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Abstract

The provenance of a piece of data is of utility to a wide

range of applications. Its availability can be drastically

increased by automatically collecting lineage information

during filesystem operations. However, when data is pro-

cessed by multiple users in independent administrative do-

mains, the resulting filesystem metadata can be trusted only

if it has been cryptographically certified. This has three

ramifications: it slows down filesystem operations, it re-

quires more storage for metadata, and verification depends

on attestations from remote nodes.

We show that current schemes do not scale in a dis-

tributed environment. In particular, as data is processed,

the latency of filesystem operations will degrade exponen-

tially. Further, the amount of storage needed for the lineage

metadata will grow at a similar rate. Next, we examine

a completely decentralized scheme that has fast filesystem

operations with minimal storage overhead. We demonstrate

that its verification operation will fail with an exponentially

increasing likelihood as more nodes are unreachable (be-

cause of being powered off or disconnected from the net-

work). Finally, we present a new scheme, Bonsai, where

the verification failure is significantly reduced by tolerat-

ing a small increase in filesystem latency and storage over-

head for certification compared to filesystems without lin-

eage certification.

1. Introduction

The utility of knowing the provenance of a piece of data

can be judged by the range of domain-specific applications

that have been developed to track it. Geographic Informa-

tion Systems (GIS) standards include lineage metadata to
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track datasets [8]. Materials scientists use it to establish the

pedigree of data used for designing safety-critical compo-

nents [29]. Biologists must document their experiments to

allow others to reproduce them [16]. It has been posited that

Grid infrastructure should provide automated, application-

transparent provenance collection in a standardized format

[7]. Taverna [2] is being developed as part of myGrid [22]

to address the need. Several applications of provenance

metadata relate to data security. These include ensuring the

reliability, auditability, reproducibility, ownership, and ac-

creditation of data [13]. Despite this, the authenticity of

provenance metadata is not certified or verified.

Diverse universities, research laboratories, and corpora-

tions are employing Grid computing for a range of appli-

cations [12]. Large volumes of data are being created, dis-

seminated, and processed in distributed systems that span

multiple administrative domains. To maintain accountabil-

ity while the data is transformed by multiple parties, a con-

sumer must be able to check its lineage and deem it trust-

worthy. If the integrity is not ensured, the consequences can

be significant since such data is not easily reproduced, be-

cause it is often the product of employing substantial com-

putational resources for extended periods of time. For ex-

ample, each piece of information that physicists use from

Fermilab’s Collider Detector is the output of a month of pro-

cessing dozens of terabytes of raw data [36]. Similarly, the

cost to analyze a single protein stored in the Protein Data

Bank is $200,000 [33]. The cost of producing such data

precludes its availability from an alternate source. If its au-

thenticity is not tracked from the time of creation, fraud-

ulent modifications may go undetected and disrupt experi-

ments that use it.

Lineage metadata used for security applications differs

from that gathered for other purposes in one critical respect.

It must be complete since omissions may alter the security

semantics, such as which set of principals were responsible

for producing a piece of data. This precludes the utiliza-

tion of application-specific mechanisms for abstracting or

reducing the metadata.

In Section 4, we propose an architecture for gathering

lineage metadata in distributed systems. Section 5 explains

how we exploit the independence of nodes for certifying



and verifying lineage metadata. Section 6 describes how

current application-specific lineage accumulates, the issues

involved with using a completely decentralized implemen-

tation of our architecture, and finally a hybrid scheme, Bon-

sai, that trades metadata storage for verification reliability.

We compare the alternatives in Section 7.

2. Motivation

To clarify the problem domain, we describe an exam-

ple of a distributed computation for genome analysis. The

GADU1 system is designed to automate the assignment of

functions to genes [28]. We trace the provenance of a single

result in the final database, as illustrated in Figure 1. Period-

ically, a query is made to the NCBI2 [23], JGI3 [17], TIGR4

[38], PDB5 [25], and Swiss-Prot [37] databases. If any new

data is found, it is downloaded to the GADU server. The Pe-

gasus planner [9] dispatches sequence data to hundreds of

remote nodes. At each node, reference data is drawn from

BLAST [3], PFAM [5], BLOCKS [14], and THMM [19]

databases for different types of comparative analyses. The

result from each is then output to a database.

In Figure 1, data sources are depicted with rectangular

boxes, while computational processes are drawn in boxes

with round corners. The GADU server and database of final

outputs are in the user’s administrative domain. Hence, they

are colored green to signify that they are completely trusted.

The NCBI, JGI, TIGR, PDB, Swiss-Prot, BLAST, PFAM,

BLOCKS, and THMM databases are colored yellow to indi-

cate that they are trusted despited being in different admin-

istrative domains from that of the user. Finally, the compu-

tation nodes are marked in red to represent the fact that no

prior trust relationship exists with these nodes. In this case,

these are Grid nodes at research institutions. They could

instead be personal computers in people’s homes, as is the

case with projects like SETI [4]. It is therefore necessary to

audit the nodes’ claims to maintain their accountability. We

do this for lineage information by forcing them to crypto-

graphically commit to the metadata they generate. Without

our proposed assurance, any node in an external adminis-

trative domain could alter the lineage of the results fed into

the database of final outputs without being traceable.

3. Goal

Our goal is to reliably be able to determine the lineage of

a piece of data. Therefore, the metadata should have the fol-

lowing properties. First, the provenance must be authentic.

1Genome Analysis and Database Update
2National Center for Biotechnology Information
3Joint Genome Institute
4The Institute for Genomic Research
5Protein Data Bank

A principal must not be able to create, append, or modify

an element as another principal. Subsequently, other prin-

cipals must be able to validate the element. Second, only

operations and inputs necessary for reconstructing the data

should be noted in the lineage metadata. For example, if

a sequence of idempotent operations is performed on the

data, only one should be recorded. Third, the lineage must

be complete. It must enumerate all the inputs used to con-

struct the data object in question. If an object’s metadata

satisfies these properties, its lineage can be accurately char-

acterized.

4. Architecture

We now explain in detail what constitutes the lineage

of a piece of data. The granularity at which we track the

provenance of an object affects the overhead introduced.

If we attempt to trace and record the details of every op-

eration connected to the object, the system’s performance

will perceptibly degrade and the metadata will grow to need

more space than the data. Instead, we exploit the fact that

files cross administrative boundaries as integral units. Thus,

when analyzing the trustworthiness of an object, analysis at

file granularity suffices.

Output

Operation

Input 1 Input n

Figure 2. A primi-

tive operation trans-
forms a set of in-
put files into a sin-
gle output file.

Figure 3. An
object’s lineage
is a collection of
primitive opera-
tions assembled
into a compound

operation tree.

We define the semantics of a primitive operation to be an

output file, the process that generated it, and the set of in-

put files it read in the course of its execution. For example,

if a program reads a number of data sets from disk, com-

putes a result and records it to a file, a primitive operation

has been performed. We denote the primitive operation of

Figure 2 as (O,E, I1, . . . , In), where O is the output of the

operation executed by E using inputs I1, . . . , In. If a pro-
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Figure 1. Distributed operations combine information from multiple data sources. The final output’s
relationship to the original input is not self-evident. Since intermediate nodes are only partially
trusted, their claims must be verified.

cess writes out to a number of files, a separate instance of

the representation in Figure 2 is used for each output file.

Primitive operations are combined into a compound oper-

ation, as depicted in Figure 3. Each vertex represents the

execution of a different process. For instance, if the result

of appending together several datasets (by a program such

as Linux cat) is then sorted into a particular order (using

another program, such as Linux sort, that executes as a sep-

arate process), then the combination of appending and sort-

ing is a compound operation. Thus, every data object is the

result of a compound operation that can be represented by

a lineage tree. The set of all primitive operations in the tree

serves as the abstract description of the lineage.

We do not store the details of the process in our represen-

tation of a primitive operation. Instead we note the identity

of the user who executed the process. We do this since the

end user is interested in who modified the data en route.

This identity must have global semantics. We assume the

availability of a public key infrastructure [21]. However,

any distributed mechanism for resolving identities, such as

linked local namespaces [1] or a web of trust [27], can be

used instead. A comprehensive provenance record would

include further detail of the specific operation performed,

such as the binary executed, libraries called, environment

variable values, and hardware configuration. Other research

projects focus on the collection of such information [26].

This is complementary to our work since their record of the

invocation of a program can be included in our representa-

tion of a primitive operation. Our lineage certification algo-

rithms would continue to operate without any alterations.

At first glance, our definition of a compound operation

may appear to introduce false dependencies. One may ex-

pect to be able to provide a more precise dependency set by

using threads, system calls, or assembly instructions as the

definition of an operation. For example, one could construct

the system call control flow graph of a process and trace the

possible execution paths to an output. From an information

flow standpoint, only the inputs that feed into the output

should be part of its dependency set. However, our goal is

tracking the lineage of the final output of a compound oper-

ation. An execution sequence in a process, P , that does not

affect the primitive operation’s output but does affect the in-

put of another process, P̂ , is called a side effect. An input,

I , that produces only a side effect would not be included in

the dependency set calculated based on information flow to

the output. However, the output of P̂ may then be utilized

as part of the compound operation. As a result, the input I

would not be included in the lineage even though it should

have been. This necessitates the conservative approach that

we follow.



5. Design

Researchers from the Globus and Condor projects re-

cently argued that the lack of transparent file access and the

inability to use unmodified programs has hindered the adop-

tion of Grid computing [18]. They are addressing the issue

by building interposition agents to provide this facility. Our

work is complementary to this and based on the same as-

sumptions. Current Grid provenance collection focuses on

capturing application-specific workflows [35].

Our approach for recording provenance in a distributed

setting is guided by the following insights:

• The absence of a globally trusted computing base on

each node would appear to preclude any assurances

about its output. However, we can still guarantee prop-

erties of data passing through it. The structure of the

problem allows us to avoid relying solely on a node’s

correct operation. Below we assume that each node

is in a different administrative domain. The same ar-

gument holds for groups of nodes from different do-

mains.

Every edge in the lineage graph has two ends. If they

are incident on two different nodes, the output gener-

ated on one node serves as the input on another node.

If a node makes a false claim about its input, there will

be a discrepancy with its predecessor’s output. If a

node makes a false claim about its output, there will be

a discrepancy with its successor’s input. This property

allows us to detect fraudulent claims if even a single

node in the lineage graph is operating correctly (since

the discrepancy will be detected by the transitive clo-

sure of the verification operation).

• A node may be operating under an arbitrary protec-

tion domain. It is therefore not possible to force it to

perform specific actions. However, we can require it

to commit claims about operations it performs, fail-

ing which data originating from the node will be re-

jected. Each time a node generates an output, it must

provide the output with provenance metadata. This in-

cludes the provenance of each input and a signed hash

of which inputs and output file were involved. Once

the output has been provided to another node, the claim

is considered committed.

By introducing the lineage collection and certification at

the operating system level (in the file system) we aim to pro-

duce a solution that is transparent to existent applications,

thereby easing deployment. We now describe the overall

architecture of our infrastructure, leaving the description of

the alternative protocols to Section 6.

Net Address    Inode    Time

 1Signature Output Input nExecutor Input

Figure 4. A primitive operation is stored in
this format. Each input is the output from a
previous operation (and hence has the same
format as the output shown).

5.1. Representation of a Primitive Opera-
tion

If all the input data, application code, and system li-

braries used to generate an output are available, an opera-

tion can be verified by repeating it. In practice, programs

often read data from ephemeral sources such as network

sockets, filesystem pipes, or devices that provide sources of

randomness. This prevents the program’s output from being

independently validated in a distributed environment since

the verifier must trust the original executor’s claims about

the contents derived from these sources. Since the executor

has the freedom to alter the ephemeral inputs to yield a pre-

ferred output, checking the operation by repeating it does

not increase the likelihood that the claimed operation was

the one that was previously performed. Hence, our checks

are restricted to the persistent files read and written by a

process.

The format of a primitive operation is depicted in Figure

4. The first element, E, identifies the principal that created

the metadata. We use a three-part field for E. The first is

for a user identifier (that is specific to the local host), the

second for a public network address, and the third for an

internal intranet address. (All the users behind a NAT’ed

(Network Address Translated) firewall are associated with a

single public IP address.) The second element, S, is the out-

put of a digital signature that commits the executor E to the

output file, O, and the set of inputs I1, . . . , In used in its cre-

ation. We use a signature S = SIGNKE
(E,O, I1, . . . , In),

where KE is the principal E’s private signing key. Sufficient

space is allowed for a cryptographically strong digital sig-

nature. (160 bits is currently considered safe [6].) If there

are no inputs (as occurs when an object has been captured

directly from a sensor), then the signature’s parameter is

just the output file, O. Such leaf nodes may utilize weaker

signatures, in which case the field is padded.

Each input and output file is represented with a globally

unique identifier. We use a four-part field to represent an in-

put or output file. The first two parts are the external IP and

internal intranet addresses of the host where the operation

occurred. The third is the inode (or equivalent filesystem
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Figure 5. When a file is closed after being
written, its provenance includes every file
that was read by the process. The prove-
nance of File 3 is the list {File 1, File 2}.

identifier) of the file containing the input or output. The

fourth is the time when the input or output file was read

or modified, respectively. The time is intended to disam-

biguate different versions of the same file to avoid cycles in

the lineage graph.

5.2. Lineage Certification

We automate the procedure as follows. When the sys-

tem boots, a lineage daemon is initialized. This maintains

a table TPID that maps process identifiers to live prove-

nance metadata. Each process’s entry in TPID contains an

accessed list of all files that have been read by it, and a

modified list of all files that have been written by it.

Our code intercedes on file open(), close(), read(),

write() system calls. 6 When a file open() call occurs, a

check is done to see if the calling process has an entry in

TPID. If not, an entry is created and populated with empty

accessed and modified lists. When a read() operation

occurs, the file being read is added to the calling process’s

accessed list. Similarly, when a write() occurs the file is

added to the writing process’s modified list.

When a close() occurs, the calling process’s modified

list is checked. If the file has actually been written to (as op-

posed to just being opened for writing or just having been

read from), the modified list will contain it. In this case,

the accessed list of the process is retrieved from TPID. It

contains the list of files {I1, . . . , In} that have been read

during the execution of the process up to the point that the

output file O was closed. This is illustrated in Figure 5.

A certified primitive operation is constructed by appending

the process owner’s identity E, a signature S binding the

6Though these calls are specific to Unix-like environments, their ana-
logues exist in other filesystems, notably that of Windows NT.)

output to the inputs utilized, the output O, and the inputs

{I1, . . . , In}, where S = Sign(E,O, I1, . . . , In). The rep-

resentation shown in Figure 4 is used for the inputs and out-

put, so that files with the same name on distinct hosts, or

with different contents at other points in time on the same

host, are clearly disambiguated.

In practice, the above step occurs after all references to

the file become inactive. This possibility arises since mul-

tiple valid concurrent references may result after a single

open call. Such a situation occurs when a process spawns

multiple threads and passes them a file descriptor. Equiva-

lently, this occurs when a process makes a fork() call, cre-

ating another process that has copies of all its active file

descriptors. Alternatively, this can occur if a part of the file

was mapped to memory. Once all active file descriptors are

closed and relevant memory blocks are unmapped, it is safe

to certify the lineage of the output file.

Algorithm 5.1: CHECKLINEAGE(D)

{E,S,O, I1, . . . , In} ← GETROOT(D)

OUTPUT(E)

PE ← PKILOOKUP(E)

if I1, . . . , In = {}

then







Result← VERIFY(PE , S,O)

if Result = FALSE

then CheckFailed

else























Result← VERIFY(PE , S,O|I1| . . . |In)

if Result = TRUE

then

{

for i← 1 to n

do CHECKLINEAGE(Ii)

else CheckFailed

5.3. Lineage Verification

As the provenance of a piece of data increases, verifying

its lineage rapidly becomes a nontrivial operation. There-

fore, lineage is verified programmatically and only on de-

mand. Algorithm 5.1 shows how this is done by recursively

checking each element. The GETROOT function finds the

vertex whose output matches its input parameter, D. Sec-

tion 6 describes three alternative protocols for lineage cer-

tification. Each uses a significantly different implementa-

tion of the GETROOT function during verification. In each

case, GETROOT yields the same output. The first element

is the identity E of the owner of the process that resulted

in the primitive operation defined by the vertex in question.

The function PKILOOKUP maps the identity to the user’s

public key, PE , which is needed to verify signatures they

have generated. As the CHECKLINEAGE function recurses,

the output from this step enumerates the identities that have



modified any of the data utilized in producing the object.

The user’s signature validating the set of inputs used to pro-

duce the output is verified (even if there are no inputs) with

the VERIFY operation. (In the algorithm below, | refers to

catenation of data.) Then the lineage of each input (if any

exist) is recursively checked. If at any point a signature

check fails, the function halts and issues an alert.

6. Protocols

We now describe three alternative ways of certifying and

verifying lineage. Section 7 evaluates each scheme’s impact

on system performance. All three assume a central source

of trust (which can be offline) that provides each user with

a cryptographic identity.

Distributed systems have provided data integrity certifi-

cation and verification for several decades. However, the

attestation provides assurance only about the current state

of the data, not its history. Without protocols of the type de-

scribed below, a principal making modifications early in the

history of a piece of data could claim not to have done so.

It is this non-repudiability property that distinguishes lin-

eage certification protocols from earlier data authentication

schemes.

6.1. Cumulative Lineage

The first protocol we consider is one where lineage infor-

mation is accumulated along a workflow. This mechanism

is used to prevent repudiation in Grid computing environ-

ments [32]. When an operation is performed, the signed

lineage of each input is extracted and added to the metadata

of each output. The resulting metadata is hashed and signed.

Since all the lineage information can be retrieved from an

object’s metadata, no network connectivity is required for

verification. However, the space required for the metadata

grows exponentially in the number of steps used to process

the data (assuming multiple input files are used to produce a

single output). Over time, the size of lineage metadata will

dominate the size of the actual data. During verification,

Algorithm 5.1’s GETROOT function can extract each vertex

from the object’s metadata.

6.2. Decentralized Lineage

Cryptographers noticed the exponential increase in space

required to store the signatures needed to verify that a doc-

ument was created by a particular workflow. This led to the

development of aggregate signatures that allow each doc-

ument to be accompanied by a single fixed size signature

[41]. However, verification requires the entire tree of sig-

natures for documents that are part of the lineage (and are

unlikely to be present at the node where verification is oc-

curring). This is effectively a decentralized protocol, where

Pruned

 levels

λ

Stored locally

Pruned − must

be recovered

from remote

node

Figure 6. Bonsai prunes out lineage graph in-
formation from vertexes generated more than
λ steps earlier. It replaces each vertex at level
(λ + 1) with a pointer to the node where that
vertex was generated originally. During ver-
ification this pointer is used to reconstruct
the subtree rooted at the pruned vertex.

the representation of each primitive operation is stored lo-

cally at the node where the output file was created or modi-

fied.

The decentralized protocol does address the issue of ex-

ponential growth in metadata size. It leverages the high

level of redundancy in the lineage metadata of succeeding

generations of data. Since the details of a primitive opera-

tion are stored only at the node where it occurs, the metadata

for an object then includes pointers to the node from where

the details can be retrieved, along with a cryptographic wit-

ness that ensures that the details cannot be altered in the

interim. A lineage daemon must run on each node and be

able to service a query about such a pointer, returning the

entire representation of the corresponding primitive opera-

tion. The redundancy in the metadata is eliminated, result-

ing in constant storage overhead.

During lineage verification, the GETROOT function of

Algorithm 5.1 must resolve each input’s pointer by contact-

ing the appropriate lineage daemon. We see that reduction

in storage overhead for certification translates into a cor-

responding increase in temporal overhead for verification.

The certification storage overhead has a commensurate ef-

fect on filesystem latency when open() and close() opera-

tions occur. In principle, the tradeoff would be acceptable



Steps 1 2 3 4 5

Workload

Instruction 0.4 KB 3 KB 31 KB 253 KB 2 MB

Research 0.2 KB 0.8 KB 2 KB 8 KB 29 KB

Web 1 KB 39 KB 1 MB 29 MB 813 MB

Windows 0.2 KB 0.8 KB 2 KB 9 KB 30 KB

Table 1. The space needed to represent the cumulative lineage of an object depends on two factors -
the average number of files used to produce each intermediate output, and the number of times data
is repeatedly processed.

since certification is on the critical path of filesystem opera-

tions while verification occurs only on demand when a user

interrogates the system to determine the lineage of a file. In

practice, the dependence on the network for verification has

a significant side effect. It requires every node responsible

for a vertex in an object’s lineage graph to be accessible on-

line at the time of verification. If even one node is offline,

the verification cannot complete.

6.3. Bonsai: A Hybrid Scheme

To reduce the likelihood of being unable to retrieve the

details of a lineage vertex, we could replicate the infor-

mation at several other nodes. The probability of all rele-

vant nodes being unreachable at the same time would drop

rapidly as the number of replicas increases. This would then

introduce new overhead for selecting the nodes at which

to replicate each piece of metadata. In particular, since

the nodes from which data originated would also need to

maintain copies of the vertex, the replica could be propa-

gated back along a lineage graph. However, this would still

require network traffic to be generated every time a local

filesystem close() operation completed. Instead, we use a

more efficient variant of the idea.

Bonsai is a hybrid scheme. It maintains the entire lineage

of a piece of data, similarly to how the cumulative lineage

scheme would. However, it differs in one respect. When

a lineage tree grows past a predefined threshold number of

levels λ, it prunes the lineage graph, as illustrated in Fig-

ure 6. When it prunes the lineage graph, it leaves a pointer

at each vertex where the subtree has been removed. This

pointer is managed in exactly the same way as the decen-

tralized lineage scheme. In fact, the decentralized lineage

scheme can be viewed as a special case of Bonsai, with

λ = 1. (The protocol is called Bonsai since it prunes the

local lineage tree of an object to ensure that it never grows

too large.)

As λ increases, the lineage metadata requires more stor-

age. However, it also results in more nodes containing

copies of each vertex since the metadata is transparently

copied with the data up to λ times. The availability of other

copies decreases the probability that a vertex cannot be re-

trieved during verification. This is achieved without intro-

ducing a new protocol to replicate the lineage metadata. In a

system where most nodes are reachable, if the lineage graph

is δ levels deep, the entire graph of an object can be veri-

fied by contacting nodes at every δ
λ

levels, yielding a large

speedup in verification. Thus, using Bonsai with a suitable

level of λ allows the overhead of lineage certification to be

traded for better performance of lineage verification.

7. Evaluation

To understand the benefits of using Bonsai, we modeled

the effect of several workloads on each of the three proto-

cols described in Section 6 if they were to be deployed us-

ing our architecture for automated lineage certification (as

described in Section 5).

7.1. Workload

The choice of where to store the lineage metadata re-

sults in different implementations of our architecture. Each

scheme has a different impact on the latency of filesystem

operations, the storage overhead at a node, the cumulative

storage used by the system, the time to verify the lineage

of a piece of data, and the likelihood that a verification

operation can be completed successfully when some frac-

tion of the network nodes are unreachable. To compare

the schemes, we modeled their performance using statistics

from four sets of filesystem traces [30].

The first set is derived from twenty workstations in a

laboratory for teaching undergraduate classes. The second

set of traces is from thirteen desktop computers of a re-

search group’s graduate students, faculty, and administra-

tive staff. The third set of traces is from a host running a

Web server and Postgres database. The fourth set is from

eight desktop computers running Windows. The four traces

are labeled Instruction, Research, Web, and Windows, re-

spectively. Close to one month of filesystem activity is used

to compute the statistics of each set of traces. Roselli’s dis-

sertation [31] provides further detail.



Steps 1 2 3 4

Workload

Instruction 0.04 0.05 0.11 1.72

Research 0.05 0.05 0.04 0.04

Web 0.06 0.13 6.42 997.5

Windows 0.07 0.04 0.04 0.04

Table 2. The latency introduced (in ms) into
a filesystem open() call to read the cumulative

lineage of an object depends on the amount
of metadata that needs to be read.

Steps 1 2 3 4

Workload

Instruction 0.20 0.28 0.32 0.84

Research 0.16 0.19 2.39 3.1

Web 0.16 0.24 4.82 579.14

Windows 0.16 0.50 5.34 3.17

Table 3. The latency added (in ms) to a close()

call when writing out lineage.

7.2. Certification Overhead

We estimate the average amount of storage needed for

a single file’s lineage metadata as follows. The number of

read() and write() operations performed per process is cal-

culated for each workload. Based on the number of distinct

file open() and close() operations performed, we calculate

how many of those correspond to distinct files. We can

compute this since less than 0.2% of the runs include both

read() and write() calls. (A run is the sequence of filesystem

calls made by a process between calling open() and close()

on a file.) This allows us to estimate how many inputs are

utilized for each file that has been written to by a process.

Since the file access patterns are stable over varying periods

of time [31], we normalize the trace activity over the period

of recording. This is then used to estimate the growth of the

lineage metadata as the data is repeatedly processed. The

results are shown in Table 1.

In the case of the cumulative lineage protocol, this is the

average amount of lineage metadata that would be stored

with a file. The rapid growth in the metadata is visible in

all workloads. However, in the case of the Web workload,

which consists of a single process that executes for a long

period of time, all the files read by the server become part of

the lineage of any file that is modified by it. This introduces

a very large amount of metadata in the output files. Clearly,

this protocol is untenable for such workloads. The Research

and Windows workloads reflect common desktop usage pat-

terns. They incur relatively low storage overhead costs for

maintaining the entire lineage tree with an object. We can

infer from this that interactive use of the computer involves

far fewer reads per file written out. The Instruction work-

load’s overhead is less than that of the Web workload, but it

is still high enough that the cumulative lineage protocol is

untenable.

Table 2 shows the latency that is introduced into a filesys-

tem open() call to read the lineage metadata. Similarly, Ta-

ble 3 shows the time taken to write out the metadata during

a close() call. The data was gathered on Mac OS 10.4.9

running on a 2 GHz Intel Core Duo. Each table entry is the

average of 100 measurements. In both tables, the delay is

seen to grow rapidly. However, the overhead is not notice-

able relative to the time taken for the filesystem call, when

the lineage graph is of moderate size. For example, the In-

struction workload adds only 1.72 ms to the open() system

call even when it is reading a lineage graph with four levels.

This fact forms the basis for why Bonsai can provide fast

lineage certification. If Bonsai was utilized with λ = 3, then

the maximum latency introduced into the open() call would

be 6.42 ms (which occurs in the case of the Web trace) for

any of the workloads. Yet with λ = 3, we get a substantial

improvement in verification reliability as can be seen from

Figure 7.

Figure 7. As λ is increased, the verifi-
cation reliability increases significantly be-
cause there are more copies of the lineage
information, allowing the verification opera-
tion to complete even if the original node is
unreachable.

7.3. Verification Reliability

When Bonsai is used with λ = 1, it provides equivalent

functionality to the decentralized lineage protocol. From

Figure 7, we can see that the reliability of lineage verifica-

tion drops rapidly to 0 as the lineage graph’s size increases.

The data in Figure 7 is for the case when each individual

node in the distributed system may be unreachable with



probability 0.1. A node may be unreachable because it has

been powered off, has been disconnected from the network

(as could occur if it was portable), or due to a network par-

tition (as could occur if ad hoc networking were used). In

the case of λ = 1, no other node holds a copy of the lin-

eage operations certified at any node. Therefore, when a

node is offline, if it is part of the lineage being verified, the

operation will fail. As Bonsai uses a larger value of λ, the

verification operation can recover the information from up

to λ other nodes en route between the origination point and

the current location of the data. This drastically reduces the

likelihood of failure.

8. Related Work

Data provenance has a range of applications. HP SRC’s

Vesta [15] uses it to make software builds incremental and

repeatable. Lineage File System [34] records the input files,

command line options, and output files when a program is

executed. Its records are stored in an SQL database that can

be queried to reconstruct the lineage of a file. Provenance-

Aware Storage System [26] augments this with details of the

software and hardware environment. Since these systems

were designed for use in single administrative domains, the

metadata is not certified. Further, the provenance is stored

separately from the objects. Consequently, when data files

are moved between systems, the provenance may be lost.

In contrast, our scheme ensures provenance and its certifi-

cation is transparently transferred with the data.

Several distributed systems have been built to help scien-

tists track their data. Chimera [10] allows a user to define a

workflow, consisting of data sets and transformation scripts.

The system then tracks invocations, annotating the output

with information about the runtime environment. myGrid

[42] allows users to model their workflows in a Grid en-

vironment. It is designed to aid biologists in performing

computer-based experiments. CMCS [24] is a toolkit for

chemists to manage experimental data derived from fields

like combustion research. It is built atop WebDAV [39], a

Web server extension that allows clients to modify data on

the server. ESSW [11] is a data storage system for earth

scientists. If a script writer uses its libraries and templates,

the system will track lineage so that errors can be tracked

back to maintain the quality of data sets. Trio [40] uses a

data warehouse. It uses the lineage of data to automatically

compute its accuracy. Bose and Frew’s survey [7] identifies

a number of other projects that aid in retrieving the lineage

of scientific data. These systems all use a client-server ar-

chitecture, where a user’s data resides only in that user’s

domain and that of the server. Thus, metadata integrity is

ensured. In contrast, we address the case where data moves

through numerous administrative domains while being pro-

cessed. Further, traditional primitives for metadata manipu-

lation do not scale for provenance-based applications [20].

Our schemes are specifically designed to address the issue.

9. Conclusion

Transferring lineage metadata along with the data that

it is related to creates an exponentially increasing number

of copies of it. This redundancy is particularly problem-

atic since it can make lineage metadata so voluminous that

it surpasses the space needed for actual data. The key to

avoiding the problem is to leave lineage details at the nodes

where the operations occur and forwarding cryptographic

commitments to prevent repudiation. Subsequently, each

node can be queried when lineage derived on it is being

verified. However, this creates reliance on remote nodes for

lineage reconstruction and verification. The Bonsai proto-

col forwards a small fraction of the lineage tree with the

data, using a small amount of storage and introducing a

small increase in filesystem open() and close() system calls.

In exchange it provides high reliability during lineage ver-

ification operations. For example, with the workloads ex-

amined, forwarding a three-level tree introduces metadata

storage overhead on the order of kilobytes and latency on

the order of milliseconds, with an order of magnitude in-

crease in verification reliability.
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