System (EOS) — NetCDF4 and HDF5. The
purpose of choosing such datasets is to evaluate if TOSPReD
can handle varying data access patterns [Appendix VIII-A].
The dataset sizes are chosen so as to demonstrate the purpose
of the two datastores supported by TOSPReD: LLVM bitcode
and reduced file. The HDF5 datasets are moderately large so
that the LLVM bitcode can be used as the datastore. On the
other hand, the NetCDF4 datasets are too large to be stored
as part of the LLVM bitcode and therefore require the use of
a file as the datastore.

2) EVALUATION PROGRAMS

Kriging is a generalized technique that can be thought of as an
interpolation or prediction scheme for estimating a quantity’s
spatial distribution using the covariance or variogram of
observational data [21]. Remote sensing data is generally
irregularly distributed in space and time, leading scientists
in general to estimate the value of quantities of interest at
points of interest or comparison with theory, simulation,
or other observations for integrated analyses. Kriging’s
ability to adapt to irregular distributions of data, including
the calculation of geo-statistical estimates for values in
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data gaps has led to its use in a wide range of fields,
ranging from resource exploration to Earth Science modeling
and simulation. The kriging software used in this work
was developed for the NASA Open-access Geo-Gridding
Infrastructure (NOGGIn) project to provide a way to estimate
data values at grid locations from diverse data in a semi-
automated fashion [13], [31].

The estimation of a variogram model from observational
data is a central and expensive part of the analysis.
A variogram model represents how observed properties
vary in space (and/or time) as a function of distance
from observations. Data is often sampled with enough
coverage to capture the important variability in the data,
but not so much data as to exceed available computer
memory. Finding variogram models that well characterize the
variability in observations is generally an iterative process
and NOGGIn krige’s simple, ad hoc, heuristic variogram
fitting is the single most expensive part of the calculation.
NOGGIn krige’s ad hoc automation is not completely
robust, requiring at present some human interaction and
reconfiguration and recalculation when variogram fitting
fails to converge. Reconfiguring the calculation can involve
selecting from a variety of variogram models such as
nuggetless gamma-Rayleigh, reassessment of various scale
lengths in the data, and the selection of data sampling
schemes.

As the kriging depends only on the geometrical overlaps
associated with the input data and the output grid, particularly
when partitioned for parallel or iterative execution, it should
be a good candidate for TOSPReD-based optimization.
IOSPReD speeds up access and loading of just the data
being used. As NOGGIn’s kriging iterates its variogram fit,
IOSPReD optimization should be able to reduce unnecessary
re-loading of data.

A complicating factor, though, is the set of stochastic
sampling methods that are often used, which may impede
IOSPReD’s cataloging and caching of input data. When
such complications are addressed and an observational
dataset’s variability is well characterized, the variogram
model can be stored and reused, ameliorating computational
costs, at the expense of the complexity required to re-
calculate a new variogram model when the character of the
observations change. Once these issues are accommodated,
kriging provides a general way to integrate diverse data,
e.g., chunks and subsets of data obtained on board space-
craft associated with non-traditional, commercial imagery
providers.

Another aspect to be considered in datasets is partitioning
or tiling of the data. Each tile is overlaid by a number of data
files and different tiles may share (or not) sets of data files.
Data is sampled from a larger region than the tile so that the
statistics of the variation is more smoothly represented from
one tile to the next. Without this extra buffer about the tile the
statistics in adjacent tiles would be determined only by data
within a tile, leading to a discontinuity in the interpolation at
tile boundaries.
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3) OMI LEVEL 2 HDF5 DATASET

This is ozone profile (OMO3PR) data from the Ozone
Monitoring Instrument (OMI) on the Aura satellite [22].
The datafiles correspond to a swath of observations obtained
by the polar orbiting spacecraft on the dayside of the
Earth. This data set features vertical profiles of ozone
concentration with a spatial resolution of 13 x 48 km (at
nadir) and much coarser at the edges (wings) of the swath.
EOSDIS datasets are processed at multiple levels ranging
from Level O to Level 4. Level O datasets hold raw data
at full instrument resolution. At higher levels, the data is
converted into more useful parameters and formats. As a
Level 2 dataset, this HDF5 data still retains the spatial layout
of the observations made by OMI. That is, the ozone profiles
have been registered to geographical coordinates (longitude-
latitude), but have not been interpolated to a grid, which
would make them Level 3 data products. Being able to
construct custom Level 3 products involving data fusion or
interpolations to interesting, but uncommon grids, as well as
checks on existing standard Level 3 products are amongst the
capabilities of scientific interest in kriging low-level swath
data.

4) VIIRS NetCDF4 DATASET

To explore the impact of IOSPReD applied to larger
datasets stored in NetCDF4 datafiles, we use kriging on
cloud imagery data from the Suomi National Polar-orbiting
Partnership (SNPP) Visible Infrared Imaging Radiometer
Suite (VIIRS) [14]. This data consists of calibrated and
geolocated infrared radiance and reflectance observations
with a finest spatial resolution of 375m (at nadir) organized
in datafiles corresponding to 6 minutes of operation, resulting
in data arrays of 6464 scan lines by 6400 pixels. While it
is beyond the scope of this work to go into much detail,
VIIRS is a whiskbroom scanner sweeping 32 sensors back
and forth across the swath. Therefore, the spatial layout of
data arrays is complicated and constructing images requires
some processing and motivates our interest in kriging. The
VIIRS radiances are considered Level 1 products, in contrast
to the Level 2 OMI ozone profiles discussed above, which
are derived from other Level 1 OMI data. Thus, the benefits
of applying kriging analysis to Level 2 data (like OMI) also
applies to Level 1 VIIRS data. While using kriging to fuse
data from diverse and irregular spatial distributions is useful,
performing statistical covariance or variogram analyses of
large numbers of relatively large 40 mega-pixel arrays with
irregular spatial distributions can be challenging.

Table 1 summarizes the differences in the datasets being
considered. Consequently, the two evaluation programs
applying kriging on these datasets vary significantly in terms
of handling tiling, 2 dimensional vs. 3 dimensional data,
managing memory usage and determining initial parameters
for and tuning the variogram fit. There is also greater
variability and structure in the VIIRS observation while
there is less spatial structure in the OMI data retrieval.
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The two kriging programs are written in Python language.
The HDF5 and NetCDF4 I/O libraries are written in C
language. These underlying libraries are accessed by the
kriging programs using Python interfaces. This makes
automated variogram model fitting harder (i.e., more likely
to diverge or poorer fits) for VIIRS. Here, IOSPReD’s
data-based debloating approach decreases storage space
requirements and aids the iterations required for such
analysis.

B. DATA REDUCTION

1) METRIC

The total size of the required datachunks identified by
IOSPReD is measured in terms of the unique file offset
ranges by computing their sum. The size of TOSPReD’s
reduced datastore includes the size of all necessary dat-
achunks and the increase in size of the specialized code.
We compare this to the total size of the original data files to
evaluate the data reduction [Research Question 3].

2) RESULTS

With respect to OMI Level 2 HDFS5 Dataset, data is read
from 54 HDF5 datafiles of size 578.74 MB. Consider
the coordinates lonA=-180, latA=-50, lonB=180, latB=50.
We refer to this as configuration [H]. The total data accessed
by the kriging application is 31.28 MB. There is an overall
data reduction of 94.6 % achieved using TOSPReD[Research
Question 3.] as shown in Table 2.

In regard to VIIRS NetCDF4 Dataset, data is read
from 480 NetCDF4 datafiles of size 83.34 GB. To show
data accesses spanning across the dataset, we use 3 different
latitude/longitude configurations at diverse locations on
earth, covering varying distances. Consider the coordinates
lonA=-165, lonB=-145, latA=10, 1atB=30 which fall
around the region of Hawaii in USA. We refer to this as
configuration [N1]. The total data accessed by the kriging
application in this case is 2.55 GB. There is an overall data
reduction of 96.95% achieved using TOSPReD[Research
Question 3.] as shown in Table 2. For the coordinates lonA=-
150, lonB=-110, latA=-60, latB=-20, which we refer to as
configuration [N2], the total data accessed by the kriging
application is 4.42 GB. There is an overall data reduction of
94.7% achieved using TOSPReD[Research Question 3.] as
shown in Table 2. With respect to the latitude and longitude
values of lonA=20, lonB=107, latA=-10, latB=78, which
we refer to as configuration [N3], the total data accessed by
the kriging application is 10.7 GB. There is an overall data
reduction of 87.16% achieved using TOSPReD[Research
Question 3.] as shown in Table 2.

C. REPRODUCIBILITY

Note: Successful execution of a specialized application
indicates that required datachunks are available. The design is
fail-fast, i.e., when the requested datachunk is not available,
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TABLE 1. Evaluation datasets and configurations.

Dataset Data Number Number of di- | Tile size (lon-lat | Latitude/Longitude Configurations IOSPReD
size of data | mensions degrees) Datastore
files
OMI Level2 HDF5 | 578.74 | 54 3D (longitude, | 120x40 H: lonA=-180, latA=-50, lonB=180, latB=50 | LLVM bit-
Dataset MB latitude, code
altitude)

VIIRS NetCDF4 | 83.34 480 2D (longitude, 15x15 NI1: lonA=-165, lonB=-145, latA=10, | File
Dataset GB latitude) 1atB=30

N2: lonA=-150, lonB=-110, latA=-60,

latB=-20

N3: lonA=20, lonB=107, latA=-10, 1atB=78

TABLE 2. Data reduction in HDF5 and NetCDF4 datasets: The size of IOSPReD’s reduced datastore includes the size of all necessary datachunks and the

increase in size of the specialized code.

Dataset Number of Input | Original Data | Dataset Config- | IOSPReD Percentage of Overall
Data Files Size uration Reduced Data Reduction
Datastore Size
OMI Level2 HDFS5 Dataset 54 578.74 MB H 32.18 MB 94.44%
VIIRS NetCDF4 Dataset 480 83.34 GB N1 2.55 GB 96.94%
N2 443 GB 94.68%
N3 10.73 GB 87.13%

the application throws a run time error and aborts execution
[Research Question 1].

Metrics. To verify reproducibility of application executions
w.r.t specific inputs, we compare the outputs generated in the
two cases of application use: (i) using original libraries; (ii)
using the I/O specialized libraries.

It must be noted that TOSPReD does not introduce
any variation to the outputs generated by the application.
Therefore, when the outputs are generated by an application
using non-stochastic precise (i.e., deterministic) methods, the
outputs in the above two cases exactly match. However, if an
application uses stochastic methods (i.e., non-deterministic)
then this results in varying outputs being generated across
various executions for the same user inputs. In order to
establish that TOSPReD does not introduce any variation
to the outputs generated by an application, we evaluate
reproducibility in the following scenarios — when applications
generate (i) deterministic outputs and (ii) non-deterministic
outputs.

1) DETERMINISTIC OUTPUTS

We modify the evaluation applications to make them
deterministic so as to verify that TOSPReD does not
introduce any variation to the outputs generated by an
application. (Note that these modifications are applied
only for this section of the evaluation. For all other
evaluation sections before and after this section, we use
the default stochastic versions of the applications.) The
applications are written in python language. The sources
of non-determinism that were modified in the source codes
of the applications include: (i) APIs in python package
numpy . random - usage of these APIs were made determin-
istic by setting numpy . random. seed (0), (ii) python API
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TABLE 3. Reproducibility of Determistic Outputs: Output comparison for
various dataset configurations: comparing outputs generated by original
libraries and 1/0 specialized libraries.

Dataset Config- | Number Diff Utility Difference

uration of Output Reported
Datafiles

H 1 hbdiff None

N1 9 diff None

N2 25 diff None

N3 324 diff None

json.dumps - the output produced was made deterministic
by setting the parameter ’sort_keys=True’, (iii) accessing
dictionaries were made deterministic by iterating over sorted
dictionary keys, (iv) the variogram estimation model of the
Kriging algorithm was made deterministic by setting the
parameter ‘random_permute=False’.

We compare the outputs [Research Question 2] as

follows:

1) OMI Level 2 HDF5 Dataset. We use the standard
HDF5 utility, h5diff [6], to directly compare the
output HDFS files and report the differences.

2) VIIRS NetCDF4 Dataset. We use the standard linux
utility, diff [1], to directly compare the output
NetCDF4 files and check whether or not these exactly
match.

Results. Table 3 shows the results reported by h5diff
and diff respectively. It can be seen that in all cases
no difference in reported, i.e., the outputs generated w.r.t
I/O specialized libraries exactly match the corresponding
outputs generated w.r.t original libraries. This establishes that
TOSPReD does not introduce any variation to the outputs
generated by an application.
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TABLE 4. Reproducibility of Non-Determistic Outputs: Output comparison for various dataset configurations: comparing outputs generated by original
libraries and 1/0 specialized libraries.

4
Data file ID

(a) NetCDF4 dataset configuration N1

Dataset Config- | Number of Output | U-critical Value U-statistic Values Difference Difference
uration Datafiles Reported by | Reported by
Mann-Whitney h5stat
U Test
H 1 -13244094.88 2102405401.0 None None
N1 9 -49619.17 in Figure 4a None None
N2 25 -49619.17 in Figure 4b None None
N3 324 -6005.83 in Figure 4¢ None None
21200000. : ’ ’ : ’ : ’ ‘ r:g;lzooouo R P e T AL L A S SR I S
E" 1000000 § 1000000
_5 800000 _E 800000
§ 600000 E 600000
§ 400000 E 400000
2200000 gZOOODO
£ £
g 0 1 2 3 5 6 7 8 = 0 5 10 15 20 25

Data file ID

(b) NetCDF4 dataset configuration N2.

60000

40000

20000

o

80000

Mann Whiteney U Test: U statistic and U critical values

0 50 100

150 200 250 300
Data file ID

(c) NetCDF4 dataset configuration N3.

FIGURE 4. Reproducibility of Non-Determistic Outputs: Mann-Whitney U Test results for various NetCDF4 dataset configurations: U critical values
shown in red and U statistic values shown in blue. In all cases, U statistic values are greater than the corresponding U critical values [17],
[18], [34] which implies that the difference in output files is insignificant.

2) NON-DETERMINISTIC OUTPUTS

The applications we have chosen for evaluation use stochastic
sampling methods resulting in varying outputs across various
executions for the same user inputs. We compare the outputs

[Res
1)

2)
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earch Question 2] as follows:

To compare the high level data statistics such as
datatypes, number of values and so on, we use
the standard HDF5 utility, hSstat [7]. This utility
reports statistics of the objects in HDF5 and NetCDF4
datafiles [10]. Then, using the standard linux utility,
diff [1], a line by line comparison of the outputs
generated by h5stat is done to check whether these
exactly match.

To compare the data values we use the Mann-Whitney U
test [17], [18], [34] to show that the difference between
them is statistically insignificant. Mann-Whitney U is a
non-parametric test of the null hypothesis which states
that for two values X and Y selected randomly from two

independent distributions (in our evaluation, the two
independent distributions correspond to the two output
datafiles being compared), the probabilities of X and
Y being greater than each other are equal. We use a
two-tailed test with the significance level set to 0.05.
Given that the sample size (i.e., number of data values
in the output file) is large, standardized value (i.e.,
z) therefore equals 1.96 [18], [19]. The test statistic
U’ reflects the difference between the two datafiles
being compared. We compute U critical and U
statistic values and conclude that the difference
is insignificant if U statistic is greater than U
critical [18].
Results. The U critical and U statistic values for
the dataset configurations H, N1, N2 and N3 are shown in
Table 4 and Figure 4. Table 4 also reports the final outcome
of Mann Whitney U test and the outcome of h5stat
comparison. When the number of output files being compared
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TABLE 5. Performance comparison: Wall clock run time for a single execution of the application with original libraries vs. that with 1/0 specialized

libraries in seconds and speed up.

Dataset Configura- | Application Execution time with | Application Execution time with I/O | Speedup Size of data accessed
tion Original libraries specialized libraries

H 160.676 sec 160.414 sec 1.002 0.032 GB of 0.579 GB
N1 6565.564 sec 6543.916 sec 1.003 2.55 GB of 83.34 GB
N2 16049.478 sec 15972.45 sec 1.004 4.43 GB of 83.34 GB
N3 140733.069 sec 140168.57 sec 1.004 10.73 GB of 83.34 GB

is greater than 1, the scatter plots of U critical values
in red and U statistic values in blue are shown in
Figures 4a, 4b and 4c. It can be seen that in all cases since
the U statistic valuesare greater than the corresponding
U critical values [17], [18], [34], the difference in the
output data values is insignificant. In other words, the outputs
generated w.r.t the I/O specialized libraries do not differ
significantly compared to those w.r.f the original libraries.

D. PERFORMANCE

Metric. We use the wall clock execution time in seconds com-
puted for a single execution of the application measured using
Python package time to evaluate performance [Research
Question 4].

Results. Table 5 shows the execution times of the
application using the original libraries and that using the I/O
specialized libraries for the HDFS5 dataset configuration H
and NetCDF4 dataset configurations N1, N2, N3. There is no
degradation in performance but rather a slight speedup. With
increasing size of data accessed, we see a slight proportionate
increase in the speedup of execution times in case of both
memory- and filesystem-based specialization datastores, i.e.,
LLVM bitcode and file datastores respectively.

VI. DISCUSSION

A. USER INPUTS

Our evaluation shows that the reduced datastore produced
by I0SPReD includes data chunks necessary for application
executions w.r.t. specific user inputs provided at the time
of specialization. Moreover, it is important to note that
application executions will also succeed for other user
inputs that map down to access data already present in
this minimized datastore. For instance, consider this simple
example: a 3D HDF5 data variable stored in an array, ‘dv’,
of size 329 x 30x18. HDF5 data is accessed in chunks.
Consider the chunk size is being set to 40 x 30 x 18.
If the user input at specialization is dv[10,12,3], the data
chunk extracted and packaged is dv[0:39,:,:]. In the reduced
container, application executions succeed wrt other inputs
such as dv[10,9,3], dv[10,12,15] and dv[39,29,17]. So, the
user can tweak high level inputs as long as they fall within
the range of the datachunk extracted, i.e., dv[0:39,:,:].

B. PORTABILITY
The end product of TOSPReD, i.e., containerized package
with specialized code and reduced data, can be easily
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deployed to reproduce application executions and results.
The Docker image is built from a base image corresponding
to the operating system of the specialization environment
in which the specialized native code/ shared objects are
compiled — Ubuntu 16.04 in our case. Therefore, the
portability of the Docker container built from such an
image is solely affected by the design characteristics of
container environments (such as Docker) and not by those of
TIOSPReD. The binaries in the container image will run on a
container host if the original and target host kernels share the
same application binary interface (ABI). It is not possible to
run cross-platform binaries via containers. This also extends
to versions of the operating system as well as processor
architecture [3], [4].

C. APPLICATION AS TRANSLATOR

We use the application itself as a translator to identify the
required data chunks. In particular, given the set of high
level user inputs, ITOSPReD takes a union of all accessed file
offset ranges from the various execution traces to compute the
necessary data chunks. Our approach of using the application
itself as a translator to map from high level user inputs to
the underlying file offset ranges is robust enough to handle
varying data access patterns with respect to high level user
inputs [Appendix VIII-A].

D. DATA FORMAT

IO0SPReDmaximizes data debloating by using fine-grained
file offset identification to store only the required data chunks
in the reduced datastore along with metadata essential for
mapping data locations between the original and reduced
datastores are present in the reduced datastore. As a result,
the reduced datastore holds data in a format different from
the original datafile(s) format (HDF5 or NetCDF4).

E. AUTOMATIC MODIFICATION OF PROGRAMS

Programs need not be manually modified by users to access
the reduced datastore. IOSPReD automatically rewrites the
I/O calls (via I/O specialization) in the underlying I/O library
programs to access the reduced data accurately.

F. USAGE of HDF5/NetCDF4 DATA ACCESS APIs

Applications can continue to use HDF5/NetCDF4 APIs
to access the reduced datastore as if the data was stored
in HDF5/NetCDF4 format. This is possible because of
I/O specialization — specialized I/O calls in library are
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designed to redirect access to the reduced datastore instead
of the original HDF5/netcdf datafile. Therefore, application
is oblivious to the change of data format in the underlying
reduced datastore.

G. SHARING DATA AMONG MULTIPLE APPLICATIONS

Datafiles in HDF5/NetCDF4 formats are usually accessed
through applications — e.g.,, as in the case of kriging
applications. Thus, sharing data in these specific formats
is not required. Our reduced datastore as part of the
specialized library can be shared among multiple applications
by including the union of datachunks required by all of these
applications in the reduced datastore (assuming that the data
in an I/O specialized library is accessed sequentially (not in
parallel) by these applications [Assumptions in Section IV]).

H. LIBRARY SEMANTICS

Data extraction in IOSPReD is designed to preserve
library semantics. Let’s say the HDF5 library function
H5FD_sec2_read expects chunk size of 64 bytes. So,
if our specialized I/O functions were to carve out the exact
data required and return a chunk size of 59 bytes then
the library semantics would be broken. To ensure that this
does not happen, TOSPReD carves out data chunks in sizes
expected by the library.

I. TYPES OF EXTRACTIONS

TOSPReD performs two types of extractions — (i) extracting
only a specific variable in HDF5 and NetCDF4 data files that
contain multiple variables such as temperature, pressure and
ozone concentration; (ii) extracting only specific data chunks
within a given variable containing multiple data chunks.

J. COMPARISONS WITH OFF-THE-SHELF UTILITIES

(i) strace. We compare the LLVM-based instrumentation
in TOSPReD used for data identification in Phasel with an
off-the-shelf utility, st race. IOSPReD generates complete
traces containing the exact file offsets at which data is
accessed along with callsite IDs of the corresponding
read/write I/O calls. strace generates only partial traces
containing the number of bytes read/written (not exact
offsets) in read/write I/O calls and also does not trace the
callsite IDs of these I/O calls. Table 6 shows that strace
takes longer to generate just partial execution traces as
compared to IOSPReD which generates more complete
execution traces much faster. This shows that the LLVM-
based instrumentation in TOSPReD is much more efficient
than using strace.

(ii) Sparse Files. fallocate utility in linux can be used to
generate sparse files by punching holes at various file offsets.
IOSPReD achieves higher data reduction compared to
generating sparse files. This is because TOSPReD performs
byte-level reduction whereas there is block-level reduction
in sparse files. Moreover, a major advantage of TOSPReD
is that it allows further specialization of the program due
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TABLE 6. Phasel Data Identification: Time to generate execution traces -
complete traces with 10sPReD vs partial traces with strace.

Dataset Config. IOSPReD LLVM-based strace

H 164.731 sec 183.667 sec
N1 6614.680 sec 6835.771 sec
N2 16239.069 sec 16810.631 sec
N3 141112.612 sec 145085.047 sec

to the file metadata being lifted into the code. Apart from
these differences, sparseness of file could be lost if a sparse
unaware program tries to write to a sparse file.

VII. RELATED WORK

A. DATA-BASED DEBLOATING

Redundant downloading of data within each layer is a known
issue in container-based deployments, resulting in large size
images [40]. This has triggered research in the direction of
data based debloating in user space. Deduplication is a data
reduction technique that focuses only on removing duplicate
data. As distinct from this, IOSPReD aims to enhance data
reduction further by eliminating more than only duplicate
data chunks, i.e., TOSPReD removes all unnecessary dat-
achunks based on specific user inputs. Fragmentation is
a major drawback of deduplication algorithms [32], [43],
[45]. In contrast to this, the reduced datastore created by
IOSPReD does not suffer from fragmentation. A related
tool, Slacker [26], uses deduplication of file blocks to
create more efficient container systems. However, block-level
deduplication techniques do not eliminate data redundancies
within structured arrays. Whereas, TOSPReD is designed to
remove unused data in structured array-based data formats
such as in NetCDF4 [15]. Another work, LLIO [39], improves
runtime performance of applications through elimination of
filesystem accesses. However, it does so by lifting entire files.
Such an approach becomes untenable for large data sets. In an
attempt to mitigate this limitation, TOSPReD demonstrates
the possibility of lifting only subsets of data (instead of entire
files) and packaging it along with data-intensive applications.

B. CODE-BASED DEBLOATING

Study of code bloat in software with consequent debloating
has received a lot of attention in the recent past. Xin et al. [41]
have analyzed the tradeoffs between code reduction and
function generality in debloated software. Jiang et al. [29],
[30] have studied the issue of software bloat in real-world
Android applications and have proposed static analysis
based techniques to remove dead code. OCCAM [33]
and Trimmer [38] have demonstrated that configuration
based debloating can be applied to modern applications.
Software debloating is currently emerging as a widely
adopted technique for security hardening by reducing attack
surfaces in code — removing unused pieces of code.
pTrimmer [44], designed for MIPS firmware, eliminates
unwanted basic blocks in shared libraries. JSLIM [42] is
another debloating framework to remove dead code and code
containing vulnerabilities in JavaScript applications. Unlike
these code-based debloating techniques, IOSPReD explores
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data-based debloating for efficient storage space utilization
and application reproducibility.

C. PROGRAM SPECIALIZATION

A prior work on program specialization by
Medicherla et al. [35] has been used to verify whether or not a
program ’conforms’ to the specified format and to specialize
the code to the ’restricted’ file format. This is program
specialization being used for verification. As opposed to this,
program specialization is being used for data reduction in
T0SPReD. Few other related projects like Decap [27] and
C2C [24], in software specialization are mainly focused on
reducing code bloat to decrease a software’s attack surface.
On the contrary, ITOSPReD specializes code in the context of
data debloating.

VIIl. CONCLUSION

IOSPReD is designed to enable efficient sharing and
reproducibility of data-intensive application executions w.r.t
specific user inputs. This is done through extraction and
packaging of only the relevant data with application code.
Our evaluation shows that TOSPReD can achieve upto 97 %
data reduction in some realistic applications while still being
able to ensure successful reproducibility of application
executions for given input scenarios without causing any
performance degradation.

APPENDIX

A. VARYING DATA ACCESS PATTERNS

OMI Level 2 HDF5 Datasets. In case of HDF5 datasets,
there are varying amounts of data in each value of a dimension
due to data chunking and compression. The HDFS5 library
maximizes performance using the mechanisms of specifying
how to store data on disk, how to access data, and how
to place it in memory. Consider the dataset variable ozone
concentration. This is 3D data (longitude, latitude, altitude)
and thus is a three dimensional array of size 329 x 30x18.
The chunk size is 40 x 30x 18 and the compression filter being
used is 'gzip’: 2. Figure. 5 shows varying amounts of data at
different indices of the first dimension of the variable. This
is because data is accessed in chunks of size 40 x 30x18.
Moreover, the size of data accessed varies across chunks
although these chunks sizes are the same, i.e., 40 x 30x18.
This is a result of data compression, ’gzip’: 2. The data size
is proportional to the number of unique data values within a
chunk. In other words, the more the number of unique data
values, the larger the size of the data chunk.

VIIRS NetCDF4 Datasets. Consider the dataset variable /-
band 04 earth view radiance. In contrast to the above 3D
HDFS5 datasets, this is 2D data (longitude, latitude) and thus
is a two dimensional array of size 6464 x 6400. Figure 6
shows varying amounts of data at different indices of the
first dimension of this variable. Although the variation in the
amount of data across different indices is not as profound as
in the previous case of the HDF5 dataset, we do see that not
all indices hold the same amount of data.

VOLUME 11, 2023

80

o
=]

N
S

Datasize in KB

20

0

50 100 150 200 250 300
Dimension indices

FIGURE 5. Varying amounts of data at each index of the first dimension
of variable ozone concentration in OMI Level 2 HDF5 Datasets.
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FIGURE 6. Varying amounts of data at each index of the first dimension
of variable I-band 04 earth view radiance in VIIRS NetCDF4 Datasets.
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FIGURE 7. The percentage of data reduction in individual input data files:
HDF5 dataset configuration H.
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FIGURE 8. The percentage of data reduction in individual input data files:
NetCDF4 dataset configuration N1.

Results. Figure 5 and Figure 6 show the variable data access
patterns in the HDF5 and NetCDF4 datasets considered
in our evaluation. Based on the results in the previous
subsections we see that TOSPReD is able to accurately
identify and extract the required datachunks in these datasets,
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FIGURE 9. The percentage of data reduction in individual input data files:
NetCDF4 dataset configuration N2.
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FIGURE 10. The percentage of data reduction in individual input data
files: NetCDF4 dataset configuration N3.

thus demonstrating that TOSPReD can handle varying data
access patterns.

B. DATA ACCESS IN INDIVIDUAL INPUT DATA FILES

The percentages of data reduction in each of the individual
input data files for the various HDF5 and NetCDF4 dataset
configurations are shown in Figures 7, 8, 9 and 10.
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