
Safeguarding Network Intrusion Detection Models from
Zero-day Attacks and Concept Drift

Brian Matejek1, Ashish Gehani1, Nathaniel D. Bastian2,
Daniel Clouse3, Bradford Kline3, Susmit Jha1

1Computer Science Laboratory, SRI International
2Army Cyber Institute, United States Military Academy

3Laboratory for Advanced Cybersecurity Research, Department of Defense
brian.matejek@sri.com

Abstract

Machine learning models are increasingly being adopted to
monitor network traffic and detect network intrusion. In this
paper, we develop a deep learning architecture for traffic
monitoring at the packet level. Despite high accuracy on in-
puts from the training distribution, these ML models fail to
generalize to novel inputs, which limits their efficacy in the
real world, where the network traffic is continuously evolv-
ing, and novel threats routinely emerge. Our deep learning
framework introduces a safeguard that quantifies uncertainty
in the decision made by the classification model. Our gen-
erative models learn class-conditional representations of the
internal features of the DNNs. We demonstrate the effective-
ness of our approach using packet-level CIC-IDS-2017 and
UNSW-NB15 network intrusion datasets. We withhold from
the training data certain attack categories to simulate zero-day
attacks. Our encoder-only transformer model, which achieves
an accuracy of over 99% when detecting known attacks, can
only classify 1% of the novel attacks. Our proposed model
safeguards that uses normalizing flows can achieve an AU
ROC of over 0.97 in detecting these novel inputs.

Introduction
An increasing amount of new malware originates every day
with both targeted and random attacks occurring against
individuals, businesses, and government entities at large
scales. These attacks often exploit known vulnerabilities or
attempt to overwhelm system capacity to steal privileged
information, disrupt legitimate traffic, and cause economic
hardship to the victims. With an ever-increasing number of
connected devices, manual monitoring of network traffic to
identify malicious behavior is simply too expensive and in-
feasible. This has motivated increased adoption of machine
learning (ML) (Leevy and Khoshgoftaar 2020), in particular
deep learning (DL) (Ferrag et al. 2020), to aid and increase
the bandwidth of cybersecurity professionals.

Traditionally, ML models for network traffic operate at
the flow-level (Sarhan et al. 2020; Wang 2015; Kim, Shin,
and Choi 2019). Network flow represents a continued con-
nection between two devices parameterized by the five-
tuple: (src ip, src port, dest ip, dest port, protocol). Flow
summary tools such as CICFlowMeter (Draper-Gil et al.
2016; Lashkari et al. 2017) and Zeek produce features
from the bidirectional flows on which an ML model can
be trained. These features include flow duration, bytes per

second, and flag settings. However, the features themselves
are highly variable to the flow capture mechanism and its
setup (Sarhan et al. 2020). For these reasons, we focus on
the packet-level classification pipeline that labels traffic into
benign and different attack categories at a per-packet granu-
larity. Expanding on existing work of packet-level classifica-
tion (Bierbrauer et al. 2022; De Lucia et al. 2021; Shenfield,
Day, and Ayesh 2018), we include header context in inputs
to our models to leverage additional information alongside
the raw payload bytes.

While DNNs achieve high accuracy on inputs from the
training distribution, they fail to generalize to novel in-
puts outside this distribution. Thus, their success on existing
datasets does not entail their effectiveness in a real-world de-
ployment where the network traffic is continuously evolving,
and novel threats emerge routinely. We address this chal-
lenge by proposing a model-agnostic safeguard for DNNs
that quantifies the uncertainty in the decision of any discrim-
inative classification model by assigning a confidence score
to each decision made by the DNN. The novel inputs are as-
signed low confidence and for such inputs, the decision by
the machine learning model cannot be trusted. A high rate
of detection of novel inputs by the monitor ensures wrong
decisions by the DNN are avoided, and a low false posi-
tive rate ensures that the needed bandwidth of intervention
(such as human experts) remains low. Thus, the proposed
model safeguard improves the robustness of the DNN net-
work intrusion detection models. This approach differs from
unsupervised anomaly detection algorithms which look for
concept drift before inference (Han et al. 2023; Rabanser,
Günnemann, and Lipton 2019). We note that this is not an
either-or situation. One could first detect anomalous inputs
in an unsupervised manner before using a discriminative
classifier. However, the classifier would still be susceptible
to out-of-distribution inputs, requiring a safeguard.

Without such robust models, system operators relying on
DNN models may have overconfidence in their network
security. For example, incorrectly labeled benign network
traffic may contain malicious payloads. In particular, DNN
models need to remain robust in the presence of novel inputs
such as zero-day exploits and distribution shift as network
traffic and payload distribution evolves. Although we can-
not currently expect models to generalize to correctly clas-
sify all packets from zero-day exploits without additional

Model Safeguard

Packet-Level Network Intrusion Detection Model

Internal DNN
Features

Predicted Class

Out-of-
Distribution

Detecting Zero-day Attacks
and Concept Drift

Predicted Class

Benign

Attack
Extracted Packets

Novel/OOD Packets

Benign Traffic
Malicious Traffic

Network Flow

DNN Keep Packet

Drop Packet

Further
Investigation

Benign

Attack

Model
Confidence

Generative
Model

Figure 1: Packet-level network intrusion detection system with model safeguards. Our architecture ingests raw packet data and
extracted information from the internet (IPv4) and transport layer (TCP/UDP) headers. We exclude information that is specific
to the configuration used in data collection and not generalizable to the real-world. The predicted class and the internal features
of the packet-level network intrusion detection model are used by the model safeguard. The monitor learns a class-condition
distribution of the internal features and quantifies the uncertainty in prediction as a confidence score (that reflects the distance of
internal features from the distribution of the features of the predicted class for any new input). The novel and out-of-distribution
inputs are assigned low confidence score and can, hence, be detected for futher investigation.

finetuning, it is critical to recognize these novel inputs as
out-of-distribution (Lee et al. 2018; Geng, Huang, and Chen
2020; Shen et al. 2021; Yang et al. 2021; Bulusu et al. 2020).
By adding model safeguards to the DNN models, we can
quantify uncertainty in the predictions from the models as a
confidence score. Previous research has shown DNN mod-
els make overconfident wrong predictions on novel out-of-
distribution inputs when considering softmax output (Guo
et al. 2017) as the confidence score.

The overall uncertainty-quantified and robust deep learn-
ing architecture proposed in this paper is described in Fig-
ure 1. We complement the DNN model used for detect-
ing attacks with a model safeguard that learns the class-
conditional distribution of the internal features of the DNN
model over the training data. For any new input at infer-
ence time, the predicted class and the internal features from
the DNN model are used to query the learned distribution
model for the likelihood of the input being in-distribution.
The confidence of the prediction is high for inputs which
have higher likelihood. The model safeguard-based archi-
tecture proposed in this paper applies to any DNN model
and architecture. We observe very high in-distribution ac-
curacy for the network intrusion datasets for relatively sim-
ple DNN architectures such as feed-forward neural networks
and convolution neural networks, as well as more complex
architectures such as transformers. Our model safeguard and
uncertainty quantification approach is agnostic to the DNN
architecture, and could even be used with non deep learning
approaches for latency restricted applications.

We make the follow contributions in this paper. First, an
encoder-only transformer architecture for the sequence to bi-
nary classification task that takes as input raw payload bytes
and output a benign and malicious labeling. Second, a thor-
ough analysis of the failures of this model in the presence
of novel attacks and concept drift. Third, a model safeguard
using normalizing flows that provides an uncertainty quan-
tification score for our model. We show that our model safe-

guard can accurately model the class-conditional distribu-
tions of our in-distribution data and provides high AU ROC
scores on the OOD detection problem.

Related Works
A significant body of research concerns the identification of
malware at different points of the attack pipeline. Some ML
models consider detecting malicious software at the earliest
possible point by analyzing raw binary files. Early methods
focused on identifying structural patterns within attributes
from the PE headers in Windows executables (Anderson and
Roth 2018; Saxe and Berlin 2015). More recent strategies
attempt to exploit the advancements in computer vision by
converting the raw binaries into images using N-grams (Mo-
hammed et al. 2021). As an alternative, Ling et al. con-
struct control graphs by unpacking and disassembling bina-
ries (Ling et al. 2022). Although these methods achieve high
classification accuracy, they are limited in scope as many
frequent attacks exploit buffer overflows by tailoring inputs
to otherwise benign programs (Butt et al. 2022). Further-
more, some disruption-oriented attacks such as the many
variants of denial-of-service exploit the very processes that
enable devices to interact like the SYN-ACK attack (Schuba
et al. 1997). Network intrusion detection systems (IDS) clas-
sify network traffic as benign or malicious (Sharafaldin,
Lashkari, and Ghorbani 2018; Moustafa and Slay 2015).
These setups can identify ongoing denial-of-service attacks
as well as advanced persistent threats (APTs) that have al-
ready infiltrated a compromised system.

Most existing efforts on learning-based network intru-
sion focus on classifying traffic flows with several avail-
able datasets (Sharafaldin, Lashkari, and Ghorbani 2018;
Moustafa and Slay 2015). However, there are several diffi-
culties in creating accurate training datasets for network in-
trusion detection such as adequately anonymizing data and
correctly identifying malicious flows, among other prob-

Flow-Level Datasets

Packet-Level Datasets

Zero-Day Exploits
(Novel Inputs)

Distribution-
Shifted Data

DNNs for Packet Classification

Model
Safeguards

Robust Decision
MakingHeader Features

1

2

3

4

5 6

7 8

Benign

Attack

Novel/OOD

Confidence

DNN Internal Features

Generative Model

Figure 2: System architecture overview. We first take existing labeled flow-level datasets (box 1) and convert them into packet-
level datasets by matching packets in a pcap file to their corresponding flows (box 2). We extract header features from the
packets to augment our ML feature space, taking care to exclude features like source and destination IP that are network
dependent (box 3). A DNN takes as input the payloads and header features to produce a binary classification of packets as
benign or malicious (box 4). Despite high accuracy on the binary classification task, our model fails when given novel inputs,
such as zero-day exploits (box 5) and inputs from a different time (box 6). We propose model safeguards that takes the internal
features from the DNNs, models their distribution, and produces confidence in the predicted class (box 7). This enables us to
have a robust decision-making process where we can classify inputs as benign, attack, or novel (box 8).

lems. Therefore, the Canadian Institute for Cybersecurity
(CIC) and Intelligent Security Group (ISG) at the Univer-
sity of New South Wales (UNSW) produced several datasets
that capture both benign and malicious network traffic in
small, simulated environments (Moustafa and Slay 2015;
Sharafaldin, Lashkari, and Ghorbani 2018; Koroniotis et al.
2019; Moustafa 2021). These datasets typically provide raw
pcap files summarizing all of the packets that pass through
a victim network. Frequently, the authors provide bidirec-
tional flow-level summaries produced by tools such as CI-
CFlowMeter (Draper-Gil et al. 2016; Lashkari et al. 2017) or
Zeek. These summaries include features such as flow dura-
tion, number of forward and backward packets, and number
of flags set, among others.

A significant amount of research considers the problem
of manually engineering features to capture traffic flows and
using these features for the detection of malicious flows.
Several different neural network architectures have been
explored (Maxwell, Alhajjar, and Bastian 2019; Pelletier
and Abualkibash 2020; Wankhede and Kshirsagar 2018;
Vinayakumar et al. 2019) in addition to the traditional ma-
chine learning models such as AdaBoost (Yulianto, Sukarno,
and Suwastika 2019) or random forests (Wankhede and
Kshirsagar 2018). Kim et al. train a convolutional neural net-
work (CNN) classifier on these features by transforming the
78-dimensional feature space into images (Kim, Shin, and
Choi 2019). Since flow-level detection is ex post facto and
real-time detection requires packet-level classification, real-
time detection requires packet-level detection. There has
been some work on packet-level detection of malicious traf-
fic (Wang 2015; Bierbrauer et al. 2022; De Lucia et al. 2021;

Shenfield, Day, and Ayesh 2018) wherein, the model takes
as input the raw payload data, typically from the transport
layer. These previous approaches have generally focused on
the discriminative models, with some analysis on transfer
learning in the face of concept drift (Bierbrauer et al. 2022).
However, they have not considered the problem of detecting
inputs outside of the training distribution.

The problem of overconfident incorrect prediction by
deep learning models on novel inputs that are out-of-
distribution has been previously reported in domains such
as computer vision (Guo et al. 2017) and several methods
to compute confidence of deep learning models in these do-
mains have been proposed. Broadly, these methods can be
categorized into two classes. The first are the supervised
techniques (Lee et al. 2017; Hendrycks, Mazeika, and Di-
etterich 2019; Meinke and Hein 2019; Kaur et al. 2021)
that require some exposure to the out-of-distribution in-
puts. This is impractical for cybersecurity where we can-
not assume even a small number of packets correspond-
ing to novel attack classes would be available at training
time. Unsupervised approaches use only the in-distribution
data. A direct approach is to use the softmax score of the
classifier as a confidence metric (Hendrycks and Gimpel
2016). ODIN (Liang, Li, and Srikant 2017) enhances the
softmax score by adding perturbations to the input and us-
ing temperature scaling to the classifier’s confidence. Re-
cently, (Macedo et al. 2021) proposed replacing softmax
scores with isomax scores and entropy maximization for de-
tection. Other unsupervised detection techniques based on
energy scores (Liu et al. 2020), trust scores (Jiang et al.
2018), and likelihood ratio (Ren et al. 2019) between the

in-distribution and OOD data points have been proposed for
detection. In contrast, we use a normalizing flow genera-
tive model for learning the distribution of internal features.
These uncertainty-quantification and out-of-distribution de-
tection approaches rely on learning the manifold or distri-
bution of training data and are known to be susceptible to
adversarial attacks (Jang, Jha, and Jha 2020).

Overview
We provide an overview of our system architecture in Fig-
ure 2. We take as input pre-existing flow-level IDS datasets
that also provide raw pcap files. Typically, these flow-level
datasets use a flow summary tool to create a set of labeled
features such as flow duration, and the number of forward
and backward packets, among others. The flow labels come
from existing knowledge of the test-bed architectures where
set IPs and timestamps correspond to malicious activity of a
certain type. Since the pcap files provided with the flow-level
datasets are not labeled, we process the data to create packet-
level datasets. We convert the packets into input features for
our neural networks by first taking the first 1,500 bytes of the
payload, and second, extracting relevant features. We need
to take care to not extract features that are trivially correlated
with benign and malicious behavior, such as source or desti-
nation IP. We consider an encoder-only transformer architec-
ture for the sequence to binary classification task. Although
our DNNs perform with high accuracies (> 99%) on in-
distribution data, we find that the networks perform poorly
when we mimic novel inputs (e.g., zero-day exploits), or
when the data consists of packets from a different timeframe
and network. We extract internal features from the DNN and
model their distributions through two methods to produce a
confidence (or novelty) score to produce during inference.
This end-to-end system enables us to produce packet-level
predictions with an uncertainty-quantification.

Technical Approach
Throughout our work, we use the following terminology: a
packet label refers to the binary classification of a packet
(i.e., benign or malicious), whereas a packet category refers
to the multiclass classification of a packet that further gran-
ularlizes attack types (i.e., benign, denial-of-service, heart-
bleed, fuzzers, etc.).

Packet-Level Capture
Most existing network IDS datasets provide flow sum-
maries with accompanying benign and attack category la-
bels (Moustafa and Slay 2015; Sharafaldin, Lashkari, and
Ghorbani 2018). We instead focus on classifying packets as
benign and malicious for a couple of reasons.

First, flow capture devices extract different features from
pcap files which creates difficulties when designing ML so-
lutions that must work across a wide range of differently
configured networks. Sarhan et al. use NetFlow (Claise
2004) to extract features from four publicly available IDS
datasets (Sarhan et al. 2020). NetFlow is easy to configure
and generates features using almost solely packet headers;
this ease of use, however, leads to a less expressive feature

space compared to hand-tailored flow capture systems. In
contrast, different packet capture technology running on dif-
ferent operating systems produce standardized PCAP files.

Second, learning benign and attack characteristics at the
flow level is inherently a retroactive process. One has to wait
for a flow to conclude before extracting features such as the
number of forward and backward packets sent, mean pay-
load length, and average time between packets, amongst oth-
ers. Although this can be very useful in postmortem contexts
where a network administrator wants to analyze fault points
in a system’s security after an attack concludes, it is a less vi-
able paradigm for identifying ongoing and incoming attacks.
By classifying packets as they arrive as benign or malicious,
one can actively reject traffic before the payload arrives at
its intended destination.

Extracting Header Features
We extract information from the packet headers to aug-
ment our input feature space. However, we cannot simply
input the entire header as our models will learn the setup
configuration of the testbed architectures. For example, an
ML model could trivially learn the source and destination
IP addresses that correspond to devices in the attack net-
work. Therefore, we carefully consider the header fields that
provide useful contextual information that is transferable to
other network configurations.

We only make use of the “Total Length” field in IPv4
headers. We divide this field by 65,536 to standardize the
value between 0 and 1. Notably, we do not consider informa-
tion in the “TTL”, “Protocol”, or “Address” fields. Although
time-to-live might be useful in real-world applications with
diverse network topologies, the publicly available datasets
have very few plausible attack paths because of the limited
number of victim and attack devices. We found that one
of the most cited IDS datasets (Sharafaldin, Lashkari, and
Ghorbani 2018) almost exclusively uses the TCP transport
protocol for attacks. Therefore, we exclude the protocol field
since the great imbalance is not indicative of the real world
where some attacks, such as UDP Flood, use the UDP proto-
col (Dittrich 1999). Lastly, most network IDS datasets have
set IP addresses for the victim and attack devices. Training
data with those fields would produce a model unable to gen-
eralize to other configuration settings.

For the transport layer headers, we produce a set of fea-
tures based on the source and destination ports. We can-
not simply produce a one-hot encoding for each port since
many ports would indicate benign or attack based on the
scripts that generate attacks on IDS datasets. After consider-
ing some commonly used network IDS datasets, we gener-
ate seven binary features for both the source and destination
ports of every packet. These features are non-exclusive, i.e.,
at least one but perhaps two of the features can receive a
value of one. We summarize the features in Table 1. Note
that we group ports 443 and 444—the heartbleed attacks on
the CIC-IDS-2017 dataset exploit the SSL vulnerability on
port 444. Lastly, we include the following eight flags from
the TCP header: CWR, ECE, URG, ACK, PSH, RST, SYN,
and FIN. We set these features to zero for UDP packets.

Table 1: We construct seven indicator features from the
source and destination ports. Features for sets that contain
a given port number receive a value of one.

Port Number Description
21 File Transfer Protocol (FTP)
22 Secure Shell (SSH)

80/8080 Hypertext Transfer Protocol (HTTP)
443/444 Hypertext Transfer Protocol Secure (HTTPS)
0 - 1,023 Well Known Ports

1,024 - 49,151 Registered Ports
49,152 - 65535 Dynamic/Private Ports

Deep Learning for Packet Data
We design a custom encoder-only transformer architecture
for the sequence to classification problem of going from
raw payload bytes to a binary classification of packets. We
use a simple tokenization scheme to convert our payloads
into vectors of tokens. We convert each byte in the pay-
load into the corresponding ASCII number. Thus, we have
a vocabulary size of 256 corresponding to the 256 char-
acter codes. We find existing subword tokenization strate-
gies (Kudo and Richardson 2018; Song et al. 2020) provide
sub-optimal results on payload data, in part because encryp-
tion and compression create high entropy payloads that do
not correlate to the structured text in natural languages. Our
encoded payloads are then input into a series of transformer
encoder blocks to create an embedding for each token (in-
put byte) (Vaswani et al. 2017). We then use mean pooling
to convert the array of embeddings into a single sentence
embedding (Reimers and Gurevych 2019). We then concate-
nate the header features to the sentence embedding and input
the resultant vector into three hidden fully connected lay-
ers with 256, 128, and 64 units. Each of the hidden layers
has a LeakyRELU activation with α = 0.01 (Maas et al.
2013) and batch normalization (Ioffe and Szegedy 2015) and
dropout regularization (Srivastava et al. 2014). The last layer
uses a softmax activation function.

Handling Zero-day Exploits
Machine learning models generally perform well when
given in-distribution testing data, i.e., data similar to the
training data. However, real-world cybersecurity defense
implementations will eventually receive data that falls out
of the training distribution. For example, zero-day exploits
cannot by definition exist in the training data. It is impera-
tive that any machine learning systems do not fail when such
exploits appear. Here, we focus on false negatives where
our model classifies packets from previously unseen attack
paradigms as benign.

We see similar characteristics between the zero-day ex-
ploit problem and the open-set recognition one in the
broader machine learning community (Geng, Huang, and
Chen 2020). In open-set recognition, a model trains on in-
complete data that does not include all classes that exist dur-
ing inference. We model this behavior by training ML mod-
els on the benign traffic and all but one type of attack. We
repeat this procedure for each attack category, to create N
trained models where each model corresponds to a single

missing attack type. We consider two different metrics for
success for our models: first, we can correctly classify the
unseen attack types as malicious, and second, we can rec-
ognize that the attack types are unfamiliar and flag them as
out-of-distribution. Correctly classifying unseen attacks as
malicious indicates that our model is learning general attack
patterns in the payloads themselves. For example, some of
the brute force attack methods have similar characteristics
and so removing one from training does not change the qual-
ity of inference. However, more often, when we remove an
attack from the training data, we classify those packets on
inference as benign. Thus, it is imperative to identify those
packets as out-of-distribution.

Handling Distribution Shift
Internet most-common and best practices continually
evolve, especially as privacy and security concerns become
higher societal priorities. As the landscape morphs, the
structure of the payloads changes, and previously trained
models can become outdated. In recent years, an ever-
increasing number of websites have transitioned from HTTP
connections to HTTPS. Sometimes this evolution occurs or-
ganically as more websites adopt existing libraries to im-
prove privacy. In such instances, we expect a moderate dis-
tribution shift over small stretches of time. We model the
natural distribution shift of network traffic by training on a
dataset from Q3 2017 and inferring on one from Q1 2015.
This 2.5-year difference corresponds to a significant period
of change from unencrypted (HTTP) to encrypted web traf-
fic (HTTPS), from approximately 30% in Q1 2015 to 60% in
Q2 2017, per the percentage of web pages loaded by Firefox
using HTTPS (letsencrypt). However, occasionally targeted
government mandates or external business pressures encour-
age the rapid adoption of a new framework or protocol, such
as when Google Chrome began labeling all HTTP connec-
tions as “Not Secured” in 2018 (Robbins 2021). These “seis-
mic” events can cause a significant break between the distri-
butions of current network traffic from previous months (by
Q2 2018, over 80% of web pages in the United States loaded
by Firefox used HTTPS (letsencrypt)).

Out-of-Distribution Detection
We extract the outputs from three intermediate layers from
our transformer neural network: that is, the first, second,
and third fully-conencted layers after the transformer blocks
and sentence embedding. We then model the distributions of
these features for benign and malicious packets using two
different methods.

We use normalizing flows for our model safeguard. In the
normalizing flows paradigm, a model learns a series of bijec-
tive transformations that can perform a one-to-one mapping
from a simple distribution, such as a multivariate Gaussian,
into a complex target distribution (Papamakarios et al. 2021;
Kobyzev, Prince, and Brubaker 2020). Since each transfor-
mation block is invertible, we can take a feature vector and
easily determine its corresponding value in the probability
density function of the complex distribution by applying a
series of matrix multiplications followed by the inverse of

the simple activation functions. In this way, we extract fea-
tures from the intermediate layers of our neural networks for
the in-distribution training data and train normalizing flows
that transform a multivariate Gaussian distribution into this
complex space. During inference, we extract features from
our network and transform the data into the multivariate
Gaussian space. By looking at the loss (i.e., the probability
that the vector belongs to the complex distribution), we can
order our inputs by the probability that they belong to the
training set distribution. Inputs with a lower negative log-
likelihood loss are more likely to be in-distribution. We train
two normalizing flows for each model, one each for benign
and attack network traffic. We only consider the normaliz-
ing flow model that matches the output label from our NN
classifier during inference.

There are several normalizing flow blocks common in
the literature (Dinh, Sohl-Dickstein, and Bengio 2016;
Dinh, Krueger, and Bengio 2014; Kingma and Dhariwal
2018; Sorrenson, Rother, and Köthe 2020), with each offer-
ing advantages and trade-offs during training and forward
and reverse inference. For our purposes, we use RealNVP
blocks (Dinh, Sohl-Dickstein, and Bengio 2016) that we can
parameterize with the following equation:

y = RΨ(sglobal)⊙ Coupling
(
R−1x

)
+ tglobal (1)

where R is a (deterministic) permutation matrix that allows
each feature to influence the others, ⊙ is the Hadamard Prod-
uct (element-wise multiplication), x is the input vector for
each block, sglobal and tglobal are learnable parameters, and
Coupling is the following function that first evenly divides
the input vector into halves x1 and x2:

u = concat(u1, u2) (2)
u1 = x1 ⊙ exp (α tanh (s(x2))) + t(x2) (3)
u2 = x2 (4)

α is a clamping value that restricts the range of possible val-
ues in the exponent, and s and t are learnable parameters.
Note that in this coupling block, features in x2 can influence
outputs in u1 but not vice versa. The permutation matrix al-
lows each feature to influence the others when stacking mul-
tiple blocks during training.

To avoid overfitting to our training distribution, we add a
small amount of Gaussian noise to our features during train-
ing and inference with the following equation:

X = X +N (0, 0.05) (5)

This improves the stability of the training procedure by
washing out any features with no discernible signal.

Experiments
Datasets
We evaluate our system using two different network intru-
sion detection datasets that publish both raw pcap data and
corresponding hand-labeled flow data. Both datasets config-
ure a testbed infrastructure with an attack and a victim net-
work comprised of multiple connected devices. The attack

networks initiate a series of different attack profiles through-
out data collection.

CIC-IDS-2017. The CIC-IDS-2017 dataset (Sharafaldin,
Lashkari, and Ghorbani 2018) contains raw pcap data cap-
tured over a week-long period in July 2017. The devices on
the victim network run different versions of the three most
common operating systems (Windows, Mac, and Linux).
Three of the attacking PCs have the Windows 8.1 operating
system and the fourth has Kali Linux. The dataset authors
configured one of the ports of the main switch as a mirror
port that completely captures all traffic traversing into and
out of the victim network. A B-Profile system profiles the
abstract (benign) behavior of 25 different users and an au-
tomated agent derived from these profiles generates realistic
benign events for packet capture (Sharafaldin et al. 2018).
The CIC-IDS-2017 dataset contains fourteen attack types
from seven common attack families: brute force, heartbleed,
botnet, denial-of-service, distributed denial-of-service, web,
and infiltration.

We note that others (Liu et al. 2022; Engelen, Rimmer,
and Joosen 2021) have found issues with this particular
dataset caused in part by bugs in the CICFlowMeter (Draper-
Gil et al. 2016; Lashkari et al. 2017) tool. We avoid many of
the troublesome artifacts by approaching the problem at a
packet-level. For example, we drop any packets that have
a “TCP appendix” error simply since we do not consider
empty payloads. The other main artifacts come from at-
tempted attacks that fail to deliver their malicious payloads.
We still include these packets in our analysis, as watching
an attack unfold remains a valuable goal, even before the
malicious content arrives.

UNSW-NB15. The UNSW-NB15 dataset (Moustafa and
Slay 2015) captures raw network traffic over two full days
(fifteen and sixteen hours) in January and February 2015.
In the testbed architecture, an IXIA traffic generator uses
three virtual servers, two that spread benign network traf-
fic and one that forms malicious activity. The servers pass
all traffic through two routers connected to a firewall that
allows all packets to pass through. The dataset authors in-
stalled tcpdump (Jacobson 1989) on one of the routers to
capture all packet data. On the first day, the IXIA tool gen-
erates one attack and ten attacks per second until fifty gi-
gabytes of data are collected on each day, respectively. The
IXIA tool simulated nine different attack categories includ-
ing analysis, backdoor, denial-of-service, exploits, fuzzers,
generic, reconnaissance, shellcode, and worms.

Data Division
Both datasets have highly imbalanced classes with 20 to 25
times as many benign packets as attack ones. Therefore,
when constructing our data sets for training and inference,
we sample from the benign data to produce two balanced
classes of benign and malicious traffic. We split this data
evenly into training and testing sets and stratify by packet
category to divide each attack type equally. We repeat this
process (including the benign packet sampling) ten times to
produce ten unique training and testing datasets. We run ev-
ery experiment on each train/test split and provide both the

means and standard deviations. When training our classifi-
cation models, we preserve 25% of the training data for val-
idation of model parameters.

Training Parameters
We use an embedding size of 384, used previously in
the sentence transformer sequence to classification tasks
(Reimers and Gurevych 2019). We stack two transformer
blocks, and each block has six self-attention heads for 64-
dimensional key, value, and query vectors (Vaswani et al.
2017). We use batch normalization (Ioffe and Szegedy 2015)
and dropout (p = 0.2) (Srivastava et al. 2014) regulariza-
tion techniques for our fully connected layers after the trans-
former block. We use the AMSGrad variant of the Adam
optimizer (Kingma and Ba 2014; Reddi, Kale, and Kumar
2019) with β1 = 0.9, β2 = 0.999, and a learning rate of
3e−4. We use the binary cross-entropy loss function and
train each network for six epochs.

For our normalizing flow models, we stack 20 RealNVP
blocks with an affine clamping α = 2. We learn our parame-
ters for s and t using a simple fully connected network with
two hidden layers with 128 features each and LeakyRELU
activation with α = 0.01. The input and output dimensions
of these learnable blocks are dependent on the size of the
extracted NN layers (either 256, 128, or 64 dimensions).
We use the Adam optimizer (Kingma and Ba 2014) with
β1 = 0.8, β2 = 0.9, a learning rate of 1e−4, and weight de-
cay of 2e−5. We train each normalizing flow model for 512
epochs and use 25% of in-distribution data for validation.

Implementation
We implement our system in Python using Payload-
Byte (Farrukh et al. 2022) for extracting and labeling packet
capture (PCAP) files of modern network intrusion detection
system datasets, Pytorch (Paszke et al. 2019) for our neural
networks and the Framework for Easily Invertible Architec-
tures (FrEIA) (Ardizzone et al. 2018-2022) for our normal-
izing flows. Our code is freely available.1.

Results
Packet-level Classification Accuracy
With our transformer architecture, we achieve an average
accuracy, AU ROC, and F1-Score of 99.40%, 0.9997, and
0.9940, respectively. For these results, we train ten models
with half of the CIC-IDS-2017 data stratified by packet cat-
egory. The training and testing data includes attacks of ev-
ery possible type. In real-world networks, the number of be-
nign packets far exceeds the number of attack packets. We
find that when introducting all of the possible testing benign
packets, our model accuracy increases to 99.63%.

Handling Zero-day Exploits
We reformulate the problem of classifying inputs from zero-
day exploits into the more general open-set recognition task
in machine learning. Using this strategy, we train models
on all benign packets and all but one type of attack. We

1github.com/SRI-CSL/trinity-packet

Table 2: The “In-Distribution” column refers to one model
trained with all attack types and provides the recall for each
attack on withheld testing data. The “Out-of-Distribution”
column refers to fourteen models with the indicated attack
excluded from training.

Attack Category In-Distribution (↑) Out-of-Distribution (↑)
Bot 94.24% (±2.70) 9.50% (±9.35)

DDoS 100.00% (±0.00) 21.45% (±2.58)
DoS GoldenEye 99.99% (±0.01) 19.95% (±4.26)

DoS Hulk 100.00% (±0.00) 75.29% (±16.26)
DoS Slowhttptest 99.80% (±0.25) 52.48% (±16.59)

DoS Slowloris 99.96% (±0.02) 17.37% (±28.59)
FTP-Patator 99.94% (±0.02) 0.30% (±0.19)

Heartbleed 44.18% (±6.60) 0.02% (±0.02)
Infiltration 99.46% (±0.51) 7.80% (±3.12)
Port Scan 98.56% (±0.71) 80.58% (±2.34)

SSH-Patator 99.98% (±0.01) 0.27% (±0.26)
Web Attack-Brute Force 99.97% (±0.01) 94.39% (±7.01)

Web Attack-SQL Injection 72.22% (±17.45) 46.78% (±13.82)
Web Attack-XSS 99.59% (±0.30) 63.05% (±17.17)

then can evaluate how well our model predicts packets from
the withheld classes. In Table 2, the “In-Distribution” col-
umn shows the recall of predicting a packet from the cate-
gory in the first column as an attack. For example, we clas-
sify 99.94% of FTP-Patator packets as malicious when we
include FTP-Patator samples in the training data. The last
“Out-of-Distribution” column shows the recall for a given
attack when we exclude only that attack from training.

We highlight three specific attack categories where re-
calls fall precipitously when excluded from training: FTP-
Patator, Infiltration, and SSH-Patator. When included in the
training, we classify between 99.46–99.98% of these mali-
cious payloads. However, our models achieve accuracies be-
tween 0.27–7.80% when excluding the various classes from
training. Perhaps more surprisingly, we can correctly clas-
sify several attack categories as malicious despite removing
them from training, suggesting a general hierarchy of attacks
where some are merely derivative of others. The WebAttack-
BruteForce, DoS Hulk, and Port Scan attacks see only lim-
ited degradation in recall. The results are illustrated in Ta-
ble 2. We focus on the bolded attack categories when evalu-
ating our model safeguard since those attack categories had
a large drop in recall when in- and out-of-distribution.

Handling Distribution Shift

We note substantial declines in accuracy when we train on
the CIC-IDS-2017 dataset and infer on the UNSW-NB15
dataset with an accuracy of 48.07%. We do not find these
results surprising since distribution shift is a well-known
phenomenon in the vision domain (Kulinski and Inouye
2022; Taori et al. 2020) with similar results in network traf-
fic data (Bierbrauer et al. 2022). However, it does highlight
the need for real-time monitoring of any cybersecurity ML
models. We note that the benign accuracy on the UNSW-
NB15 inference data is 92.16%, whereas most of the attack
categories have accuracies less than 25%. Thus, our model
nearly always classifies packets as benign in this scenario.

Table 3: We achieve high scores across all metrics using nor-
malizing flows to identify OOD inputs.

Layer AU ROC (↑) TPR (TNR 95%) (↑)
FTP-Patator

linear1 0.9957 (±0.0008) 100.00% (±0.00%)
linear2 0.9792 (±0.0060) 95.84% (±7.63%)
linear3 0.9644 (±0.0137) 77.51% (±19.94%)

Infiltration
linear1 0.9614 (±0.0132) 70.60% (±21.01%)
linear2 0.9742 (±0.0149) 86.69% (±15.44%)
linear3 0.9528 (±0.0358) 66.26% (±28.85%)

SSH-Patator
linear1 0.9921 (±0.0014) 100.00% (±0.00%)
linear2 0.9742 (±0.0055) 94.58% (±7.02%)
linear3 0.9513 (±0.0125) 64.12% (±15.48%)

UNSW-NB15
linear1 0.9263 (±0.0071) 77.83% (±0.39%)
linear2 0.9536 (±0.0072) 77.96% (±3.03%)
linear3 0.9583 (±0.0090) 77.71% (±4.49%)

Detecting OOD Inputs

We evaluate our model safeguard with two metrics: area
under the receiver operating characteristic (AU ROC) and
true positive rate at a true negative rate of 95% (TPR (TNR
95%)) (Table 3). For both metrics, we first calculate the nor-
malizing flow loss for each inference packet. Higher losses
indicate an inference input that we deem farther from the
target in-distribution data. For AU ROC, we order the in-
puts by increasing score (farther from the target distribution)
with binary labels corresponding to the out-of-distribution
classes. For the TPR (TNR) score, we adopt a hard thresh-
old for what constitutes in- and out-of-distribution. Under
these metrics, we allow ourselves to dispose of 5% of the in-
distribution inference data (i.e., achieve a true negative rate
of 95%). We then take the corresponding distance at those
two thresholds and assign any inputs with scores greater than
that as out-of-distribution. Our true positive rate thus refers
to the proportion of out-of-distribution data that had a mea-
sured distance greater than those values. For both metrics,
higher values are better. For some networks, losing 5% of
in-distribution may not be tolerable. The AU ROC score in
part shows the sensitivity to toggling that threshold.

Table 3 show the results for detecting out-of-distribution
inputs using our normalizing flows model safeguard. We
note high AU ROC scores with optimal values between
0.9742 and 0.9957 for each withheld attack class. However,
we achieve high score regardless of which layer we extract
features for conditional class modeling. The UNSW-NB15
section shows our results for detecting concept drift as OOD.
We note lower AU ROC scores than for the withheld CIC
attack classes. We attribute this, in part, to the higher ac-
curacies on the UNSW-NB15 dataset. Although there was a
distribution shift between the datasets, we achieve higher ac-
curacies. We correctly classify many of these benign pack-
ets. Thus some of these packets may not truly be out-of-
distribution.

Conclusion
There are several challenges to using deep learning methods
for classifying packets as benign or malicious. We demon-
strate that DNNs trained for network intrusion detection
on these datasets achieve high accuracy (over 99%) on in-
distribution inputs, but fail drastically (accuracy below 1%)
in the presence of zero-day attacks, with severe degrada-
tion in the presence of concept drift. We address this ro-
bustness challenge by constructing a model safeguard that
uses the prediction of the DNN classifier and its internal fea-
tures for uncertainty quantification and to detect novel out-
of-distribution inputs. We use an encoder-only transformer
architecture for our discriminative classifier with a normal-
izing flows model for our safeguard. However, our overall
framework could extend to other models based on latency
requirements and compute resources.

References
Anderson, H. S.; and Roth, P. 2018. Ember: an open dataset
for training static pe malware machine learning models.
arXiv preprint arXiv:1804.04637.
Ardizzone, L.; Bungert, T.; Draxler, F.; Köthe, U.; Kruse, J.;
Schmier, R.; and Sorrenson, P. 2018-2022. Framework for
Easily Invertible Architectures (FrEIA).
Bierbrauer, D. A.; De Lucia, M.; Reddy, K.; Maxwell, P.;
and Bastian, N. D. 2022. Transfer Learning for Raw Net-
work Traffic Detection. Expert Systems with Applications,
211(118641): 1.
Bulusu, S.; Kailkhura, B.; Li, B.; Varshney, P. K.; and Song,
D. 2020. Anomalous example detection in deep learning: A
survey. IEEE Access, 8: 132330–132347.
Butt, M. A.; Ajmal, Z.; Khan, Z. I.; Idrees, M.; and Javed,
Y. 2022. An In-Depth Survey of Bypassing Buffer Overflow
Mitigation Techniques. Applied Sciences, 12(13): 6702.
Claise, B. 2004. Cisco systems netflow services export ver-
sion 9. Technical report, Cisco.
De Lucia, M. J.; Maxwell, P. E.; Bastian, N. D.; Swami,
A.; Jalaian, B.; and Leslie, N. 2021. Machine learning raw
network traffic detection. In Artificial Intelligence and Ma-
chine Learning for Multi-Domain Operations Applications
III, volume 11746, 185–194. SPIE.
Dinh, L.; Krueger, D.; and Bengio, Y. 2014. Nice: Non-
linear independent components estimation. arXiv preprint
arXiv:1410.8516.
Dinh, L.; Sohl-Dickstein, J.; and Bengio, S. 2016. Density
estimation using real nvp. arXiv preprint arXiv:1605.08803.
Dittrich, D. 1999. The DoS Project’s ‘trinoo’distributed de-
nial of service attack tool.
Draper-Gil, G.; Lashkari, A. H.; Mamun, M. S. I.; and Ghor-
bani, A. A. 2016. Characterization of encrypted and vpn
traffic using time-related. In Proceedings of the 2nd interna-
tional conference on information systems security and pri-
vacy (ICISSP), 407–414.
Engelen, G.; Rimmer, V.; and Joosen, W. 2021. Trou-
bleshooting an intrusion detection dataset: the CICIDS2017
case study. In 2021 IEEE Security and Privacy Workshops
(SPW), 7–12. IEEE.

Farrukh, Y. A.; Khan, I.; Wali, S.; Bierbrauer, D.; Pavlik,
J. A.; and Bastian, N. D. 2022. Payload-Byte: A Tool for Ex-
tracting and Labeling Packet Capture Files of Modern Net-
work Intrusion Detection Datasets. Proceedings of the 9th
IEEE/ACM International Conference on Big Data Comput-
ing, Applications and Technologies (BDCAT2022).
Ferrag, M. A.; Maglaras, L.; Moschoyiannis, S.; and Jan-
icke, H. 2020. Deep learning for cyber security intrusion de-
tection: Approaches, datasets, and comparative study. Jour-
nal of Information Security and Applications, 50: 102419.
Geng, C.; Huang, S.-j.; and Chen, S. 2020. Recent advances
in open set recognition: A survey. IEEE transactions on pat-
tern analysis and machine intelligence, 43(10): 3614–3631.
Guo, C.; Pleiss, G.; Sun, Y.; and Weinberger, K. Q. 2017.
On calibration of modern neural networks. In International
conference on machine learning, 1321–1330. PMLR.
Han, D.; Wang, Z.; Chen, W.; Wang, K.; Yu, R.; Wang, S.;
Zhang, H.; Wang, Z.; Jin, M.; Yang, J.; et al. 2023. Anomaly
Detection in the Open World: Normality Shift Detection,
Explanation, and Adaptation. In 30th Annual Network and
Distributed System Security Symposium (NDSS).
Hendrycks, D.; and Gimpel, K. 2016. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. arXiv preprint arXiv:1610.02136.
Hendrycks, D.; Mazeika, M.; and Dietterich, T. 2019. Deep
anomaly detection with outlier exposure. In International
Conference on Learning Representations.
Ioffe, S.; and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In International conference on machine learning, 448–
456. PMLR.
Jacobson, V. 1989. Tcpdump. ftp://ftp. ee. lbl. gov.
Jang, U.; Jha, S.; and Jha, S. 2020. On the Need for
Topology-Aware Generative Models for Manifold-Based
Defenses. 8th International Conference on Learning Rep-
resentations (ICLR) 2020.
Jiang, H.; Kim, B.; Guan, M.; and Gupta, M. 2018. To trust
or not to trust a classifier. In Advances in neural information
processing systems, 5541–5552.
Kaur, R.; Jha, S.; Roy, A.; Park, S.; Sokolsky, O.; and Lee,
I. 2021. Detecting oods as datapoints with high uncertainty.
arXiv preprint arXiv:2108.06380.
Kim, J.; Shin, Y.; and Choi, E. 2019. An intrusion detection
model based on a convolutional neural network. Journal of
Multimedia Information System, 6(4): 165–172.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Kingma, D. P.; and Dhariwal, P. 2018. Glow: Generative
flow with invertible 1x1 convolutions. Advances in neural
information processing systems, 31.
Kobyzev, I.; Prince, S. J.; and Brubaker, M. A. 2020. Nor-
malizing flows: An introduction and review of current meth-
ods. IEEE transactions on pattern analysis and machine
intelligence, 43(11): 3964–3979.

Koroniotis, N.; Moustafa, N.; Sitnikova, E.; and Turnbull, B.
2019. Towards the development of realistic botnet dataset in
the internet of things for network forensic analytics: Bot-iot
dataset. Future Generation Computer Systems, 100: 779–
796.
Kudo, T.; and Richardson, J. 2018. Sentencepiece: A
simple and language independent subword tokenizer and
detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226.
Kulinski, S.; and Inouye, D. I. 2022. Towards Explain-
ing Image-Based Distribution Shifts. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 4788–4792.
Lashkari, A. H.; Draper-Gil, G.; Mamun, M. S. I.; Ghorbani,
A. A.; et al. 2017. Characterization of tor traffic using time
based features. In ICISSp, 253–262.
Lee, K.; Lee, H.; Lee, K.; and Shin, J. 2017. Train-
ing confidence-calibrated classifiers for detecting out-of-
distribution samples. arXiv preprint arXiv:1711.09325.
Lee, K.; Lee, K.; Lee, H.; and Shin, J. 2018. A simple unified
framework for detecting out-of-distribution samples and ad-
versarial attacks. Advances in neural information processing
systems, 31.
Leevy, J. L.; and Khoshgoftaar, T. M. 2020. A survey
and analysis of intrusion detection models based on cse-cic-
ids2018 big data. Journal of Big Data, 7(1): 1–19.
letsencrypt. 2023. Let’s encrypt stats.
https://letsencrypt.org/stats/. Accessed: November 29,
2023.
Liang, S.; Li, Y.; and Srikant, R. 2017. Enhancing the reli-
ability of out-of-distribution image detection in neural net-
works. arXiv preprint arXiv:1706.02690.
Ling, X.; Wu, L.; Deng, W.; Qu, Z.; Zhang, J.; Zhang, S.;
Ma, T.; Wang, B.; Wu, C.; and Ji, S. 2022. MalGraph: Hier-
archical Graph Neural Networks for Robust Windows Mal-
ware Detection. In IEEE INFOCOM 2022-IEEE Conference
on Computer Communications, 1998–2007. IEEE.
Liu, L.; Engelen, G.; Lynar, T.; Essam, D.; and Joosen, W.
2022. Error Prevalence in NIDS datasets: A Case Study on
CIC-IDS-2017 and CSE-CIC-IDS-2018. In 2022 IEEE Con-
ference on Communications and Network Security (CNS),
254–262. IEEE.
Liu, W.; Wang, X.; Owens, J. D.; and Li, Y. 2020.
Energy-based Out-of-distribution Detection. arXiv preprint
arXiv:2010.03759.
Maas, A. L.; Hannun, A. Y.; Ng, A. Y.; et al. 2013. Rectifier
nonlinearities improve neural network acoustic models. In
Proc. icml, volume 30, 3. Atlanta, Georgia, USA.
Macedo, D.; Ren, T. I.; Zanchettin, C.; Oliveira, A. L. I.; and
Ludermir, T. 2021. Entropic Out-of-Distribution Detection.
arXiv:1908.05569.
Maxwell, P.; Alhajjar, E.; and Bastian, N. D. 2019. Intelli-
gent Feature Engineering for Cybersecurity. In 2019 IEEE
International Conference on Big Data (Big Data), 5005–
5011. IEEE.

Meinke, A.; and Hein, M. 2019. Towards neural networks
that provably know when they don’t know. arXiv preprint
arXiv:1909.12180.
Mohammed, T. M.; Nataraj, L.; Chikkagoudar, S.; Chan-
drasekaran, S.; and Manjunath, B. 2021. Malware detection
using frequency domain-based image visualization and deep
learning. arXiv preprint arXiv:2101.10578.
Moustafa, N. 2021. A new distributed architecture for
evaluating AI-based security systems at the edge: Network
TON IoT datasets. Sustainable Cities and Society, 72:
102994.
Moustafa, N.; and Slay, J. 2015. UNSW-NB15: a com-
prehensive data set for network intrusion detection systems
(UNSW-NB15 network data set). In 2015 military communi-
cations and information systems conference (MilCIS), 1–6.
IEEE.
Papamakarios, G.; Nalisnick, E. T.; Rezende, D. J.; Mo-
hamed, S.; and Lakshminarayanan, B. 2021. Normalizing
Flows for Probabilistic Modeling and Inference. J. Mach.
Learn. Res., 22(57): 1–64.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information pro-
cessing systems, 32.
Pelletier, Z.; and Abualkibash, M. 2020. Evaluating the CIC
IDS-2017 dataset using machine learning methods and cre-
ating multiple predictive models in the statistical computing
language R. Science, 5(2): 187–191.
Rabanser, S.; Günnemann, S.; and Lipton, Z. 2019. Failing
loudly: An empirical study of methods for detecting dataset
shift. Advances in Neural Information Processing Systems,
32.
Reddi, S. J.; Kale, S.; and Kumar, S. 2019. On
the convergence of adam and beyond. arXiv preprint
arXiv:1904.09237.
Reimers, N.; and Gurevych, I. 2019. Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks. In Pro-
ceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Computa-
tional Linguistics.
Ren, J.; Liu, P. J.; Fertig, E.; Snoek, J.; Poplin, R.; Depristo,
M.; Dillon, J.; and Lakshminarayanan, B. 2019. Likelihood
ratios for out-of-distribution detection. In Advances in Neu-
ral Information Processing Systems, 14707–14718.
Robbins, M. 2021. Effective July 2018, Google’s chrome
browser will mark non-HTTPS sites as ’not secure’.
https://searchengineland.com/effective-july-2018-googles-
chrome-browser-will-mark-non-https-sites-as-not-secure-
291623. Accessed: December 2, 2022.
Sarhan, M.; Layeghy, S.; Moustafa, N.; and Portmann, M.
2020. Netflow datasets for machine learning-based network
intrusion detection systems. In Big Data Technologies and
Applications, 117–135. Springer.
Saxe, J.; and Berlin, K. 2015. Deep neural network based
malware detection using two dimensional binary program

features. In 2015 10th international conference on malicious
and unwanted software (MALWARE), 11–20. IEEE.
Schuba, C. L.; Krsul, I. V.; Kuhn, M. G.; Spafford, E. H.;
Sundaram, A.; and Zamboni, D. 1997. Analysis of a de-
nial of service attack on TCP. In Proceedings. 1997 IEEE
Symposium on Security and Privacy (Cat. No. 97CB36097),
208–223. IEEE.
Sharafaldin, I.; Gharib, A.; Lashkari, A. H.; and Ghorbani,
A. A. 2018. Towards a reliable intrusion detection bench-
mark dataset. Software Networking, 2018(1): 177–200.
Sharafaldin, I.; Lashkari, A. H.; and Ghorbani, A. A. 2018.
Toward generating a new intrusion detection dataset and in-
trusion traffic characterization. ICISSp, 1: 108–116.
Shen, Z.; Liu, J.; He, Y.; Zhang, X.; Xu, R.; Yu, H.; and
Cui, P. 2021. Towards out-of-distribution generalization: A
survey. arXiv preprint arXiv:2108.13624.
Shenfield, A.; Day, D.; and Ayesh, A. 2018. Intelligent intru-
sion detection systems using artificial neural networks. Ict
Express, 4(2): 95–99.
Song, X.; Salcianu, A.; Song, Y.; Dopson, D.; and Zhou,
D. 2020. Fast wordpiece tokenization. arXiv preprint
arXiv:2012.15524.
Sorrenson, P.; Rother, C.; and Köthe, U. 2020. Disentan-
glement by nonlinear ica with general incompressible-flow
networks (gin). arXiv preprint arXiv:2001.04872.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1): 1929–1958.
Taori, R.; Dave, A.; Shankar, V.; Carlini, N.; Recht, B.; and
Schmidt, L. 2020. Measuring robustness to natural distri-
bution shifts in image classification. Advances in Neural
Information Processing Systems, 33: 18583–18599.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Vinayakumar, R.; Alazab, M.; Soman, K.; Poornachandran,
P.; Al-Nemrat, A.; and Venkatraman, S. 2019. Deep learn-
ing approach for intelligent intrusion detection system. Ieee
Access, 7: 41525–41550.
Wang, Z. 2015. The applications of deep learning on traffic
identification. BlackHat USA, 24(11): 1–10.
Wankhede, S.; and Kshirsagar, D. 2018. DoS attack detec-
tion using machine learning and neural network. In 2018
Fourth International Conference on Computing Communi-
cation Control and Automation (ICCUBEA), 1–5. IEEE.
Yang, J.; Zhou, K.; Li, Y.; and Liu, Z. 2021. General-
ized out-of-distribution detection: A survey. arXiv preprint
arXiv:2110.11334.
Yulianto, A.; Sukarno, P.; and Suwastika, N. A. 2019. Im-
proving adaboost-based intrusion detection system (IDS)
performance on CIC IDS 2017 dataset. In Journal of
Physics: Conference Series, volume 1192, 012018. IOP
Publishing.

