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ABSTRACT
Opportunistic networks have recently received considerable
attention from both industry and researchers. These net-
works can be used for many applications without the need
for a dedicated IT infrastructure. In the context of oppor-
tunistic networks, content sharing in particular has attracted
significant attention. To support content sharing, oppor-
tunistic networks often implement a publish-subscribe sys-
tem in which users may publish their own content and indi-
cate interest in other content through subscriptions. Using
a smartphone, any user can act as a broker by opportunisti-
cally forwarding both published content and interests within
the network.
Unfortunately, opportunistic networks are faced with se-

rious privacy and security issues. Untrusted brokers can not
only compromise the privacy of subscribers by learning their
interests but also can gain unauthorised access to the dissem-
inated content. This paper addresses the research challenges
inherent to the exchange of content and interests without:
(i) compromising the privacy of subscribers, and (ii) provid-
ing unauthorised access to untrusted brokers. Specifically,
this paper presents an interest and content sharing solution
that addresses these security challenges and preserves pri-
vacy in opportunistic networks. We demonstrate the feasi-
bility and efficiency of the solution by implementing a pro-
totype and analysing its performance on smart phones.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access control; E.3 [Data]:
Data Encryption
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1. INTRODUCTION
Over the last few years, the use of smartphones has grown

dramatically and is predicted to increase even more in the
coming years [7]. Considering the pervasive nature of smart-
phones, mobile opportunistic networks can be leveraged to
share information. Several of the concepts behind oppor-
tunistic networks originate from Delay Tolerant Networks
(DTNs) that offer flexible content sharing without requiring
a dedicated IT infrastructure [18].

Haggle [1], an example of such a network architecture,
allows smartphones to opportunistically share content via
short-range communication [17]. To share content, oppor-
tunistic networks, such as Haggle, implement a publish-
subscribe system in which nodes can publish their own con-
tent and subscribe to other content by indicating their in-
terests. Any node can also act as a broker (also called a
relay) that opportunistically receives content and interest,
matches them, and possibly delivers that content to other
nodes.

Opportunistic networks can be used to exchange infor-
mation in a wide range of domains from social media to
military applications. However, such networks also present
serious privacy and security issues, particularly the need for
an approach to exchange content and interests that neither
(i) compromises the privacy of subscribers nor (ii) provides
unauthorised access to untrusted brokers.

Cryptographic approaches such as Attribute-Based En-
cryption (ABE), which include Ciphertext-Policy ABE (CP-
ABE) [4] and Key-Policy ABE (KP-ABE) [9], offer fine-
grained control over content but leak information about the
policies and attributes that protect that content, respec-
tively. To protect the access policies, state-of-the-art so-
lutions exist to enforce sensitive policies in outsourced envi-
ronments [2,3,12]. However, such solutions assume that the
outsourced server does not collude with any client. Thus,
these solutions cannot be applied in opportunistic network
settings in which nodes communicate in a peer-to-peer fash-
ion – that is, serving as both a client and a server.



This paper presents PIDGIN, an interest and content shar-
ing scheme that preserves privacy, in which:

• brokers match subscribers’ interests against content
access policies associated without compromising the
subscribers’ privacy (by learning content attributes or
node interests).

• unauthorised nodes do not gain access to content, and
authorised nodes gain access only if they satisfy fine-
grained policies specified by the publishers.

• the system provides scalable key management in which
loosely-coupled nodes communicate with each other
without any prior contact.

As a proof-of-concept, we have developed and analysed the
performance of a prototype running on real smartphones in
order to show the feasibility of our approach.
The rest of this paper is organised into the following sec-

tions. Section 2 provides a brief overview of opportunistic
networks, describes a motivating scenario, and lists some of
the major research challenges for interest and content shar-
ing in opportunistic networks with privacy-preserving guar-
antees. In Section 3, we describe the system model. Next,
we explain the proposed scheme in Section 4. Section 5
elaborates on PIDGIN. In Section 6, we provide the con-
crete construction. Section 7 reports on our security and
performance analysis. Related work is reviewed in Section
8. Finally, we conclude in Section 9 and highlight some di-
rections for future work.

2. OPPORTUNISTIC NETWORKS
In this section, we provide a brief overview of opportunis-

tic networks, a motivating scenario, and the major research
challenges that we address.

2.1 Overview
Conceptually, opportunistic networks originate from DTNs

that enable content exchange between nodes in a publish-
subscribe fashion, generally via short-range communication.
In a typical opportunistic network, such as Haggle, a sub-
scriber node specifies its interests while a publisher node
shares content with its neighbouring nodes [17]. These neigh-
bouring nodes are intermediate nodes, known as brokers,
that epidemically disseminate interests and content within
the network. A resolution takes place when a broker node
finds a match between the interests of a subscriber and the
tags associated with published content. As a result of reso-
lution, a broker forwards content to the subscriber.
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Figure 1: An example of content sharing in an op-
portunistic network.

2.2 Motivating Scenario
Curiosity - A Military Mission: Let us consider a bat-
tlefield scenario for a mission called Curiosity in which sol-
diers are equipped with smartphones. During the mission,
a scout collects some sensitive information about the enemy
(for instance, an image of the enemy’s position) using her
smartphone camera. After acquiring this sensitive informa-
tion, a scout desires to share it with other soldiers. For this
reason, she may tag the image with the mission name, i.e.,
Curiosity. Unfortunately, there is no Internet connectivity
on the battlefield and the only way to share is to use the
short-range communication offered by smartphones. There-
fore, the scout would like to share the image with other
soldiers using their smartphones. We assume that the sol-
diers are interested in getting information about the mission
and subscribe using their smartphones.

Haggle: A Possible Solution: To exchange information
in such scenarios, we can leverage opportunistic networks,
such as Haggle. Using Haggle, the scout publishes the im-
age with Curiosity as a tag. Any soldier can express interest
in Curiosity by subscribing to it, as illustrated in Figure 1.
Here we assume that someone acting as a broker receives
both the interest and the tagged image. Whenever that
happens, the broker checks whether the interests of a sub-
scriber matches any tags associated with the image. If so,
the broker forwards the image to the subscriber(s).

Privacy and Confidentiality Issues: First of all, to pre-
serve confidentiality, the information about the Curiosity
mission should be shared only within a particular group of
soldiers. Each content item is associated with an access pol-
icy that indicates who should have access to it. For example,
information about the Curiosity mission might have a policy
(P) that content is shared with either a Major or a Soldier
from the Infantry unit. Even if the content (i.e., image) is
encrypted, the policy itself could reveal sensitive informa-
tion. An enemy may infer useful information from the fact
that some contents are sent to a Major or a Soldier from
the Infantry unit. Outsiders (i.e., enemies) and insiders (i.e.,
soldiers) serving as brokers may gain unauthorised access to
contents. Furthermore, the interests of subscribers and the
tags associated with the content may also reveal sensitive
information. Therefore, in addition to the content itself, its
associated tags, policies, and subscription information (i.e.,
interests) should also be protected.

This scenario motivates the need to tackle the security
and privacy issues that we generally face in opportunistic
networks. In the following section, we list some major re-
search challenges inherent to these issues that we address in
this paper.

2.3 Research Challenges
To guarantee the preservation of privacy for interest and

content sharing in opportunistic networks, the following re-
search challenges related to both (i) privacy and confiden-
tiality (i.e., C1-C3 ) and (ii) functionality (i.e., C4-C5 ) need
to be addressed:

C1 In the presence of unauthorised brokers, how do we reg-
ulate access to disseminated content and preserve con-
fidentiality?



C2 In the presence of curious brokers, how does the network
exchange content without compromising the privacy of
its subscribers?

C3 How can a subscriber obtain content without exposing
her interests to untrusted brokers?

C4 In order to minimise the flood of unnecessary traffic
through the communication network, how do we en-
sure that a subscriber receives content if and only if
authorised to decrypt?

C5 Assuming the loose coupling of the publish- subscribe
model, how do we address the challenges above (i.e.,
C1-C4 ) without sharing keys between publishers and
subscribers?

3. SYSTEMMODEL
Before presenting our threat model and assumptions, we

identify the entities involved in the system:

Publishers are nodes that originate content.

Subscribers are nodes that express interests.

Brokers are nodes that may receive and disseminate both
content and interests. They evaluate whether available
content matches known node interests. On successful
evaluation, they forward content to subscribers.

Trusted Key Management Authority (TKMA) is an
offline entity that distributes cryptographic key mate-
rial (including private keys and public parameters) to
all nodes. This is done out-of-band (usually once in
the lifetime of a node, typically when the node is ini-
tialised).

Threat Model. We assume that brokers are honest-but-
curious, i.e., they honestly follow the protocol, but remain
curious to learn about content and interest. Also, we as-
sume that brokers may collude. Further, we consider the
TKMA to be fully trusted and assume that it only plays a
role at the time of system initialisation. Last but not least,
we assume only passive adversaries and do not consider ac-
tive adversaries that can manipulate the information being
exchanged.

4. APPROACH
In this section, we describe the proposed scheme for pre-

serving privacy during interest and content sharing in op-
portunistic networks. As a starting point, we consider some
basic schemes that partially address the research challenges
listed in Section 2.3. Next, we incrementally address each of
the research challenges. Finally, we describe the proposed
scheme.
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Figure 2: Regulation of access to content using CP-
ABE policies.

Scheme I: Regulate Access to Content
To preserve the confidentiality of content, a publisher can
specify who should have access. One possible approach for
the publisher to regulate access to content is by employing
an ABE scheme, such as CP-ABE [4] or KP-ABE [9]. ABE
supports fine-grained policies for limiting content access. In
this work, we consider CP-ABE because it allows a publisher
to exert control over access to content, as described in the
use case scenario. In contrast, with the use of KP-ABE, a
key generation authority controls who can access content.

Figure 2 illustrates the scheme where the image is en-
crypted according to this policy: either a Major or a Solider
from the Infantry can gain access. The policy is expressed
as a tree whose leaf nodes represent the attributes; non-leaf
nodes denote the AND, OR and threshold gates. In this
scheme, a broker forwards content to subscribers if their in-
terests match the content’s tags.

This approach preserves the confidentiality of the dissem-
inated contents without providing access to unauthorised
brokers. This scheme, however, has a drawback. A broker
might send content to subscribers who might not be able to
decrypt it. In fact, a broker’s role is merely to match the
interest of subscribers against tags associated with content
(without checking whether a subscriber has access authori-
sation). For instance, consider a subscriber who is a soldier
but neither a Major nor a member of the Infantry unit.

In summary, this scheme resolves the access control prob-
lem (C1) while raising the problem of a communication net-
work flooded with unnecessary traffic (C4).

Scheme II: Refined Authorisation Checks
This scheme extends Scheme I and resolves the flooding
problem C4. In this scheme, a subscriber may send at-
tributes and interests to brokers so that a broker can per-
form an authorisation check prior to forwarding the content.
To perform the authorisation check, a broker matches leaf
nodes in the policy tree with the subscriber’s attributes. If
there is a match, a leaf node will be marked as satisfied.
After evaluating leaf nodes, a broker evaluates intermediate
nodes (including AND, OR and threshold) in the policy. A
broker will forward encrypted content to a subscriber if and
only if (i) the root node of the policy is marked as satisfied
and (ii) the interests match the tags.

This scheme targets both the access control problem (C1)
and the flooding problem (C4). However, it still has some
privacy issues. First, both the cleartext attributes of sub-
scribers and the cleartext CP-ABE policies can compromise
the privacy of subscribers, i.e., C2. For example, the enemy
may learn from the access policies that there is information
intended for a Major. Second, the cleartext interests of a
subscriber may also leak information, i.e., C3. For instance,
the enemy may learn that the content or interests concern
the Curiosity mission.

Scheme III: Hashing Private Information
In order to partially overcome the issue of subscriber privacy
(C2), a subscriber and a publisher may hash attributes and
leaf nodes in the policy tree, respectively. Similarly, a sub-
scriber’s interests could be protected by calculating the hash
values of interest items and content tags. In this scheme, a
broker forwards encrypted content to subscribers if and only
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Figure 3: Private information is hidden through re-
placement of leaf nodes in the CP-ABE policy (that
are tags, attributes, or interests) with their corre-
sponding hashes.

if (i) the hashed values of the interests match the hashed val-
ues of the tags (i.e., h(‘Curiosity’)) and (ii) hashed values of
attributes (i.e., {h(‘Soldier’), h(‘Infantry’)}) satisfy the pol-
icy P ′ whose leaf nodes are also hashed, as shown in Figure
3.
Unfortunately, this scheme is vulnerable to a pre-computed

dictionary attack. The enemy may pre-calculate a list of
hashes for possible attributes (and leaf nodes in the policy
tree) and a list of hashes for potential interest items and con-
tent tags). The pre-calculated list of hashes may reveal the
original attributes, leaf nodes in the policy tree, interests,
and tags.

Scheme IV: Countering Dictionary Attacks
To harden the system against pre-computed dictionary at-
tacks, a publisher can replace each leaf node in the policy
with the hash of a concatenated pair of a tag and an at-
tribute. Similarly, a user may subscribe using the hash of a
concatenated pair of an interest item and an attribute (i.e.,
{H(‘Curiosity’ || ‘Soldier’), H(‘Curiosity’ || ‘Infantry’)}) as
illustrated in Figure 4. In this scheme, a broker just needs to
check whether the items in a subscription satisfy the hashed
policy P ′. Upon successful evaluation, the broker will for-
ward the content to subscribers.
The advantage of this scheme is that it not only hard-

ens the system against pre-computed dictionary attacks but
also decreases the number of comparisons performed by the
broker when compared to Scheme III. This is because a bro-
ker performs integrated checks that cover both authorisation
and interest matching simultaneously in contrast to Scheme
III in which a broker must perform two separate checks:
one to check the authorisation and one to match the inter-
est. Though this significantly expands the range of elements
that must be computed in a dictionary attack, the scheme
is still vulnerable to adversaries with sufficient storage.
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Figure 4: Hardening against a pre-computed dictio-
nary attack through concatenating (i) each content
tag with a leaf node in the CP-ABE policy, and (ii)
each interest item with an attribute, then calculat-
ing the hash of each concatenated string.

PIDGIN: The New Scheme
Our proposed scheme, PIDGIN, aims to address all the re-
search challenges (i.e., C1-C5 ) listed in Section 2.3. The
main idea behind PIDGIN is regulation of access to con-
tent using CP-ABE and extension of cleartext CP-ABE poli-
cies with the Public-key Encryption with Keyword Search
(PEKS) scheme [5] to protect attributes, interests, tags, and
leaf nodes in the policy tree.

The PEKS scheme consists of four basic functions – Key-
gen, Etag1, Trapdoor and Test. For each attribute, we
run Keygen to calculate a key pair consisting of both public
(i.e., hSoldier) and private (i.e., xSoldier) keys corresponding
to the given attribute (i.e., Soldier). To protect policies and
tags, a publisher can replace each leaf node in the policy tree
with the output of the Etag function of the PEKS scheme,
which takes as input a tag (i.e., Curiosity) and the public
key of the attribute, as shown in Figure 5. A subscriber
protects attributes and interests by replacing each interest
item in the subscription list with the output of a Trapdoor
function that takes as input an interest item (i.e., Curios-
ity) and the private key (generated by the PEKS scheme)
corresponding to the attribute.

A broker performs matching under encryption between
transformed policies and subscriptions. It runs the Test
function, a building block that matches a trapdoor to an
encrypted tag. If an encrypted tag in the policy tree P ′

matches with any encrypted trapdoor in the subscription
list, the tree node is marked as satisfied. The broker evalu-
ates all nodes in the policy tree starting from the leaf nodes,
and progresses to the root. If the root is satisfied, the broker
will forward the content along with the encrypted policy to
the subscribers.
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Figure 5: PIDGIN protects the content, the pol-
icy, the tags associated with content, and the sub-
scriber’s interest and attributes.

5. DESIGN

Setup and Key Generation
During the initialisation phase, the system sets up both the
CP-ABE and PEKS primitives. The PIDGIN TKMA gen-
erates and distributes keys. It also generates a private set
of attributes (i.e., CP-ABE private keys) and sends these
securely to the subscriber via out-of-band communication.
The TKMA broadcasts the public part of attributes (i.e.,
CP-ABE public keys). Since the attributes are protected
using the PEKS scheme, the TKMA also generates a pair of
keys corresponding to each attribute. Similar to CP-ABE
key distribution, the TKMA sends the private and public
parts of the PEKS key pairs to the subscribers and publish-
ers, respectively. The major difference between the CP-ABE
private key set and the PEKS private key set is that the for-
mer is unique for each user, while the latter is not.

1The Etag function is called PEKS in the original paper [5].



Publisher’s Encryption
To protect the content and preserve the privacy of sub-
scribers, a publisher encrypts content with CP-ABE policies
and then protects the policies. The content is encrypted
with a symmetric cipher, such as the Advanced Encryp-
tion Standard (AES), as a performance optimization. The
symmetric key is encrypted with the CP-ABE policy. Since
the CP-ABE policies may compromise the privacy of sub-
scribers, the policies are encrypted using PEKS. While en-
crypting CP-ABE policies using PEKS, PIDGIN also incor-
porates tags that are associated with the published content.
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Figure 6: An extended CP-ABE policy with two
tags, i.e., ‘Curiosity’ and ‘Urgent’.

To extend CP-ABE policies for PEKS, a publisher con-
siders each leaf node in the policy tree as well as the tags
that are associated with the content. If there is just a single
tag then the publisher replaces the leaf node with the Etag
function’s output, as was illustrated in Figure 5. The Etag
function takes a tag keyword to be encrypted and the public
key corresponding to the leaf node under consideration. Af-
ter running the Etag function, a publisher gets an encrypted
tag. The Etag function does not leak information about the
tags or leaf nodes in the policy tree. In the case that there
is more than one tag, the publisher runs the Etag function
for each tag item and encrypts it with the public key cor-
responding to the leaf node under consideration. Finally,
the leaf node attribute is replaced with the subtree that is
the disjunction (i.e. OR) of the newly generated encrypted
tags. Figure 6 illustrates an example of a policy with two
tags, i.e., ‘Curiosity’ and ‘Urgent’.

Subscriber’s Encryption Phase
In order to protect the privacy of the interests and attributes
of a subscriber, each interest item is encrypted using the sub-
scriber’s private key (generated by the PEKS scheme) that
corresponds to the attribute. PIDGIN considers the possi-
bility that a subscriber might have multiple attributes and
interests. Each interest item is encrypted with each private
key (generated by the PEKS scheme) that corresponds to an
attribute. Figure 5 describes the case in which a subscriber
has two attributes and subscribes with a single interest item.
Let us assume that a subscriber instead has two interest
items, say ‘Curiosity’ and ‘Urgent’, while holding attributes
Solider and Infantry. The subscription list would contain
four items including Trapdoor(‘Curiosity’, xSoldier), Trap-
door(‘Curiosity’, xInfantry), Trapdoor(‘Urgent’, xSoldier)
and Trapdoor(‘Urgent’, xInfantry). The trapdoor repre-
sentation does not leak information about the interest item
or the attribute.

Broker’s Matching Phase
A broker opportunistically exchanges both content and sub-
scriptions. Once a broker receives both the encrypted sub-
scription and the encrypted content along with the encrypted
policy, it evaluates whether they match. For this, the bro-
ker runs a function that recursively evaluates the encrypted
policy tree. The Test function checks each encrypted leaf
node in the policy against the encrypted interest item in the
subscription.

The Test function returns either TRUE or FALSE, in-
dicating only whether the trapdoor matched the encrypted
tag or not, respectively. By running the Test function, a
broker does not learn the tag or the interest item because
both are encrypted and the matching only occurs under en-
cryption. If an encrypted tag in the policy tree matches with
any trapdoor in the subscription list, that node is marked
as satisfied. After evaluating the leaf nodes, a broker can
evaluate intermediate AND, OR and threshold nodes in the
policy tree to finally identify whether the root node of the
policy tree is satisfied or not. If the root node is satisfied,
the broker will forward content along with the encrypted
policy to the subscriber.

Subscriber’s Decryption Phase
Once a subscriber receives a piece of encrypted content along
with its encrypted policy, they must first recover the original
CP-ABE policy. Each leaf node (with a single tag, as in
Figure 2) or subtree of tags (if more than one tag is used,
as in Figure 6) is replaced with the corresponding attribute.
Before sharing their encrypted interests, a subscriber checks
a lookup table that associates attributes with corresponding
trapdoors. If a trapdoor matches any encrypted tag in the
leaf node of the policy, the lookup table will used to find
the corresponding attribute. Next, each leaf node (in the
case of a single tag) or subtree of tags (if multiple tags are
used) will be replaced with the attribute that was found. If
no match was found, a dummy attribute will be inserted.
This recovers the original CP-ABE policy (i.e., one shown
in Figure 2) that can be used by the CP-ABE decryption
function to get the symmetric key needed to decrypt the
content.

6. CONSTRUCTION
In this section, we provide some definitions and details

of core functions used in different phases of the PIDGIN
lifecycle.

6.1 Definitions
Policy Structure. We assume a policy tree P that rep-
resents an access structure. Each non-leaf node represents
an AND, an OR or a threshold gate. Let us consider that
numx denotes number of children of a node x and kx rep-
resents the threshold value. For OR and AND gates, kx is
1 and numx, respectively. For the threshold gate, the value
of kx is: 0 < kx ≤ numx. Let us consider that parent(x)
represents the parent of a node x, att(x) denotes the at-
tributes associated with leaf node x, and index(x) returns
the number associated with a node x, with nodes numbered
from 1 to num.

Bilinear Maps. Let G1 and G2 be two multiplicative cyclic
groups of prime order p. Let g be a generator of G1 and



e : G1 × G1 → G2 be a bilinear map. The bilinear map e
satisfies the following properties:

• Computability: given g, h ∈ G1, there is a polynomial
time algorithm to compute e(g, h) ∈ G2.

• Bilinearity: ∀u, v ∈ G1 and a, b ∈ Zp, we have e(u
a, vb) =

e(u, v)ab.

• Non-degeneracy: if g is a generator of G1 then e(g, g)
is a generator of G2, where e(g, g) ̸= 1.

Notice that the bilinear map e is symmetric since e(ga, gb) =
e(g, g)ab = e(gb, ga).

Hash Functions. We consider the hash functions:

H1 : {0, 1}∗ → G1

H2 : G2 → {0, 1}log p

Lagrange Coefficient. We define the Lagrange coefficient
∆i,A for i ∈ Zp and a set A of elements in Zp:

∆i,A(x) =
∏

j∈A,j ̸=i

x− j
i− j

6.2 Primitives
Init(1K). The init algorithm takes as input the security pa-
rameter k that determines the size of p. It randomly picks
two exponents α,β ∈ Zp and outputs the public key PK =
(G1, g, h = gβ , e(g, g)α) and the master key MK = (β, gα).
The public key PK is published while the master key MK
is kept securely by the TKMA. Moreover, two stores, the
Search Key Secret Store (SKSS) and the Search Key Pub-
lic Store (SKPS), which are managed by the TKMA, are
initialised as:

SKSS ← φ

SKPS ← φ

KeyGen(MK,A). The key generation algorithm is run
by the TKMA. It takes as input a list of attributes A and
outputs a CP-ABE decryption key and a set of search key
pairs. To generate the decryption key, it first chooses a
random r ∈ Zp and then a random rj ∈ Zp for each attribute
j ∈ A. Next, it computes the decryption key as:

DK = (D = g(α+r)/β ,

∀ ∈ A : Dj = gr ·H1(j)
rj , D′

j = grj )

Before the generation of a search key pair for an attribute
j ∈ A, a search key store (either SKSS or SKPS) can
be looked up. If the search key pair already exists, then
the public and private keys will be collected from SKPS
or SKSS, respectively. Otherwise, the algorithm chooses
a random xj ∈ Z∗

p, calculates hj = gxj , and updates both
private and public key stores as:

SKSS ← SKSS ∪ (j, xj)

SKPS ← SKPS ∪ (j, hj)

Next, it computes the search key secret as: SKS = (∀ ∈ A :
xj). Finally, the SKPS is publicised while the decryption
key DK and the search key secret SKS are securely trans-
mitted to the subscriber.

Etag(PK, hi, t). The Etag algorithm encrypts a given tag
t with hi. It chooses a random r ∈ Z∗

p and computes
z = e(H1(t), h

r). Next, it computes A = gr and B = H2(z)
and outputs the encrypted tag as: ET = (A,B).

Pub-Enc(PK,SKPS,C, P, T ). The publisher encryption
algorithm encrypts content C under the access policy P with
a list of tags T . It also encrypts P . In reality, it randomly
generates a symmetric key K and encrypts C as {C}K and
then encrypts K under P . To encrypt K under P , it chooses
a polynomial qx for each node x in a top-down manner, start-
ing from the root R, such that it sets degree dx one less than
the threshold value kx, i.e., dx = kx − 1. Starting from the
root R, it chooses a random s ∈ Zp, sets qR(0) = s and
chooses other dR points randomly. For any other non-root
node x, it sets qR(0) = qparent(x)(index(x)) and chooses
other dx points randomly. Let Y be the set of leaf nodes in
P . The ciphertext is computed as:

CT = (Ẽ = Ke(g, g)αs, E = hs,

∀y ∈ Y : Ey = gqy(0), E′
y = H1(att(y))

qy(0))

Next, the policy P is encrypted as follows. For each leaf node
i, it looks up the corresponding private secret key hi from
the SKPS. Then, it runs Etag(hi, t) for each tag t ∈ T and
combines all encrypted tags corresponding to an attribute to
form an OR subtree. The original leaf node attribute is re-
placed with this OR subtree. If only one tag exists in T , the
original attribute is replaced with the output of the Etag
function. This basically generates the encrypted policy P ′.
Finally, this algorithm returns PE = (P ′, CT, {C}K).

Trapdoor(xi, t). The Trapdoor algorithm encrypts in-
terest item t using xi. It returns the encrypted interest item
TD = H1(t)

xi .

Sub-Enc(I, SKS). The subscriber encryption algorithm
encrypts interest I using the attributes SKS. For each in-
terest item t ∈ I, it runs Trapdoor(xi, t) using search key
secret xi corresponding to each attribute i ∈ SKS. A sub-
scriber also maintains a history of subscription HS to keep
track of all trapdoors belonging to a subscription. HS is
initialised as HS ← φ and updated as:

∀i ∈ SKS : HS ← HS ∪ (i, TDi)

HS maintains each trapdoor with its corresponding attribute.
Finally, this algorithm publicises SE = (TD1, TD2, . . . ,
TD|I|.|SKS|) and keeps HS securely.

Test(ET, TD). The Test algorithm takes the encrypted

tag and trapdoor and returns TRUE if H2(e(TD,A))
?
= B

is TRUE and FALSE otherwise.

Bro-Match(P ′, SE). This algorithm takes the publisher
encrypted policy P ′ and the subscriber encrypted interest
SE and returns TRUE if they match and FALSE other-
wise. To perform the match, a broker runs Test(ETi, TDj)
for each leaf node i in P ′ and trapdoor TDj ∈ SE. If an en-
crypted leaf node matches with any trapdoor, it is marked as
satisfied (i.e., TRUE). After evaluating leaf nodes, the algo-
rithm evaluates intermediate nodes (AND, OR and thresh-
old). After this evaluation, if the root node of the encrypted



policy P ′ is satisfied, that is, TRUE, then this algorithm
returns TRUE and FALSE otherwise.

Sub-Dec(PE,HS,DK) This algorithm decrypts the policy
P ′ and then decrypts the encrypted contents PE. First, it
matches encrypted leaf nodes with a trapdoor in HS by run-
ning Test. If a match is found, the corresponding attribute
is selected from HS. The leaf node (if a single tag) or a sub-
tree of encrypted tags conjuncted with OR (if more tags)
will be replaced with the selected attribute. If no match
is found, then a dummy attribute will be placed. This re-
covers the original policy, which will be used to decrypt the
symmetric key: if node x is a leaf node then we assume
i = att(x) and run the following function if i ∈ A:

DecryptNode(CT,DK, x) =
e(Di, Ex)
e(D′

i, E
′
x)

=
e(gr.H(i)ri , gqx(0))

e(gri , H(i)qx(0))

= e(g, g)rqx(0)

If i ̸∈ A then DecryptNode(CT,DK, x) = ⊥. For a non-
leaf node x, the algorithm runs DecryptNode(CT,DK, z)
for each child z of x and stores output as Fz. Let Ax be an
arbitrary kx-sized set of child nodes z such that Fz ̸= ⊥. If
no such set exists then the node was not satisfied and the
function returns ⊥. Otherwise, it computes:

Fx =
∏

z∈Ax

F
∆i,A′

x(0)
z

(where i = index(z) and A′
x = index(z) : z ∈ Ax)

=
∏

z∈Ax

(e(g, g)r.qz(0))
∆i,S′

x
(0)

=
∏

z∈Ax

(e(g, g)r.qparent(z)(index(z)))
∆i,A′

x
(0)

(by construction)

=
∏

z∈Ax

(e(g, g)r.qx(0))
∆i,A′

x
(0)

= (e(g, g)r.qx(0)

(using polynomial interpolation)

If the tree is satisfied by A, we set

G = DecryptNode(CT,DK,R)

= e(g, g)rqR(0)

= e(g, g)rs

The symmetric key is decrypted by computing:
Ẽ/(e(E,D)/G) = Ẽ/(e(hs, g(α+r)/β)/e(g, g)rs) = K.

Finally, K is used to decrypt {C}K in order to access con-
tents C.

7. EVALUATION
PIDGIN is designed to optimize performance by encrypt-

ing content with a symmetric key. This keys is then en-
crypted with the CP-ABE policy. The leaf nodes in the
policy tree are protected using the PEKS Etag primitive
described by Boneh et al. [5]. PEKS is semantically secure
against a chosen keyword attack in the random oracle model,
assuming that the Bilinear Diffie-Hellman (BDH) problem
is hard (as proved by Theorem 3.1 of the PEKS paper [5]).
However, the CP-ABE policy structure is not protected and
leaks information about the number of attributes or tags
used. This leak could partially be tackled by the inclusion
of dummy attributes at the cost of increased complexity.
PIDGIN addresses the case where brokers collude but must
still not gain access to content, policies, or subscriptions. If
a broker colludes with a subscriber, together they learn no
more information than is already available to the subscriber
alone. In the case that two subscribers collude to receive
content that each of them alone cannot get otherwise, PID-
GIN remains safe due to the randomness embedded in each
subscriber’s (CP-ABE) decryption key.

Platform
As a proof of concept, we developed a prototype of PID-
GIN. It is based on an extension of the open source libfenc2

library that is written in C. The library includes an imple-
mentation of CP-ABE. Since we proposed to extend CP-
ABE with PEKS, we have implemented PEKS in C using
the PBC3 library. (PBC also used by libfenc.) PBC is based
on Elliptic Curve Cryptography (ECC). The curve we use
in our experimentation is of type A.
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2https://code.google.com/p/libfenc/
3http://crypto.stanford.edu/pbc/
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Figure 9: Effect of (a) tags, (b) attributes, and (c) both tags and attributes on publisher’s encryption time.

After extending CP-ABE with PEKS (on the x86 archi-
tecture), we cross-compiled it for the ARM architecture.
This allowed us to test the prototype on a Samsung Galaxy
SIII smartphone (running Android version 4.1.2 with kernel
version 3.0.31, and using 1 GB RAM and 1.4 GHz proces-
sor). To use the prototype, we cross-compiled both GMP4

(the GNU Multiple Precision arithmetic library required by
PBC) and PBC for the ARM architecture. These were all
installed on the smartphone. We present results that are
averaged over 20 runs.
Our analysis does not consider battery consumption since

the prototype does not implement energy-related optimiza-
tions (that could be deployed without compromising private
information). For instance, adding Time-To-Live (TTL)
tags to content and subscriptions can bound the quantity of
matching operations performed by brokers. Similarly, sub-
scriptions could specify bounds on the freshness of content.

Setup and Key Generation
During the initialisation phase, system-wide key material is
generated. In the key generation phase, both search and
decryption keys are generated for a given set of attributes.
Both phases can be run on a computer since the keys are dis-
tributed out-of-band. However, we have considered running
both phases on a smartphone (with the specifications de-
scribed above), should these need to occur in the field. The
initialisation phase takes 108.5 milliseconds (ms). The time
for generating search keys grows linearly with an increase in
the number of attributes, as illustrated in Figure 7 (where
30 search keys take 300 ms – i.e., an average of 10 ms per
attribute). Similarly, the key generation time for decryption
keys also grows linearly with an increase in the number of
attributes – 30 decryption keys take approximately 877 ms
(i.e., an average of 29.25 ms per attribute). Asymptotically,
the complexity of the key generation is Θ(|A|), where |A|
indicates number of attributes in list A.

Publisher’s Encryption
A publisher encrypts content with a randomly generated
symmetric key. Our prototype uses AES for the symmetric
cipher. The symmetric key is encrypted with the CP-ABE
policy for the content. The CP-ABE policy is extended with
tags that are also encrypted. Figure 8 shows the time to
perform symmetric encryption, which is seen to grow linearly
with the content size (C). Encryption of a piece of content
of size 40 kilobytes (KB) takes 0.105 ms (at an average of

4http://gmplib.org/

0.026 ms per KB). To measure the performance overhead
of the encryption time, we varied the numbers of tags and
attributes (A∗

P ), as shown in Figure 9.
Figure 9(a) and Figure 9(b) show the effect of the number

of tags and attributes on the publisher’s encryption time,
respectively. Figure 9(a) shows the effect of tags (ranging
from 2 to 10) while keeping the number of attributes con-
stant (i.e., 2 attributes - the minimum attributes required to
create a policy with an AND or an OR operation). As ex-
pected, the time to extend a policy with tags grows linearly
with the number of tags. Figure 9(b) reports the effect of
varying the number of attributes (from 2 to 10) in a policy
while using a single tag. The time for encryption of the sym-
metric key with the policy grows linearly with the number of
attributes. As the number of attributes increases, the time
to extend a policy with a set of tags grows linearly.

Figure 9(c) reports the most complex case, where we in-
crease both attributes and tags simultaneously. The growth
of the time needed to extend a policy with tags is quadratic,
depending on both the number of attributes and the number
of tags. We ran experiments with the same number of tags
and attributes to analyze this case. Extension of a policy
with 2 attributes, using 2 tags for each, takes approximately
120 ms, while extension of a policy with 10 attributes, us-
ing 10 tags for each, takes 1632 ms. More generally, the
asymptotic complexity of the publisher’s encryption phase
is Θ(|A∗

P | · |T |+ |C|).

Subscriber’s Encryption
Figure 10 shows the performance overhead incurred during
the encryption (in Figure 10(a)) and decryption phases (in
Figure 10(b) and Figure 10(c)). The subscriber’s encryption
phase complexity depends on the number of interest items
(I) and attributes (A∗

S).
We first examined the effect on the subscription time that

resulted from varying the number of attributes and inter-
ests independently. We increased the attributes from 2 to
10 while keeping the number of interest items constant (i.e.,
1 interest item). Generation of trapdoors for 10 attributes
with a single interest item each took 106 ms. Next, we ob-
served the effect of varying the number of interest items from
2 to 10 while keeping number of attributes constant (i.e., 2
attributes combined with either an AND or OR operation).
It took approximately 284 ms to encrypt an interest con-
taining 10 items. As illustrated in Figure 10(a), varying
only the number of attributes or interest items affects the
subscriber’s encryption time linearly.
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Figure 10: Effect of (a) attributes and interest items on subscriber’s encryption time. Effect of (b) attributes
and (c) tags on subscriber’s decryption time.

We also considered the case where both the number of
attributes and interest items varied. For this experiment,
we assumed that the number of attributes and interest items
are the same – that is, if there are two attributes, it means
there are two interest items per attribute as well. Similarly,
10 attributes were used with 10 interest items for each. This
took 1063 ms. The combined effect of attributes and interest
items causes quadratic growth in the subscriber’s encryption
time, as shown in Figure 10(a). The asymptotic complexity
is: Θ(|A∗

S | · |I|).
As explained above, the curve we used in our experiment

is of type A. Using this curve, the storage required for an
encrypted tag and a trapdoor are 256 and 128 bytes, respec-
tively.

Broker’s Matching
This is the most important step in PIDGIN. During this
phase, a broker attempts to match an encrypted subscription
with an encrypted policy associated with encrypted content.
We first examined the effect of varying the numbers of tags
and interest items independently, while keeping the number
of attributes constant (i.e., 2 attributes, the minimum nec-
essary to have a policy with an AND or OR operation). We
also consider both the cases where the policy contains AND
and OR operations, as well as the worst case when no match
occurs.
Figure 11 shows the performance analysis of this phase.

Figure 11(a) illustrates the effect of the number of tags
on the matching time while keeping the number of interest
items constant, i.e., 1. As the graph shows, the matching
time increases linearly with the number of tags. Similarly,
we measured the effect of the number of interest items on
the matching time while keeping the number of tags con-
stant, i.e., 1. Figure 11(b) shows that the matching time
grows linearly with the number of interest items. In both
Figure 11(a) and Figure 11(b), the OR policy takes less time
as compared to that of the AND policy, when a match oc-
curs. This is because both OR and AND operations use
short circuit evaluation to halt further policy analysis once
it is known to be true or false.
Finally, we consider the most complex case where the

number of tags and interest items are increased together.
Similar to the cases examined in Figure 11(a) and Figure
11(b), it takes less time to evaluate an OR policy when com-
pared to an AND policy. We considered the worst case in
which there are 5 tags and 5 interest items with a 2-attribute
policy combined with an OR. Since there are 2 attributes in

the policy tree with 5 tags each, there are a total of 10 leaf
nodes in the encrypted policy. The 2 attributes with 5 inter-
est items each will require 10 trapdoors in the subscription.

The broker checks whether any encrypted leaf node in the
policy matches any trapdoor in the subscription. In this
worst case, the broker runs the Test function 100 times,
taking approximately 1324 ms. In addition to this experi-
ment, we measured the overhead of running the Test func-
tion and discovered that it takes 13.28 ms. We can infer
that the primary overhead is from the Test function, which
is implemented with a bilinear pairing operation. Hence, the
matching operation heavily depends on the efficiency of the
bilinear pairing primitives. The best and worst case com-
plexities of this phase are Ω(1) and O(|A∗

P | · |T | · |A∗
S | · |I|),

respectively.

Subscriber’s Decryption
A subscriber receives a piece of encrypted content (along
with the corresponding encrypted policy) from the broker
if its encrypted interests matched. During the decryption
phase, a subscriber first removes the tags from the policy. If
they are successful, they can then perform decryption with
the policy to recover the symmetric key, which is finally used
to decrypt the content.

Figure 10(b) and Figure 10(c) show the effect of the num-
ber of attributes and interest items, respectively, on the sub-
scriber’s decryption time. In Figure 10(b), we increase the
number of attributes from 2 to 10 while keeping the number
of interest items constant i.e., 1. we consider both AND and
OR policies to see the effect of attributes on tag removal.
The performance overhead for the decryption that recovers
the symmetric key is also shown.

Figure 10(c) reports on the case where the number of in-
terest items are increased from 2 to 10 (but the attribute
count is kept constant i.e., 2). The publisher and subscriber
use the same tags and interest items, respectively, to en-
sure that the matching succeeds. The overhead does not
increase with the number of interest items. This is due to
our implementation of short circuit evaluation of policies
with AND and OR operations. The trapdoor in the sub-
scription matches interest items against tags in the policy.
This allows the policy evaluation to proceed without further
matching.

In the final step, a symmetric key is recovered if the CP-
ABE decryption succeeds. This symmetric key is used to
decrypt the content. Figure 8 shows the time required for
content decryption using AES. Decrypting a 40 LB piece of
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Figure 11: Effect of (a) tags, (b) interest items, and (c) both tags and interest items, on broker’s time to
perform matching under encryption.

Table 1: Description of symbols used.
Symbol Description

A List of attributes
A∗

P Llist of attributes used to encrypt content
A∗

S List of attributes used to encrypt interests
C Content
I List of keywords a subscriber is interested in
T List of search tags associated with content

Table 2: Complexity of each phase of PIDGIN.
Phase Best Case Worst Case
Key generation Θ(|A|)
Publisher encryption Θ(|A∗

P | · |T |+ |C|)
Subscriber encryption Θ(|A∗

S | · |I|)
Broker matching Ω(1) O(|A∗

P | · |T | · |A∗
S | · |I|)

Subscriber decryption Ω(|C|) O(|A∗
P | · |T | · |A∗

S | · |I|+ |C|)

content takes 0.87 ms (i.e., an average of 0.22 ms per KB).
The complexity of subscriber’s decryption is: O(|A∗

P | · |T | ·
|A∗

S | · |I|+ |C|) in the worst case and Ω(|C|) in the best case.
Table 2 summarises the complexity of each phase of PID-

GIN. The symbols used are described in Table 1.

8. RELATEDWORK
The problem of encrypted matching in opportunistic net-

works is an instance of the larger problem of search over en-
crypted data. Song et al. [22] propose a search scheme over
encrypted data based on symmetric keys. The symmetric
nature of the scheme rules out its applicability when mobile
nodes communicate with each other without any prior con-
tact. The PEKS scheme [5] supports search of encrypted
data in the public key setting. PIDGIN uses the PEKS
scheme as a building block; moreover, its usage in isolation
does not solve privacy and confidentiality issues in oppor-
tunistic networks because it lacks the ability to regulate ac-
cess to content while providing collusion-resistant decryption
keys.
ABE schemes can regulate access to content while guaran-

teeing collusion resistance. However, both the CP-ABE [4]
and KP-ABE [9] variants do not protect the policies and at-
tributes associated with content, respectively. PIDGIN uses
CP-ABE [4] as a building block after we protect the policies
(since the original CP-ABE scheme does not protect them).
The complimentary KP-ABE [9] scheme does not protect at-
tributes. While Goyal et al. leave the problem of encrypted
attributes as an open question [9], this challenging issue is
addressed in this paper.
ESPOON [2] can protect security policies in outsourced

environments. Asghar et al. [3] propose ESPOONERBAC to
extend ESPOON with Encrypted Role-Based Access Con-
trol (ERBAC) in outsourced environments. However, these
solutions [2,3,12] assume that there is no collusion between
a user and a server. Thus, none of these solutions [2, 3, 12]
are applicable to opportunistic networks where each node

can serve in all three roles – that is, publisher, broker, and
subscriber.

There are schemes that protect policies [13, 14, 16, 20] by
assuming that the policy is evaluated at the receiver’s end.
Furthermore, schemes offering hidden credentials [11] and
hidden policies [8] assume direct interaction between the
sender and the receiving parties. Unfortunately, such schemes
cannot work in opportunistic networks where policy enforce-
ment is delegated to untrusted brokers.

Shikfa et al. [21] propose a method that provides privacy
and confidentiality in the content-based forwarding setting.
However, their method is orthogonal to our work. Their
proposed scheme disseminates information in one direction
– i.e., from publishers, without taking into account whether
a subscriber is interested or not. In other words, it does not
provide the opportunity for a node to subscribe. Moreover,
our proposed scheme regulates access to content while offer-
ing more expressive and fine-grained policies when compared
to theirs [21]. Similarly, schemes [14, 16] hiding CP-ABE
policies assume end-to-end communication while we address
the case where brokers in the middle must make access de-
cisions before forwarding content in the network.

Nabeel et al. [15] provide a solution for preserving pri-
vacy in content-based publish-subscribe systems. In their
approach, brokers in outsourced environments make routing
decisions without knowing the content. However, they as-
sume that subscribers register with publishers prior to any
communication and that publishers share symmetric keys
with subscribers. This solution cannot work in opportunis-
tic network settings where loosely-coupled publishers and
subscribers may not have a chance to pre-arrange key shar-
ing with each other.

In the context of publish-subscribe systems, there are many
solutions that address privacy and security issues [6,19,23].
However, the state-of-the-art techniques are mainly based
on centralised solutions that cannot be applied to oppor-
tunistic networks, where each node may serve as publisher,
broker, and subscriber.



9. CONCLUSION
This paper presents PIDGIN, a privacy-preserving inter-

est and content sharing scheme for opportunistic networks
that does not leak information to untrusted parties. To show
the feasibility of our approach, we implemented PIDGIN
and evaluated its performance by measuring the overhead
incurred for cryptographic operations on a smartphone.
As evident from the performance evaluation, the real bot-

tleneck is the overhead incurred by pairing operations at the
brokers. In fact, an efficient pairing implementation would
drastically improve the performance of the system. Future
work could investigate possible optimisations and the use of
more efficient pairing implementations [10].
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