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ABSTRACT

Hosts connected to the Internet continue to suffer attadtkshigh
frequency. The use of an intrusion detector allows potktitiaats

to be flagged. When an alarm is raised, preventive action ean b
taken. A primary goal of such action is to assure the secafithie
data stored in the system. If this operation is effected ratyuhe

allow an extra level of defense to be introduced to preveposure
of the weaknesses that may exist in the system.

Efforts have been made to utilize information about thechtta
take precautionary measures automatically, such as tatimgrpro-
cesses or network connections. These approaches typédailio

delay between the alarm and the response may be enough for arcut off an attacker’s access to the execution environmem. last

intruder to cause significant damage.

The alternative proposed in this paper is to provide a respprm-
itive for intrusion detectors to utilize in automating thesponse.
We describe RICE, a modification to the Java file subsystemn tha
provides such functionality for data that is deemed to beatemed

by an attack. If it is activated when an intrusion appearslyiko
succeed, it guarantees the confidentiality, integrity aradlability

of the protected data even after a system is compromised.

In particular, RICE allows cryptographic encapsulatiordafa to

be reduced to simple key deletion so that it can be effectaidlya
Further, it uses digitally signed hashes of file deltas tovalun-
tainted data to be distinguished from the rest. Finally, didédtas
are replicated at a remote node to ensure that changes maxdte by
attacker can be undone using the remote replicas.

1. INTRODUCTION

Vulnerabilities in deployed software continue to be dismed and
exploited by attackers. If possible, the error in desigmlemen-
tation or configuration that results in a weakness ought tade
dressed directly. However, in many environments, userd bee
install, manage and continue to use software that may int®the
vulnerabilities. Here alternative preventive measurestrbe uti-
lized, such as firewalls and intrusion detection systemesg&ools
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line of defence is protecting the information stored its€His is the
focus of this paper. By allowing an intrusion detector t@ifdace
directly with the storage system through an exposed program
interface, we show how the cryptographic and replicatispoases
needed to ensure the security of the data can be automated.

Implementing runtime protection of data imposes an ovethieaw-
ever. If the data’s security is not critical, the impact onfpemance
may not warrant the changes, while in certain applicatibalearly
will matter. For example, in the context of financial systems
breach of confidentiality, integrity or continued availiiof the
data after an attack can be catastrophic. In such casesattenff
is weighted in favor of instituting additional protectiveeasures.

RICE is implemented as a modification of the Java Runtime-Envi
ronment. It provides intrusion detection applicationshaat sim-
ple programming interface to cryptographically disablad(ae-
enable with manual authentication) read access to subféte o
data stored in the filesystem. Using authenticated haslebmofes

to files, it allows unauthorized writes to be cryptographycde-
tected. Finally, it utilizes authenticated, encryptedliogpion of
deltas. This allows the changes made by an attacker to benando

RICE's efficacy is demonstrated through its use with a sinmile-
sion detector (modeled after Stat [11]) which leveragesdfsabil-
ities to automatically limit the consequences of imminetacks.
The overhead imposed by the cryptographic operations dseads
amined.

2. MOTIVATION

Current intrusion detection applications have limitechmsse op-
tions. They typically raise an alarm when an intrusion hasnbe
detected. The more advanced ones can tear down networkaonne
tions and kill processes. They do not have a means of protecti
the data on the system. In particular, the response is invaker

an intrusion is detected, at which point it may be too late tken
any guarantees about the security of the system.



We instead consider the case where the intrusion deteatdiake
proactive protective action before the intrusion comgefthis is
when a partial match to an intrusion signature has been teetec
In this context, tearing down network connections andrgjlpro-
cesses on a host are not viable options since they are naositgee
and because there will be high false positive rates evemgsarva-
tive thresholds are used for what is considered to be a pardih.
However, protecting the data (using cryptography) at thgeasge
of its accessibility is a reversible operation. While theed irre-
versibly alter the execution path of an application (whglumable
to access the data that it needs), this can be compensataddior-
grammatically exposing this information and allowing apafions
to respond to this exceptional condition.

3. GOALS

We outline below the envisioned goals of a storage systemmang
tation built for intrusion response. We also describe ther@gch
we take to achieving the goals.

Guarantee Security

Data security has three aspects - confidentiality, integrid avail-
ability. If the intrusion response primitives are utilizasldesigned,
they should be able to ensure that all three aspects of tlheadat
maintained. Since an attacker may achieve complete cafttbe
system, we can not rely on the operating system after ansiotiu
has occurred. This necessitates the use of cryptographyataug-
tee confidentiality and to verify integrity. In addition, émsure the
availability of data that may be deleted or otherwise modijfiee
data must be replicated at a remote node.

Reduce Mean Time To Response

If an intrusion detector is limited to raising an alarm, thaadre-
mains exposed to attack for a significant period until a marasa
sponse can be invoked. Instead the storage subsystem sitioutd
an intrusion detector to directly interact with it to involtee req-
uisite response. We achieve this by providing a simple pnogr
ming interface by which the intrusion detector can requestig
ular groups of data objects to be considered at risk. Thieredf
becomes the storage system’s responsibility. Since thascism-
pletely automated event, the mean time to response can beee:d
from minutes or hours to seconds.

Compartmentalize the Impact

Usability of a storage system response primitive can be rerdth
significantly by limiting its adverse impact on the parts loé sys-
tem that are not threatened. To achieve this, data is diviioked
groups (orthogonal to the access control groups in use)dteat
likely to be affected by particular intrusions. When proteemea-
sures are instituted, they should only affect the groupsaioimg
the targets of a current attack. This allows the rest of tiséesy to
continue functioning unhindered, improving system usgbind
reducing its vulnerability to denials of service createcdty trig-
gering of the protective measures.

Simplify Recovery

Adding security often reduces convenience. In the currentext,
once a set of data has been protected, it should no longeabe re
able, writes to it should not be authenticated and replitasild

Since the cryptographic keys needed to remove the protesotiould
have been deleted to prevent an attacker from being ablecessc
them, they must be recovered from a keystore. Access to the ke
store must be password protected for the same reason andethus
cessitates manual authentication by the system’s admaitostor
user (as specified by policy). To minimize the inconvenietiie
imposes, when a protection group is no longer deemed to berund
threat, instead of unprotecting it immediately, it is adtie@ pool

of candidates for unprotection. Only when a file from one efth
groups is accessed does the keystore get accessed. Atititigipo
the elements of the pool have their protection removed. &his
fectively amortizes the authentication over a number abvedes,
diminishing the inconvenience it causes.

Make Undoability Usable

The other aspect of undoing changes is what must be doneedfflin
an intrusion occurred. This is the utilization of the remepglicas
to reconstruct the filesystem to a point in time where it hadeen
subverted. The usability of the recovered state is depé¢ratethe
semantics of write operations. If there are no transactiguaran-
tees, files may be left with multiple pieces dating to différémes.
Such data is likely to be of little utility. The approach weelis to
allow recovery to be guaranteed at the granularity of tretitas
defined by the opening and closing of a file for writing.

4. BACKGROUND

Several projects have used cryptography to control datesacat
file granularity. Each has a difference from what we propobiiv
makes it unsuitable for application in the context we déscri

Cryptographic File System [1], Transparent Cryptograjtilie Sys-
tem [2], and Cryptfs [13] use only symmetric key cryptognaph
Guaranteeing a file’s integrity requires a means to chedkitthas
only been modified by an authorized party. If the key used tifyve
the hash of the file was of symmetric cipher then it could bel tige
modify the hash as well. An asymmetric cipher is requireditma
verification of integrity without allowing changes. Framaderms
of file operations, we need a asymmetric cipher to be ableaotgr
read access without write access.

Secure File System [9] and Secure File System - Read Only [4]
use asymmetric ciphers to provide authentication but nofiden-
tiality. Encrypting File System [10] uses an asymmetricheipfor
authenticated access along with a symmetric cipher for denfi
tiality. It does not sign hashes on writes which are verifiedeads,

S0 it is unable to guarantee integrity.

Secure File System [6] and Cepheus [3] target distributettam
ments and rely on the network for gaining access to keys. tApar
from the latency introduced by the network access, thisihtces
the weakness of allowing an attacker to cut off read and vaGte
cess to files by flooding the server port used to listen for estpu
for keys.

Finally, none of these systems aim to address the issue of ava
ability of data after a successful attack. RICE addressissbih
computing the changes made to files and storing them on a-diffe
ent host to allow file reconstruction should the original ander

be detected as untrusted. Once a threat is deemed to haelpass pe ayajlable after an intrusion. Additionally, RICE prosidan in-
these changes must be undone. There are two aspects totBis. T (arface for key manipulation to allow cryptographic gudeas to
first is what must occur at runtime, which is the removal of the pe added to read/write access denials with minimal ovethead

cryptographic protections.
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Figure 1: RICE’s augmentation of the storage subsystem al-
lows transparent data encryption, integrity hash checkingand
replication for threatened data. It exposes a programming m-
terface to allow an intrusion detector to activate the protetions
only when needed to minimize its impact on system usability.

5. OVERVIEW

Computing systems are designed to manipulate data. ltssitia
whose security is paramount and the final target of protectur
goal therefore is to assure that the data’s confidentialitegrity
and availability is maintained, even after the system isspraed.
We aim to achieve this by providing a response primitive tiaatbe
invoked by an intrusion detection system when it detectst@tla
that is likely to succeed. Invoking the primitive must erestirat the
data is encrypted to guarantee confidentiality, a hash sfsigned
to allow its integrity to be subsequently verified, and itaplicated
at another node so that it is available even if the local cepgst.

Effecting the above mentioned operations on a large dats set
computationally intensive task. The latency of the operatiould

be too high if it were to be completely executed at invocatiore.
Our strategy to address this issue is to minimize the cortipata
needed in response to a likely intrusion. This is done by main
taining data in a protected state until an application nestess
to it. At this point, transparent to the application, it igpesed as
described in Section 7.4. When it is no longer used by anyiappl
tion, it is transparently protected once again, as outlinegection
7.5. An overview of the scheme can be seen in Figure 1.

This process imposes an overhead whenever data is usetlhbast i
the benefit of allowing data to be rapidly protected, by singalet-
ing exposed copies of the data and the cryptographic keyriakate
needed for the transparent manipulations, as explaine@dtidh
7.6. Access to the data can be re-enabled by manual autsonic
as outlined in Section 7.7. The scheme uses mechanismsustmil
a cryptographic filesystem. The differences are highliglneSec-
tion 4.

We describe how RICE is utilized in conjunction with a profu

intrusion response engine in Section 8.1. The overheadri-in
duces during the normal operation of the system is evaluated
Section 8.2.

6. DESIGN

6.1 Protection Groups

Protection groupsllow predefined subsets of the data to be cryp-
tographically safeguarded atomically. We use them forrsdvea-
sons. Each group has a public key pair associated with itir Tke

is elucidated in Section 6.2.

The safeguards are instituted in response to threats. Baehtt
has associated with it a set of files that may be affected byhie
grouping is orthogonal to any operating system attributésan
intrusion detector determines the need to take precautigamst
a threat, one course of action is to safeguard the relevast fi\
protection group serves as the data structure used to tragkset
of files that are always affected together, regardless oft wie
current threat may be. Hence, a single threat may affect &aum
of protection groups.

Since protection groups are defined independent of any @iteer
attributes, they can be defined as arbitrary sets. This slfdes
that are unlikely to be affected by a threat not be safeguartlee
property also ensures that subsystems and applicationddheot
utilize data that is threatened can continue operating atbym

When a threat appears and a set of files must be protectedit is
perative that the safeguards be instituted in as short aperied
as possible. The longer it takes, the more damage can beegffec
in the interim. The use of protection groups allows the syste
perform a small number of key deletion operations on the ggbu
meta-data, rather than a large number of operations oneatlah-
stituent files.

6.2 Assurance

When the system is under threat of penetration, data musifee s
guarded. The aim is to guarantee three properties for the -dat
confidentiality, integrity and availability - that will hdleven after
a successful attack.

6.2.1 Confidentiality

Each file that is part of a protection group is kept encrypted i
symmetric cipher with its own unique key, which serves asya-
tographic capability This capability in turn is kept encrypted with
the group’s public key. If an attacker is likely to compromihe
system in a manner that threatens the protection group dfl¢he
the private key of the group will be deleted. This will prevéme
file's cryptographic capability from being decrypted. Wth the
file's capability accessible, the file's confidentiality isaganteed.

When an application seeks to use the file and its protectionpgr
has not been threatened, then the runtime environment éstabl
transparently enable access to the file by retrieving ifgtographic
capability (which can be unsealed with the extant proteagimup
private key), decrypting the file and then opening the tempgor
decrypted version. When the application is done with the ifils
re-encrypted and the temporary version deleted from thesys

If a file was still in use at the time of the penetration, alorithvthe
deletion of the group’s private key, the temporary decrgptersion



of the file will be deleted. Any changes made since it was last sealed with the file’s protection group’s public key. Thetdst-

opened would be lost, but its confidentiality would be mairee.

6.2.2 Integrity

In order to be able to verify the integrity of a file, a cryptaghic
hash of the contents of the file is maintained with the file'sane
data. To prevent the hash from being manipulated withoutcaut
rization, it is always sealed with the file’s protection go@upublic
key before it is stored. If the file is changed after being @&gkn

self is encrypted with the file’s cryptographic capabilithus, the
modifications are provided the same confidentiality andgiritie
guarantees as the original file. The sealed hash and theatelta
placed in a temporary location on the disk. A separate psoggs
chronizes the deltas with a remote node.

6.3 Virtual Layer

In order to implement the changes needed to provide the data s

then the hash Of the new VeI’Sion must be Computed, Sealed W|thcur|ty guarantees in a manner that is transparent to extmﬁba_

the protection group’s public key, and stored in the file'dardata.
When a file is opened, either for reading or writing, the filegsh

is computed and compared to the one stored in the meta-dtga (a
unsealing the stored hash using the protection group’sigrikey).

If the hashes match, the file's integrity is deemed to have bee
ified.

If an intrusion detector determines that a protection giisupreat-
ened, it deletes the group’s public key. Once this has beee, dmy
changes that an attacker makes to a file will be detectableceSi
the protection group’s public key is no longer present, itaspos-
sible to seal the hash of the changed version of the file. When t
file is accessed subsequently, the fact that the computéddues
not match the stored hash (after it has been unsealed witirthe
tection group’s private key), signals that the file's intgghas been
compromised.

If a file was in use when an intrusion occurs, the integrity rof a
changes that were made since the file was opened will not bediest.
This is due to the fact that the decrypted version of the filkhve
deleted without re-encrypting it (since that would introdwan un-
acceptable delay which an attacker may be able to exploit), a
hence since the changes will be lost there is no questionraf ve
fying their integrity. If the attacker does not alter the fitewill
remain in the state that it was before the last time it was ased
its integrity can be verified. If the attacker alters it, tieegrity
check will fail.

6.2.3 Availability
The goal of guaranteeing the availability of data in the fatan
attack is usually managed by instituting a regular backgmren.

When a system penetration is detected, data from a backap pri

to the intrusion is extracted and used to replace the tairgegion.

This is an inherently synchronous process, bringing withriec-

essary tradeoff. Increasing the frequency of the backupedses
temporal extent of data loss. However, it also imposes aeased
overhead. These two factors must be balanced. In addititvere
all the files are backed up or the entire filesystem must betrisg

to search for files that have changed. This fact places a loawgrd

on the time to effect a single backup. The bound grows witlsie

of the filesystem, a quantity that continues to increase tiitb.

We address the issue through the use of an asynchronousaappro
We incorporate functionality in the runtime environmentefhcopies
changes made in files to a remote node. If an attack is substygue

tions, it was necessary to introduce them in the operatistesy
itself. There are two possible approaches. The first opsoio i
modify the filesystem itself, altering its data structuresriclude
the new meta-data needed, along with the cryptographisfran
mations that use the auxiliary protection information. Blterna-
tive approach is to introduce the functionality asgréual layerover
an existing filesystem. When runtime environment calls aaelen
to operate on files, they can be intercepted and the new tranaf
tions effected if required, making calls to the native filtsyn as
needed.

With the latter approach, there is a further choice of whergtare
the security related meta-data. One option is store botmte-

data and the actual content in the native filesystem verdioheo
file. The other option is to maintain the meta-data separake

opted to use the virtual layer approach with the meta-datedt
separately. Described below are some of the factors that imer
volved in making the choice.

Using either a different native filesystem format or a vittiager
with the meta-data stored with the data within a single fil¢hie
native filesystem has several limitations. It will not lrackward-
compatiblewith any extant data stored in a currently deployed filesys-
tem due to differing formats. All that data will have to be =ap
over. The functionality provided by angttributesstored in the
meta-data of the old filesystem will either be lost or haveaads
implemented. The new filesystem will not be inter-operabith w
any other runtime system that does not have support for thditee
format. Additionally, the resulting system will not lextensible
that is if new attributes are to be added to the meta-datachf e,
they can not be inserted for each file without rewriting théren
filesystem.

Maintaining the meta-data separately brings with it theaatige

of being able to add new fields for existent files with littlesto
For example, to add functionality to retrieve a file's crygraphic
capability dynamically from a remote capability servertifs not
present, new fields would be needed to store the capabilipese
location. The cost to introduce the field into the meta-détees
separately would be proportional to writing out all the metda,
and would not incur the cost of having to write out all the data
stored in the filesystem as well.

Using a virtual layer approach with the meta-data storedrseely
from the files has the disadvantage that the native filesystgm-

deemed to have occurred, the prior state of any file that has be chronization of the meta-data can not be leveraged. Howthisr
changed can be computed using the sequence of changesuwbat ha is addressed by limiting the use of shared data structuatsrthst

been copied over.

be locked - they are used only when a file is opened and closed,
not when it is read or written. Therefore the overhead inived is

When a file is accessed, a copy of the original version is main- minimal.

tained. After the file is closed, the runtime determineséffite has
been written to. If it has, a delta is computed between thgiral

The approach of storing the meta-data with the data has the ad

version and the new version. A hash of the delta is computdd an vantage of allowing files to be transported from one filesyste



another, even across different hosts, and yet retain thetegtion
profile so that they may potentially be accessed indepelydeht
the resource in which they reside. Since we are focused om a si
gle host operating environment, this did not provide a $icgunt
advantage.

6.4 Protection Granularity

Another choice that must be made is the granularity at whigp-c
tographic operations are to be performed. Cryptographécsiik-

tem projects, such as those described in Section 4, eitleymn
or decrypt an entire file or just a block at a time. Operatinfilat
granularity results in a performance impact when openirmbcios-

ing a file, while operating at block granularity introducesdhead
for read and write operations.

6.4.1 Transaction Contract
Once an intrusion has been detected, it is necessary to eseth

quence of replicated deltas to undo the changes made by-the at

tacker so as to return the system to an untainted state. trype
tographic operations (and implicitly the contract of thensaction
between the application and the storage subsystem) weteckt b
granularity, then the semantics of the recovered stateduzeilun-
clear. To see why this is true, consider the following casssuine
that when a block is no longer being written to, the systenhneil
encrypt it and commit the changes to a remote node. Now censid
the implications when an application does a write which spaal-
tiple blocks, some of which have been re-encrypted andaateld
at the point in time that a likely intrusion is detected. Thsgonse
subsystem will delete the relevant keys, making the writethé
remaining blocks unauthenticated. After recovery, thedilecon-
tain some blocks containing part of the write operation ames
blocks reflecting the earlier state of the file. This leavesfile in
an unusable state. It is preferable to be able to ensure ithat e
the entire write can be authentically committed or the fila ba
reverted to the prior state.

6.4.2 Common Case

In addition to the issue of the semantics, we consider thdicaip
tion for performance. Reading and writing are far more commo
operations in a typical workload. As a result, it is reasd@adb
optimize this case at the expense of the case of opening asidg!

a file. We therefore opt to encrypt, decrypt and compute tsaghe
file granularity. Below we further describe the tradeoffdalwed in
the choice.

Performing cryptographic operations at file granularitgulés in

the fact that opening and closing a file, which is@f1) operation

in a traditional filesystem, becomes &X{n) operation, where:

is the length of the file. This is because the entire file must be
decrypted and its integrity verified when opening the fileni&irly,

the file must be encrypted and its hash computed when closing t
file. If blocks of sizeb are used and cryptographic operations are
performed at block granularity, then open and close opmratiave
O(b) = O(1) cost. One method to address this issue is to fix an
upper limit on the size of file that may be protected, ayThe
complexity of opening and closing a file is thén(k) = O(1) if
thek is a constant.

The advantage of performing operations at file granularignim
fests when files are being read and written. Operating aklgm-
ularity introduces the latency of decryption and encryptitiring
reads and writes. If operations are performed at file graityla

an unencrypted version is used during read and write opesatio
there is no cryptographic overhead. When the workload used i
volves concurrent accesses of files by multiple processésecoe
exists significant locality of reference, then the fact ttestds and
writes have no extra cost in this approach results in a pedace
advantage over the block granularity approach. If a siganifigor-
tion of the file is used, then operating at file granularity ragp
imates the use of an optimal pre-caching policy that haseperf
lookahead, coupled with an infinite size cache.

If the following conditions arell true for the files in the workload,
then using block granularity would have been preferable erg v
small fraction of each file is used (since operating on theefite
would add significant overhead), the file is not reused (shtoek
granularity reuse is much more expensive as cryptograpiecae
tions must be effected on each use), the file is not used byuconc
rent processes (since there is no extra cryptographic ddsiafor
all processes after the first that use the file).

7. IMPLEMENTATION

We now describe the organization of the meta-data usedptie t
Group Managerused to manipulate it manually, and the runtime
subsystemCapability Managerthat transparently manages it for
applications.

7.1 Meta-data

Each file that is protected by RICE has several attributesate
stored in an instance of tl@bjectMetaData data structure. These
include:

objectLocation The location of the file in the filesystem at the
time of protection.

objectGroup The protection group to which the file belongs.

instances The number of concurrently open instances of that cur-
rently exist.

decrypted The location of a temporarily unencrypted version (if
one exists) of the file.

pristine The location of a temporary copy of the file in the state
that it was when the file was opened, before any writes oc-
curred. It only exists if a file is currently open and serves as
a baseline against which deltas of the file can be computed.

sealedCapability The cryptographic capability (symmetric key)
used to encrypt the file, wrapped in the public key of the
protection group of which it is a member.

capability The value of the unsealed cryptographic capability, which
is only present while the file is open.

currentCheckpoint A counter used to indicate the position in the
sequence of deltas that are computed each time afile is closed
after changes have been made.

computeDelta The value serves as the equivalent of a dirty bit on a
page. Itindicates whether any instance of the file was opened
for writing, in which case a delta must be computed when it
is closed.

sealedHashThe cryptographic hash of the file as it was when it
was last closed, kept sealed in the protection group’s publi
key.



idempotency Each instance of an open file has a unique hash as-
sociated with it that is stored in this set.

Each protection group is stored in an instance ofGgectGroup
data structure. Each instance contains the group’s nameuliic
key (used to seal the cryptographic capabilities and hashiies
in the group) and its private key (used for unsealing thopaloi:
ities and hashes). In addition it contains a hashtable oftprs to
the meta-data of the group’s members, which is indexed bfuthe
path of the member’s location in the filesystem.

Finally, theResourceglata structure contains two hashtables. The
first is indexed by the names of protection groups, assagatie
group name with a pointer to the group’s meta-data, from kwhic
a list of all member files may be extracted. This is used when a
group is to be protected, since each member’s decryptedrésid p
tine copies must be erased if confidentiality is to be guaeht
The second hashtable is indexed by the full path of a file. Upon
being queried about a file, it returns the meta-data of thamto
which the file belongs.

7.2 Group Manager

The GroupManager is a tool for the administrator to manually
manage the protection status of files. It performs all op@naton
agroups databaswhich stores all the meta-data associated with all
the files of all protection groups. To make changes to thislete,

a password is required. By maintaining the meta-data of ittieal
layer in this manner, it is possible to have multiple grougtabases
and switch between them to institute a different protectioficy.

We describe below the operations that may be performed tising
GroupManager.

All operations require a password since they all read orevthie
groups database. The password is used to create a symnestric k
which is used for decryption of the groups database wheéiisy
read and encryption when it is being written. The operatioost
also specify the type of operation by passinmadeparameter to
the GroupManager, and the file in which the groups database is
stored.

7.2.1 Capabilities File

Since the runtime system requires transparent access toetse
data, theGroupManager can be use to generateapabilities file
which is not password protected usingaitputoperation. During
the course of execution, this capabilities file will be manéped
by the runtime since it needs to update the cryptographibdsas
(used for integrity checks) of files that have been written To
allow the groups database to reflect these changes, thentafite
a capabilities file can be transferred to a groups databasg te
input operation.

7.2.2 Group Listing

For convenience, the groups database can be interrogatiedhei

list operation. If a specific group name is passed as a parameter
then the files which are a member of the group (if any) arediste
Alternatively, if no parameter is passed, then the list afeuotly
defined protection groups is generated and emitted.

7.2.3 Altering Membership
Finally, a file may be added to a protection group with dlde op-
eration by specifying its current location in the filesysteththe

file has previously been added, the request will not alteisthte

of the meta-data. Files may not be added to more than one pro-
tection group. Files that would be members of the intereaatif
protection groups should be combined into a new, separategr

tion group of their own.

If the protection group does not exist, it is dynamically ates,
including a pair of public and private keys for sealing andealing
its members’ capabilities and hashes. A hash of the plairisile
computed before encryption and is sealed with the grougdipu
key. A new cryptographic capability (symmetric key) is gexted
for each file that is added. The file is encrypted with this ledter
which the key is sealed with the group’s public key.

The removeoperation can be used to remove a file from a protec-
tion group of which it is currently a member. The file is de¢ag
using its cryptographic capability retrieved by unsealingith the
group’s private key. Similarly, the file’s integrity is véidad by com-
puting its hash and comparing it to the one stored in the rdata-
(after unsealing the hash with the group’s private key).askoci-
ated meta-data is then deleted. If the file was the only member
the protection group, then the group and its associated-data
are also deleted.

7.3 Capability Manager
7.3.1 Platform

We implemented th€apabilityManager as a modification of Sun’s
Java Runtime Environment. The underlying implementatiballo
classes that provide an interface to files is through the tisieeo
java.io.FilelnputStream and java.io.FileOutputStream classes.
Our implementation hence instruments these two classastiee-
tors andclose()methods. (Version 1.4 of the Java Runtime Envi-
ronment introduced a new subsystem for non-blocking inpat a
output, which accesses the filesystem through native Virhza
chine calls. RICE does not support manipulation of files gisie
java.nio subsystem.)

In principle, however, the design of ti@apabilityManager sup-
ports the augmentation of multiple classes, not justjéve.io.-
FileInputStream andjava.io.FileOutputStream classes. This is
because the only state that is stored in the class which ésviie
CapabilityManager is the name of the file used in the constructor
so that it can be passed back to @a&pabilityManager after a file

is closed to allow the file to be re-protected. Hence, addipgsrt

to new classes only requires the addition of a single fieldahe
and the instrumentation of the constructors alu$e()methods.

7.3.2 Initialization and Committal
The CapabilityManager takes two parameters. The first is the ca-
pabilities file referred to in Section 7.2. All meta-datatioe virtual
layer is stored and manipulated in this file. The second pei=mns

a location on disk where deltas are stored temporarily it are
computed for files that are modified by writes. They are tremetl
from this location to a remote node by an independent process

When the runtime environment starts, the first time eithdeadad

or write operation occurs, an attempt is made to loadhpabili-
tyManager. If either required parameter is not provided or there is
an error, the system will run without thf@apabilityManager and
files that are members of protection groups will only be asiees
ble in the encrypted form. During initialization, the viailayer is
populated with meta-data read in from the capabilities file.



While the system is operating, if at any point all the files rogm If not, then the decrypted version and pristine copy of the dile

by applications are closed, the meta-data from the virtg is both deleted.
committed to the capabilities file. This choice allows thdardata
to be committed in a coherent state and assures that it iewott If the CapabilityManager found that the file had been opened for
before the runtime shuts down. writing, it needs to commit the changes. It must first checkde

if the file’s protection group’s public key exists. It thennsputes
7.4 Opening a File the delta of the file as the difference between the pristipy emd
When an application constructs a class that provides atcebs the current state of the unencrypted version. It computebaish of
fi|esystem, a call is made to the virtual machine’s nat'vmn() both the file as well as the delta and seals each hash Wlthd)be’gl’
method. We introduce code in the constructors to pass tmafile ~ Public key. The sealed hash of the file is stored in the fligect-
as a parameter to th@apabilityManager’s unsealFile()method. MetaData, while the delta and its hash are written out to a location
TheCapabilityManager inspectsResourceshashtable of all pro- ~ calculated as a function of the filename, itisrentCheckpoinand
tected objects and determines if the file in question is beiag- the parameter passed to tBapabilityManager at initialization.
aged by RICE. If it is not, it simply returns the same filenaifiee ThecurrentCheckpoinis then incremented.
virtual machine’s nativepen()method is invoked with the filename ) ) ) ) B
as it would in the absence of ti@apabilityManager. Each concurrent instance of a file that is opened is assdoidth

a unique token which is stored in tidgempotencyget. When a file

If the CapabilityManager determines that the file is being man- i closed, a check is performed to see if the token passedan as
aged by RICE, it looks up th®bjectMetaData for the file. With parameter is in the idempotency set. If it is not, then thetance

this it is able to check whether this file has been previoupgned ~ ©f the file was previously closed and the call is ignored, mgki
either by any executing thread (including the current otfé) has close()an idempotent operation as required by conventional seman-
not been opened, then a check is done to see if the file’s pimtec tics. In addition, unauthorized sealing of the file is preeersince
group’s private key is available. If it is, then it is used tcdypt the sealFile() operation requires that the same token be passed as
the file's cryptographic capability and sealed hash. Theodipy a parameter as the one that was passed to the correspamting

is used to decrypt the actual file, whose hash is computedame ¢~ SealFile()operation that was invoked when opening the file. This
pared to the unsealed hash. If the hashes do not match tigeiite ~ @ssumes that the choice of the token is cryptographicatigiam.
check is deemed to have failed and is flagged. In additionsinpei
copy of the file is made. The decrypted file is stored in a te@myor . .
location and it is this location that is returned by Bapability- 7.6 Runtlme_PrOteCtlo_n ] ] ]
Manager. If the CapabilityManager found that the file had been ~ When the system is running, if an intrusion response engine d
opened, then a decrypted file’s location would already begoe  t€rmines that a group is under threat, it can opt to use RICE to
in the ObjectMetaData and this would be returned. In either case, Cryptographically remove either write access or both remtierite
the returned value is used as the parameter when callingrthalv ~ 8CC€SS.
machine’s native@pen()method. ) ) )

To remove write access, it need only delete the protectionpgs
Since theCapabilityManager itself uses the filesystem, we intro-  Public key. Once this is done, files can still be written onlteal
duce a new constructor with an extra parameter. The paraisete f11€System, but the hashes of the new files and the deltas dechpu

used to determine whether ti@apabilityManager will be used can not be sealed with the public key. When a system is investi
when opening the file. The standard constructor also calsiev gated after a penetration, the changes that have not bewtsign
constructor, passing it a value that indicates @apabilityMan- be deleted, restoring the last signed versions. In this ewarine

ager should be used. This is transparent to applications (unless filesystem can be restored to a state where all unauthoriziéesw
they use reflection and depend on the fields stored in the)class ~ are leftout.

To remove read access, the response component only needs to i
voke thedisable()method and delete the private key used to unseal
cryptographic capabilities. Thaisable()method iterates through
the protection group’s member’s meta-data, deleting aeyparypted
and pristine files that are defined. Once this is done, if atpatien
occurs, there is no means (short of brute force key searajgito
access to the protected files (modulo covert channels sutteas
magnetic remanence of data).

7.5 Closing a File

When an application finishes using a file, it invokes these()
method of the class with which it gained access to the files friay
bejava.io.FilelnputStream, java.io.FileOutputStream or one of
the classes which in turn use these classes, sugva$.FileRe-
ader or java.io.FileWriter , to access files. We modify thedose()
method, allowing the normal operation to complete and th&w+
duce a call to theCapabilityManager’s sealFile() method. Two
parameters are passed, which are the filename andamgut-
eDeltavalue which signifies whether the file was opened for read- 7.7 Re-enabling Access
ing or writing. TheCapabilityManager inspects the relevare-
sourceshashtable to check if the file was protected by RICE. If not,
it returns silently.

To re-enable access to a group, the response componentlichae ca
enable()method. In this case, the group’s name is added to a set.
When an attempt is made to access any of the files in the set, the
system will attempt to authenticate the user manually atctre

sole. If it succeeds all groups in the set will be re-enabléd: use

of protection groups coupled with the process of combining-m
tiple protection groups’ re-authentication minimizes tregative
impact on usability.

A count is maintained in each file@bjectMetaData to keep track

of how many instances of a file have been opened. Each time a file
is opened, the count is increased and each time a file is ¢ldsed
is decreased. If this count reaches zero, no applicatioarigmatly
using the file. When this occurs, tiapabilityManager checks a

flag to see if any instance of the file had been opened for \gritin
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Figure 2: Attack exploiting an access validation error.

8. EVALUATION
8.1 Security Benefits

RheoStat([5] is a prototype detection and response engine. It uses

a formal risk framework implemented in the mod&skManager
to effect automated response on a host. Its model calculsesk
based on the threats, exposure to the threats and consegqu&nc
the threats. Threat levels are estimated using informatiaut the
extent to which intrusion signatures have been matchedte®ys
vulnerability is calculated based on the exposure allowgdhie
system’s current access control configuration.

RheoStat can manage the risk by reconfiguring the access con-

trol configuration. In the following experiments, it is médd to
manage the risk by invoking RICE’s protective measures. Whe
deems a group of files likely to be affected by an intrusiorin-it
vokes RICE'disable()command for the relevant group. As can be
seen from the following experiments, the response is ragieding
only a few system events for the data protection to be effiecte

The NIST ICAT database [7] contains information on 08e200
vulnerabilities in application and operating system safevfrom
a range of sources. These are primarily classified into seat
gories. Based on the database, we have constructed thaeksatt
with each one illustrating the exploitation of a vulnerépifrom a
different category. In each case, the system componenthvitiic
cludes the vulnerability is a Java servlet that we have eceahd
installed in the W3C'’s Jigsaw web server (version 2.2.2) |8k
describe below a scenario that corresponds to each attetidi
ing a description of the vulnerability that it exploits, thrusion

signature used to detect it and the way RheoStat responds. Th

global risk tolerance threshold is set2at

Access Validation Error

An access validation errois a fault in the implementation of the
access control mechanism. Although the access control s b
configured correctly, it can be bypassed. In our examplesehdet
implements logic to restrict access to certain documengéedan
the source IP address. However, if a non-canonical verdidineo
path is used, the servlet fails to implement the restricbarthe
source IP address. This access control implementation flawsa
the policy to be violated despite a correct configuration.

When the following sequence of events is detected, an attetk

Attack exploiting an Exceptional Condition Error
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Figure 3: Attack exploiting an exceptional condition handing
error.

exploits this vulnerability is deemed to have occurred.strithe
web server accepts a connection to @a@1 (the default port that
Jigsaw listens on). Second, it serves the specific HTML deaim
which includes the form which must be filled to request a file.
Third, the server accepts another connection. Fourth,dtes
the servlet that verifies if the file can be served to the clieased
on its IP address. Fifth, the decision to deny the requestigdd.
Sixth, despite the choice to deny the request, the file issgdue
to the non-canonical path not being classified correctlie @vents
must all occur within the pre-match timeout of the signatureich
is 1 minute.

In Figure 2, even6 and events$ — 12 correspond to this signature.
Eventsl — 5 and eventr are matches of other signatures which
cause the global system risk to rise. They occur since thetgve
in this signature overlap with those of other signaturesedvent
12, the risk has risen abo\#), the threshold of risk tolerance. As
a result, theRiskManager searches for and finds the risk reduc-
tion measure which has the lowest cost-benefit ratio. Thesarea
it selects is invoke RICE'disable()operation on the 'Documents’
object group which is data that is listed as being affectedamse-
quence of this attack. This causes the risk to drop in el&nThe
confidentiality of the files in the 'Documents’ group is maiimed.

Exceptional Condition Handling Error

An exceptional condition handling erraran result when the sys-
tem is left in an exposed state after an unexpected eventocitu
is due to the failure to explicitly design the system to fatk into
a safe state when unplanned eventualities are realizedurlexe
ample, when the servlet is authenticating the user, it checkst
of revoked accounts on another site. If does not receivepnss
after multiple queries, it grants access (on the assumghatrthere
is an error in the revocation server’s functioning). Theutésg at-
tack is mounted by first flooding the revocation server’s oekw
connection so as to assure that it can not respond, thezingilan
expired account to gain access.

When the following sequence of events is detected, an atteatk
exploits this vulnerability is deemed to have occurred.strithe
web server accepts a connection to i91. Second, it serves
the specific HTML document which includes the form which re-
quests authentication information as well as the desiredment.



Third, the server receives another connection. Fourthxatetes
the servlet that checks the authentication informationipex. Next,
an attempt is made to contact the revocation server to chatkite
credentials have not been revoked. Since the revocativerser
network connectivity is under attack, the connection toilt time-
out. After a total of three attempts, the check will fail, ameectly
allowing access instead of denying it. This results in tha fgixth
and seventh events being network exceptions, while thetreigh
the completion of the file request. The events must all océthninv
the pre-match timeout of the signature, whick iminutes.

In Figure 3, even® and events — 14 correspond to this signature.
Eventl and events — 7 are of other signatures. Eveht causes
the risk threshold to be crossed. The system searches feka ri
reduction measure and opts to use RICHigable()access to the
'Documents’ object group which is data that is listed as peift
fected as a consequence of this attack. This causes the &g

in eventl5. Although the attack itself will succeed and the intruder
will gain access to the system, all the data in the 'Docunigntsip
will now be secured by RICE. It will not be possible to decrgipy

of the files and any changes will not be authenticated.

Race Condition Error

A race condition erroresults due to the system performing a secu-
rity operation in multiple steps, while assuming that thgussce

is being performed atomically. In our example, a servieived a
user to create an account by providing a username and pakswor
The servlet creates a writable copy of the password file inma te
porary directory, to which it appends the new account inffan
before removing write permission and moving the file to thespa
word file’s usual location. The design assumes the copy,rahpe
change permission and move operations all occur atomicAly
attacker uses a file upload servlet running on the same raigtals
access to the temporary directory, by initiating the coratif a new
account while repeatedly uploading a spurious passwortbfilee
temporary location. By continuously, repeatedly uplogdhre file,
when the legitimate one appears it is overwritten by theispar
one. This can be used to grant greater privileges than theydwo
have been allowed as a new user having just created an account

When the following sequence of events is detected, an attetk
exploits this vulnerability is deemed to have occurred.strithe
web server accepts a connection to @ifd1. Second, it serves a
specific HTML document that includes a form for checking vileet
a username already exists in the system. Third, it receivethar
connection. Fourth, it executes the servlet that checkgsheh¢he
username is in use. Fifth, the password file is opened foringpy
to a temporary location. Sixth, a temporary copy is written. o
Seventh, the HTML document which includes a form for sefegti
a username and password is served. Eighth, the serveresceiv
connection. Ninth, it serves the HTML document which ingsad
a form for uploading files. Tenth, it receives another cotinac
Eleventh, it executes the servlet for uploading a file. Tikelthe
temporary password file is overwritten by the upload. Thinté,
another connection is accepted by the server. Fourtedethetvlet
for creating a new account is executed. Fifteenth, it appehd
new account to the temporary password file (which has been sub
verted at this point if the attack has not been interfereti)wit

In the Figure 4, evend, events8 — 14, event17, and event20,
pertain to this signature. Events— 4 and6 — 7 relate to other
signatures. Event5 also pertains to another signature but causes
the risk to exceed the threshold of tolerance. The systepones
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Figure 4: Attack exploiting a race condition error.

in event16 by activating a predicate to deny the write permission
for the password file in the uploads directory. Evéfipertains to
another signature but causes the risk to exceed the thdeshtull-
erance. The system responds in evEnhby activating a predicate
for the permission which controls whether the file upload/letr
can execute. The predicate activated is a Chinese Wall ahleick

will subsequently allow access only to other files in the sgnoep

as the servlet. Evertl pertains to another signature but causes the
risk to exceed the threshold of tolerance. The system refspion
event22 by activating a predicate for the write permission of the
temporary version of the password file. The predicate aetivis

a Chinese Wall check which will subsequently allow accedg on
to other files in the same group. Since another group hasdgirea
been accessed in evelit, the write permission for the temporary
version of the password file will subsequently be denied.c&in
the risk has not reduced below the threshold of tolerancathan
risk reduction measure is taken in evestin the form of invok-
ing RICE’s disable()operation on the 'Documents’ object group.
By event24, where the attack attempts to complete, the response
measures in place prevent it from succeeding. In particuldte
access has been disabled for the temporary version of the/pess
file in the temporary directory where uploads are allowedings
RICE, the integrity of the password file is thus maintained.

8.2 Runtime Overhead

In the previous sections we have described the benefits of aug
menting the runtime with RICE. However, the use of cryptpasa
implemented in software introduces a computational osthbat
slows down file operations. To estimate the extent to whicBERI
affects performance we describe two sets of experiments.

Since the use of RICE only introduces an impact when a file is
being opened or closed, the first experiments consists afomic
benchmarks that measure the cost it addspten()andclose()op-
erations. The cryptographic overhead is a function of the sf the
file that is being opened or closed. Hence, in the first expartiwe
vary the file’s size and measure the time to open the file. Td8s c
is independent of whether the file was opened for readingingri
or appending. The second, third and fourth experiments uneas
the cost to close a file, as a function of its size, after it hesnb
opened for reading, writing or appending. The cost to clofea
after reading is minimal since no encryption, hash or deltagpu-
tation is needed. In the case that the file is opened for writime
file is created with zero length and then filled so it reacheseth
pected size. The file opened for appending is already onetvigic
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Figure 5: Cost of opening and closing a RICE protected file,
measured as a function of file size. The cost of closing depend
on whether the file was opened for reading, writing or append-

ing.

the expected size and no extra data is written to it. Thustin the
write and append cases, the file that must be encrypted isthe s
size, but the append case requires less computation fairaotisg
the delta which results in the operation being less expensihe
results of these experiments are displayed in Figure 5.

The micro-benchmarks show that the impact of RICE on opening
and closing a file is significant. However, these operatiamst-
tute only a fraction of the cost of a typical workload. Theref we

ran the SPECjvm98 [12] suite of applications to obtain a macr
benchmark which would provide an estimate of RICE'’s impact i
context.

The SPECjvm98 suite includes a separate file for each atiplica
which contains output results that are used to check thapritre
gram ran correctly. RICE protection is added to these files. |
addition, all but one of the programs use one or more datésats
are stored in files. These files are protected with RICE as Wwhé
files vary in size fromb5 bytes t03.5 megabytes. The result of a
single run is shown in Figure 6.

compresss a Lempel-Ziv compressor. It is the worst affected in
terms of absolute cost since it accesses the largest file iwaoink-
load. db performs a series of add, delete, find and sort operations
on a memory resident database. It is worst affected in peagen
terms, since it uses multiple small files, with the result tha key
management overhead is pronounced.

checkexercises the virtual machine’s core functionality such as
subclassing, array creation, branching, bit operationghraetic
operations. All the overhead introduced by RICE is from tbstc

of opening the file against which the output is matched foreaxir
ness.

jessis an expert system that solves puzzles using rules andd list
facts. jackis a lexical parsemtrtis a ray tracermpegaudids an
MP3 decompressor. In each case, most of the overhead is fiemm t
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Figure 6: RICE imposes a noticeable impact on applicationsi
SPECjvm98 that rely heavily on the filesystem if limited to a
single run.
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Figure 7: RICE’'s overhead is noticeably diminished when
SPECjvm98 runs10 times, due to the benefits of caching.
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significant.



capability management. In the casenatit the overhead is greater
since it uses a significantly larger data set.

Since RICE is designed to take advantage of concurrent and re 1,

peated use of files, we undertook two more experiments where t
applications are allowed to repeat a number of times. Thisval
us to see the benefit of RICE when the workload involves regeat
access to the same files, either from a single process orpteulti
concurrent processes. The results of the experiment Wittuns

is shown in Figure 7. The cases where RICE’s overhead was most

pronounced, such ath show a marked improvement. Cases like

mpegaudicare still dominated by key management since the data

is streamed once and there is little re-use. Finally, thalteef
an experiment with 00 runs is shown in Figure 8. The impact of
RICE is no longer significant in these results.

Thus, if the workload has enough reuse of the files, RICE iBleia
as is. RICE uses Java implementations of cryptographicosubr
tines. Native ones will offer a significant performance imm-
ment. The experiments were performed or0& MHz processor,
while current generation ones run at speeds 8W8Hz. Since the
bottleneck that increased the running time of the appbecatiwvas
the CPU-intensive cryptographic operations, it is likaedyréduce
significantly with the use of newer, faster CPUs. In additioom-
modity processors will include dedicated hardware crygtphic
acceleration in the near future. This will address the issue

8.3 Caveat

As with all automated systems, it is possible for an attatkeiti-
lize knowledge of the response behavior of the system tods/pa
the protective measures. For example, in the case of intrus-
sponse engines which rely on anomaly detection, the attaokid
perform their invasive steps stealthily enough that thdlybielow
the threshold of what is considered intrusive. In such ¢aRESE
would not be invoked and its protections would not be actihemv
the system’s security is subverted.

Of greater concern is the possibility that an attacker méjzert
the protection measures to launch denial-of-service kdtagainst
legitimate users of the system. The attacker could efféstlif
attempting to learn the contents of the intrusion signatiatabase,
then launching partial attacks that cause the system tdéntioe
protective measures of RICE. This would cause the data todolem
inaccessible, an effective denial-of-service to runnipgligations.
One method to guard against this is to use timers on the d@tect
signatures, so that attacker is forced to be relatively eggive in
launching the attack, in which case an administrator idylike be
alerted in time to intercede. Such protections, howeverpayond
the scope of this paper.

9. CONCLUSION

RICE provides a means to augment the Java Runtime Enviranmen

to provide data security guarantees when invoked by ansiamnu
detecor. Using RICE, precautionary measures can be adaed-to
diate file access so that in the event of an attack, the conifidign
integrity and availablility of data can be maintained. Bypping
read and write capabilities to their cryptographic anaésgof con-
fidentiality and integrity, and organizing key managemegytra-
priately, RICE allows access to the data to be limited rapim
deletion of cryptographic keys. File modifications resnldeltas
that are replicated to a safe node, thereby guaranteeiniglaia
ity even after a penetration occurs. When the security ofitta
being protected with RICE is critical, the benefit of the aasues

will outweigh the performance impact (which can be ametieda
using cryptographic hardware acceleration).
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