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ABSTRACT

We present Trimmer, a state-of-the-art tool for reducing code size.
Trimmer reduces code sizes by specializing programs with respect
to constant inputs provided by developers. The static data can be
provided as command-line options or through configuration files.
The constants define the features that must be retained, which in
turn determine the features that are unused in a specific deployment
(and can therefore be removed). Trimmer includes sophisticated
compiler transformations for input specialization, supports precise
yet efficient context-sensitive inter-procedural constant propaga-
tion, and introduces a custom loop unroller. Trimmer is easy-to-
use and extensively parameterized. We discuss how Trimmer can
be configured by developers to explicitly trade analysis precision
and specialization time. We also provide a high-level description
of Trimmer’s static analysis passes. The source code is publicly
available at: https://github.com/ashish-gehani/Trimmer. A video
demonstration can be found here: https://youtu.be/6pAuJ68INnI.
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1 INTRODUCTION

Modern applications contain much functionality of which only a
limited subset of features are used in any particular deployment.
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These unused features (referred to as code bloat) decrease an appli-
cation’s performance, increase resource consumption, and raise the
probability of latent exploitable vulnerabilities [8, 9]. They impose
unnecessary load and security risks on devices, such as embedded
platforms with limited memory and power.

To counter code bloat, multiple prior studies [1, 3–5, 7, 10, 12,
13] have proposed static (compile-time) and dynamic (run-time)
techniques. Dynamic techniques [3, 7, 11] are slow and require a
set of detailed test cases that correspond to functionality that is
intended to be preserved. Some tools require users to understand
the details of the application code [7]. In contrast to some static
analysis-based tools, such as LLPE [13], that require significant
manual intervention, Trimmer is completely automated.

We describe Trimmer, an automated static analysis-based tool
that specializes a program for a specific deployment, removing code
that is unused in the target context. The usage context is defined by
the user through command-line inputs and application-specific con-
figuration files. Trimmer is LLVM-based infrastructure that uses
custom compiler analysis for input specialization, constant propa-
gation, and loop unrolling, with the goal of facilitating dead code
elimination. Trimmer takes as input a manifest file that includes (i)
constant command-line inputs to use for specialization , (ii) paths to
application-specific configuration files (if any) that include constant
configuration settings to use during specialization, and (iii) the path
to an LLVM bitcode module for the input program. As output, it
generates an executable binary specialized with respect to the given
static configuration settings. Trimmer is carefully designed to be
easy-to-use - the manifest file does not require developer expertise
and only requires high-level configuration parameters.

2 USAGE

Trimmer is invoked through a Python driver script, shown below:

python $TRIMMER_HOME/tool/trimmer.py [manifest-file]
[working-dir] [options]

The arguments to the script are: (i) the path to the manifest file
that describes the specialization context for a target application,
(ii) the path to the working directory where the intermediate and
final specialized files will be stored, and (iii) the list of options
passed to Trimmer. If options are not explicitly provided, Trimmer
uses a default set of values. The manifest file and the configurable
Trimmer options are described next.
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Figure 1: Example TrimmerManifest File

2.1 Manifest File

The manifest file contains the following key-value pairs in JSON
format:

• main: path to the input LLVM bitcode module.
• binary: name of the specialized binary that is emitted by
Trimmer.

• name: name of the application, which is used as the first
argv parameter.

• args: the list of arguments to use for specialization. Static
arguments used for specialization are specified as constant
strings, while dynamic arguments are specified with the
underscore symbol “_”. Dynamic arguments can be passed as
runtime values to the specialized binary.

• modules: (optional) a list of LLVM bitcode module depen-
dencies to be linked (e.g., static libraries).

• config_files: (optional) a list of application-specific configu-
ration file(s) to use for specialization.

• native_libs: (optional) a list of external libraries or object
files to be linked against the LLVM bitcode modules (e.g.,
precompiled headers)

• ldflags: (optional) a list of linker flags.
Figure 1 shows the manifest file we use for wget [6], a tool used

for scripted retrieval of content from web servers. The args param-
eter specifies the configuration arguments to use for specialization
- this includes a path to the configuration file wgetrc and _ (under-
score) as the dynamic argument for the target URL.

2.2 Trimmer Options

Trimmer provides options to customize the specialization for every
run.

Some important configurable options are:
Context Type: Trimmer supports both context-insensitive (one
clone per function) and context-sensitive (one clone per calling con-
text) constant propagation. The default is a sparse context-sensitive
mode in which expensive context-sensitive constant propagation is
limited to the program slice that is tainted by configuration hosting
variables [2]. This program slice is likely to include opportunities
for debloating code with respect to static configuration values.
Clone Limit: By default, Trimmer clones a specific function for
each unique context (i.e. set of input arguments) to create special-
ized function variant. The maximum number of clones per function

is limited by using the restrictLimit option. This option is useful
when dealing with recursion. It is also valuable when excessive
cloning increases code size.
Tracked Percent: In sparse context-sensitive mode, the tracked-
Percent option limits the number of configuration variables that are
analyzed in the constant propagation pass. The rationale for this
option is discussed in Section 3.1.
Use Globals: By default, all global variables are treated as non-
constant for specialization purposes to avoid excessive function
cloning. Since configuration values are rarely ever stored in globals,
Trimmer does not create specialized clones for functions by default.
This saves analysis time as it reduces the variables and functions
that need to be analyzed. For cases where configuration variables
are stored in globals, the user can enable the Use Globals option.

3 WORKFLOW / IMPLEMENTATION

Figure 2 shows the workflow of the Trimmer tool. Trimmer takes as
input a program compiled to a single LLVM bitcode module (which
can be achieved using llvm-link) and a user-configurable manifest
file (shown in Figure 1) that includes the constant parameters to
be used for program specialization. Trimmer includes five compiler
transforms that synergistically propagate constants throughout the
program control flow graph. These include passes for configuration
annotations, command-line input specialization, loop unrolling, file
input specialization, and custom constant propagation. Constant
propagation facilitates the folding of conditional expressions. For
example, if statements dependent on values that can be determined
are candidates for simplification. This in turn facilitates the removal
of basic blocks that are no longer reachable (and are therefore dead
code).

Configuration annotations, the first pass in the Trimmer work-
flow, identifies program variables that may host configuration val-
ues. The goal of this pass is to reduce the number of program
variables that need to be analyzed by the constant propagation
pass. Trimmer includes two different passes for incorporating user-
specified configuration constants in the program control flow graph:
(a) command-line input specialization, and (b) file input specializa-
tion. Trimmer provides a novel sparse context-sensitive constant
propagation transform, and a custom loop unrolling pass that uses
constant propagation results to provide more precise loop unrolling.
Since the constant propagation, file input specialization, and loop
unrolling passes have an iterative interaction with each other (e.g.,
constant propagation facilitates loop unrolling and vice versa), these
are developed as a single compiler transform for ease and efficiency
of implementation. However, since these are conceptually differ-
ent static analyses, we discuss them separately. After these passes,
the standard LLVM compiler optimizations are invoked - these in-
clude passes for global dead code elimination. The optimized LLVM
modules are then compiled into a native binary.

The algorithmic details of these transforms are described in
the Trimmer journal paper [2]. We summarize some of the key
implementation details below.

3.1 Identifying Configuration-hosting Variables

The configuration annotations pass performs taint analysis to iden-
tify variables that may potentially be modified by one or more
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Figure 2: Trimmer’s workflow

configuration values used for specialization. The analysis involves:
(1) a value flow graph (VFG) construction step that builds an in-
memory representation that captures both the control and data
dependencies of the program, followed by (2) a traversal over this
VFG to identify and mark tainted variables. For value flow graph
construction, we use SVF [14], a third-party tool that provides
various analyses including pointer analysis, call-graph analysis,
mod-ref analysis, and memory-SSA construction. We also provide
users with the ability to control the percentage of tainted variables
through an option, trackedPercent, that takes a value between 0 (no
variables tracked) and 100 (all variables tracked). The tainted vari-
ables are sorted by the number of load instructions of the target
variable. Variables with more loads are given higher priority for
analysis. For example, a value of trackedPercent = 5 means that of
the variables with highest number of loads, only the top 5% are
tracked for the constant propagation analysis.

3.2 Input Specialization

Trimmer provides an intuitive and easy-to-use interface for describ-
ing the intended deployment context. Users specify this context
through command-line inputs and configuration files.

3.2.1 Command-line input specialization. This pass specializes the
program’s main function with respect to static values in the argv
array specified in the manifest. The pass replaces loads (at the
LLVM level) from argv elements with corresponding constant val-
ues. These constants are then propagated throughout the program’s
control flow graph by our custom constant propagation pass.

3.2.2 File input specialization. This pass helps developers turn
application-specific configuration files into the target of special-
ization. Developers can specify both command-line inputs and
configuration files, or either of the two based on how a particular
program uses these parameters. The path to the configuration file
is specified in the manifest.

The file input specialization pass supports file open, read, seek,
and close operations. Write operations are not handled (beyond
creating an exception) since this violates the assumption of constant
configuration input. The pass performs a flow-sensitive analysis on
the file operations. It maintains and updates a file context for each
open file. This file context is an in-memory data-structure used to
track state such as file descriptors and their currently associated
offsets. The pass updates the contexts appropriately on each open,
read, seek, and close operation.

3.3 Loop Unrolling

Loop unrolling is necessary to facilitate constant propagation. The
default LLVM loop unrolling pass does not unroll loops with non-
constant trip count - i.e. an unknown number of iterations. This

leads to missed opportunities for specialization. Another limitation
is that it uses a static heuristic that estimates the dynamic cost of
running the instructions in unrolled form and only unrolls loops
that reduce this cost - e.g., when loads in a loop can be folded to
constants. This heuristic is limited in that it cannot accurately pre-
dict if loop unrolling will eventually facilitate constant propagation
downstream in the program’s control flow graph. Trimmer’s loop
unroller addresses both these issues with speculative unrolling - the
loop is peeled/unrolled for a certain number of iterations (set to
20 in our evaluation) and constant propagation is applied to the
unrolled loop body. This results in the constant folding of loop itera-
tors (or loop index variables) that provides further opportunities for
the constant folding of program expressions in the loop body. If the
loop is fully unrolled after constant propagation and the unrolled
loop has constants folded, the loop is left unrolled. Otherwise, the
loop is re-rolled.

3.4 Constant Propagation

LLVM’s standard constant propagation pass only performs con-
stant folding on virtual registers. It does not reason about vari-
ables in memory. Reasoning about virtual registers is easier than
memory since virtual registers are SSA values with explicit use-
def chains. Variables in memory can be aliased through pointers.
(They can be accessed in LLVM via the getElementPointer in-
struction.) Hence, reasoning about constants in memory requires
a flow-sensitive points-to analysis combined with concrete mem-
ory tracking (that follows the locations of constants). We devel-
oped a custom inter-procedural constant propagation LLVM pass
that reasons about static data in memory using flow-sensitive and
context-sensitive concrete memory tracking. It maintains a shadow
memory state for heap and stack allocations (effected by malloc
and alloca, respectively, in bitcode) that is updated when it en-
counters load and store instructions. Context-sensitive analyses
are known to face scaling challenges. Hence, we introduce a sparse
context-sensitive analysis that limits concrete memory tracking to
just the configuration-hosting variables. Trimmer also supports a
context-insensitive analysis mode - it may be less effective at special-
ization than sparse context-sensitive analysis but will have faster
running time. If a pointer escapes a module (in the case of an exter-
nal function call, for example), conservative assumptions are made
about memory side-effects; any corresponding memory allocations
are marked as non-constant.

3.5 Example Code

We walk through the Trimmer transformations passes with a sim-
ple C example in Figure 3. We show C code for ease of explanation.
The actual transformations are performed on LLVM IR (intermedi-
ate representation). The code snippet prompts for a configuration
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struct Config* config; //4 

int main(int argc, char** argv){ 

  config=malloc(sizeof(Config)); 

  char* file_path = argv[1]; //1 

  parse_config(file_path); 

  start_process(); 

  return 0; 

} 

 

void parse_config(char* file){ 

 char str[100]; //3 

 FILE* fp = fopen(path,”r”); //2 

 while(fgets(str,100,fp)!=NULL) 

  parse_string(str); 

 fclose(fp); 

} 
 

void parse_string(char * str){ 

 if(strcmp(str,”no_logging”)==0) 

  config-> logging_enabled=false; 

 if(strcmp(str,”no_plugins”)==0) 

  config-> plugins_enabled=false; 

} 

void start_process(){ 

 if(config->logging_enabled) 

  dump_logs(); 

 if(config->plugins_enabled) 

   load_plugins(); 

} 

void parse_config(char* file){ 

 char str[100];  

 FILE* fp = fopen(path,”r”);  

 fgets(str,100,fp); 

 parse_string(str); 

 fgets(str,100,fp); 

 parse_string(str); 

 fclose(fp); 

} 

 

char* s1 = “no_logging”; 

char* s2 = “no_plugins”; 

void parse_config(char* file){ 

 char str[100];  

 memcpy(str,s1,strlen(s1)); 

 parse_string(str); 

 memcpy(str,s2,strlen(s2)); 

 parse_string(str); 

} 

} 

char* s1 = “no_logging”; 

char* s2 = “no_plugins”; 

void parse_config(char* file){ 

 char str[100];  

 memcpy(str,s1,strlen(s1)); 

 parse_string1(str); 

 memcpy(str,s2,strlen(s2)); 

 parse_string2(str) 

} 

void parse_string1(char* str){ 

config->logging_enabled=false; 

} 

void parse_string2(char* str){ 

config->plugins_enabled=false; 

} 

 

int main(int argc, char** argv){ 

  char** argv_new = malloc(2); 

  argv_new[0] = “binary_name”; 

//specific to each application 

  argv_new[1] = 

“configuration_file.yaml”; 

  config = malloc(sizeof(Config)); 

  char* file_path = argv_new[1];  

  parse_config(file_path); 

  start_process(); 

  return 0; 

} 

Figure 3: (a) shows a C example code with 4 functions. The variables tainted by configuration annotations pass are numbered. (b)

shows main function after command-line input specialization. (c) shows parse_config function after loop unrolling. (d) shows

parse_config function after file I/O specialization. (e) shows parse_config and parse_string function after context-sensitive

constant propagation. Function parse_string is cloned twice, one for each callsite.

file name from the command-line, reads the configuration file, and
populates the configuration variable, Config, with configuration
parameters read from the file. Figure 3(a) shows the output of the
configuration annotation pass with four variables marked as con-
figuration hosting variables, since they are dependent on the user
input passed in argv[1]. Figure 3(b) shows the result of running
the command-line input specialization pass, with Trimmer creating
a new array variable to host the static values of argv. The uses
of argv are appropriately replaced. Figure 3(c) shows the work-
ings of the loop unrolling pass that fully unrolls the loop in the
parse_config function. Figure 3(d) shows how the file I/O special-
ization pass replaces file read calls with memcpy calls from global
constant strings. These global constant strings are created to host
the statically determined constant file data. Figure 3(e) shows the
code after the constant propagation pass is applied to the code in
(d). For the original function, parse_string, the constant prop-
agation pass creates two specialized clones, parse_string1 and
parse_string2. Each cloned version is specialized for a particular
constant argument str (corresponding to a parameter read from
the configuration file). The conditional (if) statements predicated
on strcmp calls in parse_string1 and parse_string2 are stati-
cally evaluated with respect to the constant strings. This constant
folding reduces the configuration parameters logging_enabled
and plugins_enabled to the constant False (assuming they were
False in the example configuration). This later allows for dead
code removal of the functions load_plugins and dump_logs.

4 EVALUATION

Benchmarks and Setup: We evaluate Trimmer on 20 commonly-
used Linux utilities. We selected a diverse set of applications includ-
ing web servers, compression tools, networking utilities, and an
SMT solver (yices). To construct realistic specialization scenarios,
we chose configurations that represent the core functionality of the
application while leaving out secondary (less used) features.

We conducted experiments using Ubuntu 16.04 as the operat-
ing system, running on a machine with a 1.8GHz frequency Intel
Core i7 (8th generation) processor configured with 16GB of RAM.
The baseline versions of programs used for size comparisons were
compiled with the -Os option (to optimize for size). For perfor-
mance comparisons, the baselines were compiled with -O3. We use
application-specific benchmarks when available for performance
measurements. Otherwise, we measure execution time on sample
inputs.
Code Size Impact: Trimmer provides a mean and maximum code
size reduction of 20.4% and 61.2%, respectively.
Performance Impact: The largest speedup observed was 53%
(aircrack-ng). For 5 of the applications(aircrack-ng, netperf, yices,
objdump, memcached), a performance improvement of 5% or more
was observed.
Security Impact: Trimmer removed 5 known vulnerabilities in 4
of the evaluated programs.

The detailed evaluation results are discussed in the journal pub-
lication [2].

5 SCOPE AND LIMITATIONS

Trimmer supports programs that can be compiled to LLVM IR. It
is most likely to provide size reductions in programs that include
multiple features, only a subset of which are used in a particular
deployment. Currently, Trimmer does not support function devir-
tualization (for resolving indirect calls). Due to this limitation, it
must make conservative assumptions about memory side-effects.
This potentially limits the code size reduction from specialization
of programs with polymorphic functions (as may be present in C++
applications, for example).
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