
PAST : Probabilistic Authentication of Sensor Timestamps

Ashish Gehani Surendar Chandra

University of Notre Dame
E-mail: {ashish.gehani,surendar}@nd.edu ∗

Abstract

Sensor networks are deployed to monitor the physical
environment in public and vulnerable locations. It is not
economically viable to house sensors in tamper-resilient en-
closures as they are deployed in large numbers. As a result,
an adversary can subvert the integrity of the data being pro-
duced by gaining physical access to a sensor and altering
its code. If the sensor output is timestamped, then tainted
data can be distinguished once the time of attack is deter-
mined. To prevent the adversary from generating fraud-
ulent timestamps, the data must be authenticated using a
forward-secure protocol. Previous work requires the com-
putation of n hashes to verify the (n+1)th reading. This pa-
per describes PAST, a protocol that allows timestamps to be
authenticated with high probability using a small constant
number of readings. In particular, PAST is parameterized
so that the metadata overhead (and associated power con-
sumption) can be reduced at the cost of lower confidence
in the authentication guarantee. Our protocol allows ar-
bitrary levels of assurance for the integrity of timestamps
(with logarithmically increasing storage costs) while toler-
ating any predefined fraction of compromised base stations.
Unlike prior schemes, PAST does not depend on synchro-
nized clocks.

1. Introduction

Sensor networks are designed to record information
about the physical environment in which they are deployed.
Hence, sensors must be located in close proximity to the tar-
get of measurement. This often precludes relying on wires
for communication or external power. Instead, each sensor
exchanges data wirelessly and relies on a battery. This lim-
its the strength of the signals that they can transmit. As a
result, a base station which communicates with the sensors
must be situated in the immediate neighborhood. An adver-
sary is therefore likely to be able to gain physical access to
the sensors and base stations once they are deployed. With
access, an adversary can generate spurious readings. This
can have significant consequences, such as when the data
is used for financial applications or as evidence in judicial
proceedings. The vulnerability significantly impacts the vi-

∗Supported by NSF Awards IIS-0515674 and CNS-0447671.

ability of deploying sensors in a hostile environment. Our
protocol records the time at which each sensor reading was
generated. Once the time of an attack is known, we can
distinguish which readings were generated before the sen-
sor’s integrity was compromised. The key is to ensure the
soundness of the timestamping mechanism itself. This pa-
per describes a protocol for probabilistic authentication of
sensor timestamps (PAST) to address the issue.

PAST consists of three stages. Light weight crypto-
graphic witnesses are generated for blocks of readings on
board a sensor in the first stage. These witnesses provide
partially trusted testimony to base stations that act as no-
taries. In the second stage, a notary gains increasing con-
fidence in the timestamp of a block as it gets more consis-
tent testimony from multiple witnesses. Once this process
completes, the notary uses a forward-secure identity-based
signature to certify the data in the third stage.

PAST ensures that the data stream generated by a sensor
is distributed through multiple nodes in the network. As a
result, only the sensor sees its own data stream in its en-
tirety. This property is exploited to generate witnesses that
other nodes can not fabricate as long as the number that col-
lude does not exceed a predefined threshold. The witnesses
used by a sensor are evolved at each time step. The protocol
prevents an adversary from gaining any information about
earlier witnesses if a sensor is compromised.

Since the data is certified with an identity-based signa-
ture, it can be verified in the absence of network connec-
tivity. Further, since the signature is forward-secure, if a
base station is compromised, the adversary cannot forge
earlier timestamps. Finally, we use a new signature scheme
that we have introduced in this paper. It allows the time-
dependent verification key to be computed offline, unlike
previous forward-secure identity-based signatures. Its se-
curity is equivalent to the underlying scheme on which it is
based.

We analyze the security of the timestamps and data when
an adversary is able to interfere with network connectivity,
compromise sensors or base stations and attempt Sybil at-
tacks. We show that PAST provides a high level of certainty
for the timestamps with low storage and power consump-
tion overhead. For example, when 7 witnesses are included
in each PAST block and at least 4 must be verified before
the block’s timestamp is accepted, the probability that the
block will be validated is 96% when as much as 35% of
the network’s base stations have been compromised. Fur-

ther, this assurance is achieved while imposing only 0.01%
storage and power consumption overhead.

Section 2 frames PAST’s context and the constraint un-
der which the protocol must operate. Section 3.2 explains
how sensors can generate timestamps which can be prob-
abilistically authenticated. Section 3.3 describes how base
stations can certify the timestamps. PAST’s security is ana-
lyzed in Section 4. Related work is described in Section 5.
We draw our conclusions in Section 6.

2. Design Context and Constraints

The constraints on designing an authenticated times-
tamping protocol for a sensor network environment are de-
scribed in this section.

2.1. Temporal Exposure of Signing Keys

If the data gathered from a sensor network is not au-
thenticated, an adversary will be able to forge it without
being detected. To prevent this, the data should be certified
when it is being generated. This requires that the sensors are
provisioned with cryptographic keys. Since sensors are de-
ployed in large quantities, the budget for constructing each
sensor is limited. This precludes using tamper-resilient en-
closures for the sensors. (Secure smart-cards with limited
protection cost $15 [4] while IBM’s 4758 secure coproces-
sor, which is a more resilient device, costs $2,000 [1]. For
many common sensors, these technologies can add signifi-
cantly to the cost of each device.)

Hence, at first glance, the cost constraints would appear
to rule out any guarantees for the sensed data once an adver-
sary gains access to the cryptographc keys stored in the sen-
sor. However, two related classes of algorithms target this
problem. The first is forward-secure signatures [2], where
the signing key is evolved periodically with a one-way func-
tion. If an adversary gains access to a signing key, they can
not forge signatures for previously generated data since it is
computationally prohibitively expensive to invert the one-
way function.

The second class is intrusion-resilient signatures [8].
These require a remote node’s participation in the process
of updating the key in each new time interval. When a sign-
ing key is compromised, the appropriate remote node is no-
tified to stop participating in the key update protocol. This
prevents an adversary from computing new signing keys for
future time periods. Therefore, they can not generate fraud-
ulent future timestamps. Unfortunately, the use of intrusion-
resilient signatures introduces a significant vulnerability in
a sensor network setting. If an adversary wishes to prevent
the data from a particular time period from being certified,
they can flood the network link between the sensor and the
base station during the preceding time period. This will pre-
vent the key update protocol from completing within the al-
lotted time.

The robustness to network noise, flooding and partition-
ing that we can achieve with a forward-secure scheme must

be weighed against the self-correction property of intrusion-
resilient signatures. We opt for the forward-secure scheme
since it suffices for distinguishing untainted readings that
were produced before a sensor was compromised from
those that were subsequently generated.

2.2. Network Dependence of Verification

Checking the authenticity of a forward-secure signature
requires access to the appropriate verification key. A certi-
fied version of the key can be included with the signed data.
However, this introduces significant storage overhead (on
the order of kilobytes for a signature that is computationally
difficult to forge). Alternatively, when a node joins the net-
work, it can broadcast a certified version of its verification
key. Since each node on the network must either cache all
the verification keys or query its neighbors for them when
needed, the storage and communication overhead of such a
scheme does not scale as the network grows in size. Instead,
the third option is to register the verification key with a pub-
lic key server. When a remote node needs the key, it can be
retrieved from the server. Thereafter, the cached version can
be utilized. However, this is only practical if remote nodes
have reliable network connectivity with the server. If the
remote node attempts to buffer data until it can be verified,
an adversary can exploit this by disrupting communications
till the buffer overflows and legitimate sensor readings must
be discarded.

Identity-based signatures [15] allow arbitrary strings to
be used as verification keys. The signing key can be derived
from the verification key using a global secret parameter,
known only to the administrator. In particular, a node’s net-
work address can be utilized as its verification key, obviat-
ing the need for key distribution. An identity-based signa-
ture can be made forward-secure by concatenating the sign-
ing time with the network address when constructing the
verification key. However, this requires a new signing key
to be derived by the administrator for each unique signing
time. This would reintroduce dependence on the network.
In Section 3.3 we construct a new forward-secure identity-
based signature for which the verifier can evolve the new
verification key without the intervention of the administra-
tor. This will allow timestamps to be verified in the face of
transient network connectivity.

2.3. Resource Constraints

Base stations act as gateways to which sensors send their
data. Since each base station serves a large number of sen-
sors, it is provisioned with substantial computational power,
memory and bandwidth. Although this requires significant
power consumption, a base station can still be deployed
in the field using a renewable energy source, such as so-
lar power, in conjunction with a rechargeable battery. (For
example, a CerfCube [3] node can be powered with the 60-
120 Watts generated by solar panels [10].)

A typical sensor has limited processing power and mem-
ory. The MICA1 mote’s processor is an 8-bit micro-
controller that runs at 4 MHz with 4 KB RAM, 128 KB

flash memory to store code and 512 KB to store data [7].
In principle this suffices to perform the modular exponen-
tiation with large primes needed for asymmetric algorithms
like RSA and Diffie-Hellman. However, despite careful se-
lection of exponents and primes, the computations take a
considerable amount of time to complete. Performing a
single RSA operation with a small exponent and a key of
size 512, 768 or 1024 bits takes 3.8, 8.0 or 14.5 seconds
respectively [16]. If each sensor reading was to be signed,
this would significantly limit the rate at which data could be
generated. Batching the readings before generating signa-
tures could amortize the cost and increase the rate at which
signed sensor data could be generated. If a sensor reading
is 16 bits and its timestamp is 16 bits, then at most 32 read-
ings could be batched together in a single 1024-bit signature
without adding a hash function to the computation. Even
with amortization, this would require the mote to spend 0.5
seconds to authenticate a reading. Adding a hash would not
only need a new function to be computed over all the data,
but it would also require the data to be sent independently of
the signed hash. Since the MICA1 mote transmits data at 40
Kb/sec, another 25.6 seconds would be needed to transmit
the signed hash. These added costs will only be warranted
if a large number of readings are batched together. How-
ever, the size of the non-volatile memory limits the number
of readings that can be buffered. In addition, this may in-
troduce more latency than is acceptable for sensor applica-
tions.

The most significant implication of using an asymmetric
primitive is its effect on how long the sensor can be de-
ployed in the field. Sensors must be deployed in the imme-
diate vicinity of the target of measurement. This may be
a location without any renewable energy sources. There-
fore, each sensor must rely on the power that can be stored
in its battery at the time of deployment. A MICA1 mote
runs on 2 AA batteries which provide 2.5 Ampere-hours at
3 Volts. If a mote is performing a typical sensing operation,
performing a computation and transmitting data, it uses 0.1
Watts [7]. At this rate, the mote will exhaust its batteries in
75 hours. Since the expected field life of a sensor is sev-
eral months or years, the mote powers components down
when it is not performing operations. In sleep mode, the
MICA1 draws only 30 micro-Watts. In order for a mote
to survive for long periods, data processing must be min-
imized. Symmetric cryptography primitives require much
less computation. Encrypting a 29 byte packet on a MICA2
mote with TinySec [9] takes 2 milliseconds and computing
its MAC (message authentication code) using a hash takes
3 milliseconds [11]. This is several orders of magnitude
faster than the state of the art implementation of asymmet-
ric cryptography primitives for motes - Sizzle’s [6] assem-
bly language elliptic curve operations. As a result, PAST
only uses symmetric cryptography on the sensors.

2.4. Trust Model

Sensor networks must tolerate compromised nodes, col-
lusion between nodes and transient network partitions.
They can ameliorate the problems using cryptography and

redundancy.
Since sensors and base stations are deployed in the field,

some fraction of them may be compromised by an adver-
sary. As a result, at any given time only some predefined
fraction of these nodes is operating correctly. We model
this by assuming that a randomly chosen node’s probability
of subverting the protocol is proportional to the fraction of
nodes in the network that are currently compromised.

If an adversary gains access to multiple nodes, it can
leverage the knowledge obtained from one node to disrupt
the correct operation of another node. Therefore, when a
node relies on information received from or sent to multiple
other nodes, the trustworthiness of that data must account
for the possibility that the remote nodes are colluding.

Sensor networks rely on low power wireless transmis-
sion for data exchange. Therefore an adversary can sup-
press the flow of information by generating radio interfer-
ence. Although the network stack may provide reliable
transport by retransmitting lost data, it can not ensure that
delivery will occur within a fixed timeframe. Unpredictable
delays in the receipt of data must be supported. In partic-
ular, a protocol that relies on receiving cryptographic ma-
terial within fixed temporal windows is untenable in this
setting.

Trust can be built using cryptography and by distribut-
ing the trusted computing base. While sensors are limited
to using symmetric cryptography, base stations have suffi-
cient resources to utilize asymmetric cryptographic primi-
tives. Further, a sensor network consists of a large number
of nodes. Sensors can exploit this by using a distributed
protocol to prevent any one node from becoming a central
point of failure. PAST composes these to provide the requi-
site assurance.

3. Protocol Description

We first provide a high level description of PAST in Sec-
tion 3.1. Section 3.2 details how a sensor generates times-
tamped data. Section 3.3 describes how a base station can
probabilistically authenticate the timestamps. Finally, Sec-
tion 3.4 outlines how the base station certifies the data’s
timestamps.

3.1. Overview

PAST has three stages. The first occurs at the sensor
where the reading is generated as depicted in Step 1 of Fig-
ure 1. As explained in Section 2.3, using an asymmetric
cryptographic primitive to sign the data would use too much
battery power. In fact, authenticating each reading individ-
ually would also consume a significant amount of power.
Instead, readings are batched together in blocks. When
enough readings have been buffered to populate a block, the
data is encrypted with a symmetric cipher. The key used is
not known to the base station to which the block will be
transmitted. Instead it is the key of another base station in
the network. This node will act as a notary by verifying the
block’s timestamp and then certifying it. Every base station

 to different base stations

Base
Station Target

Phenomenon

Sensor

3 Successive
 readings forwarded

2 All
 readings
 sent to closest
 base station

1 Reading
 generated at sensor

4 Reading verified
 using other data

from same
 sensor

Figure 1. A set of witnesses are generated for each block of sensor readings in Step 1. The reading
includes witnesses for other blocks. A block is sent to the base station closest to the sensor in Step
2. From there it is forwarded to another base station which acts as a notary in Step 3. As a notary,
the base station uses witnesses from other blocks to certify a reading in Step 4.

in the network acts as a notary for some set of sensors dis-
tributed across the network. It will also act as a gateway
for the set of sensors closest to it. The notaries act as im-
partial referees (unless they have been compromised by an
adversary). To prevent a gateway from becoming a central
point of failure, the set of sensors for which it is a notary
is disjoint from the set of sensors for which it serves as a
gateway. The notary stores a hash of the data keyed by the
concatenation of the source sensor’s address and the block’s
timestamp. It then encrypts the block with a storage server’s
public key and forwards it to long term storage. Successive
blocks of sensor readings are forwarded to different notaries
as illustrated in Step 3 of Figure 1. As a result, the stream
of data generated by a sensor is not visible in its entirety
to any other node in the network. PAST exploits this prop-
erty by creating a set of witnesses using hashes of a sensor’s
most recently generated readings. No node other than the
sensor can construct such a set since they do not have ac-
cess to the entire data stream. (We assume that the private
key of the storage server will not be compromised.) Each
block of readings is prepended with such a set of witnesses
and then transmitted to the closest base station in encrypted
form. This completes Step 2 in Figure 1.

When a base station receives a data block from a sensor,
it will be encrypted with a key unknown to it. However,
the block’s header will include the destination address of
the base station that will serve as the notary for that block,
as depicted in Figure 2. The gateway forwards the block

to that base station, as shown in Step 3 of Figure 1, where
the second stage of PAST can commence. When the notary
receives the block, it extracts the source address of the sen-
sor from the header. It uses this to lookup the decryption
key needed to retrieve the sensor readings and the block’s
index, timestamp, hash, and set of witnesses. The hash of
the reading is computed and compared to the one extracted
from the encrypted block. If they do not match, the integrity
of the block is compromised and it is discarded. Next, each
witness must be checked. Since a witness is the hash of
a previous block of data generated by the sensor, the base
station where that block was sent will be able to validate
the witness. The block’s header, as shown in Figure 2, will
include a notary’s address prepended before each witness.
This notary is the base station that can validate the witness.
The index of the block whose hash it is can be calculated
from the location of the witness in the header. The vali-
dating base station is contacted with the source sensor’s ad-
dress, the witness block’s index and a nonce. It retrieves its
record of the witness, combines it with the nonce and replies
with the result. The notary combines its copy of the witness
with the nonce and checks if this matches the result it re-
ceived. As more witnesses are validated, the notary can be
increasingly confident that the block’s timestamp is authen-
tic. The timestamp included in the block is that of the last
reading. However, if each reading’s timestamp is needed, it
can be prepended before the reading and the timestamp in
the header can be omitted. PAST’s authentication guaran-

Index

1

Reading
1

= Encrypted with key shared by sensor ’Source’
and base station ’Destination’

Notary
1

Notary
2

Witness
2

Reading
2

DestinationSource HashTimestamp

Witness

Figure 2. The format of a PAST block. The
source sensor’s address and destination
base station’s address are unencrypted. The
rest of the data is encrypted. Successive
blocks generated by the same sensor have
consecutive index numbers. A set of wit-
nesses and the notaries where they can be
validated is included. The block includes as
many readings as can be buffered in the sen-
sor’s memory.

tees will hold without any modification to the protocol.

In principle, the second stage of PAST suffices for au-
thenticating the timestamps of the sensor readings. How-
ever, nodes running applications using the data may not be
connected to the sensor network. This would prevent them
from querying base stations to perform the second stage of
PAST. The third stage of PAST accounts for this. In this
final stage, after a notary has verified the testimony of mul-
tiple witnesses, it certifies the timestamp included with the
block of readings using a digital signature. Recall that the
base station does not have computational and power con-
straints. Therefore it can utilize asymmetric cryptographic
primitives for this purpose. These signatures can be verified
using the base station’s public key, either at a node without
connectivity to the sensor network or even offline. The no-
tary encrypts the source sensor address, the timestamp and
the block of readings in a single message using the public
key of the storage server. This is done so that the data is
not readable by an adversary once it leaves the notary. If
it were, the adversary could use it to generate fraudulent
witnesses for earlier sensor readings. The encrypted data is
then signed with a forward-secure identity-based signature.
If an adversary subsequently compromises the base station,
access to the cryptographic keys will not enable it to gener-
ate a signature for an altered version of the encrypted data
since the signature is forward-secure. Further, when an ap-
plication uses the data, it can verify the signature without
network access. This is because the signature is identity-
based and the verification key evolution protocol introduced
in Section 3.4 can operate offline.

3.2. Witness Generation

A sensor generates a stream of readings. PAST groups
the data into timestamped blocks. The simplest authenti-
cation a sensor can provide is to include a token with each
block that uses information known only to the sensor and
the verifier. If the verifier is a base station, then when it is
compromised it would be able to generate fraudulent read-
ings. The verifier could claim that they came from the sen-
sor and there would be no means of detecting the decep-
tion. The sensor could generate copies of each reading and
send them to multiple destinations. However, this would
consume proportionately more power and decrease the field
life of the sensor. PAST addresses this issue by generating
multiple short witnesses that can testify to the authenticity
of the block.

A witness is a fixed size hash that is significantly smaller
than the block it represents. Since it is small, transmitting
copies of it to multiple base stations would only use a small
amount of power. However, if the same witness was sent
to each base station, any group of colluding nodes could
all claim to have received an alternate fraudulent witness.
Therefore, the witnesses must be distinct from each other.
Simultaneously, they must attest to the integrity of the same
block. As a result, they must be all have a verifiable rela-
tionship to the block. Composing the hash function multiple
times would generate such witnesses. However, an adver-
sary that has access to the first witness would be able to
derive the subsequent ones by repeatedly hashing its wit-
ness. Thus the witnesses for a particular block can not use
the same input value with the hash function composed a dif-
fering number of times.

In addition to the above constraints, the witnesses se-
lected must support forward-secure authentication. Specif-
ically, if a sensor is compromised, access to a current set
of witnesses should not allow fraudulent earlier ones to be
generated. This property is needed as the witnesses will be
used to attest to the integrity of timestamps. Without this
property earlier timestamps could be forged.

We now describe how PAST creates witnesses that sat-
isfy the above constraints. The blocks of readings generated
by a sensor are indexed, starting from 0 when the sensor
is initially deployed. Subsequent blocks are consecutively
numbered. If more witnesses are included in a block, it can
be authenticated with greater certainty. However, as this
number increases, so does the storage overhead and with it
the power consumed to transmit the block. We parametrize
the number of witnesses used for each block, terming it α.
Each sensor maintains a FIFO of current witnesses. (The
first-in first-out property is implemented as a circular ar-
ray where the successor of the last element is the first. A
pointer tracks the location of the current head of the FIFO.)
The first entry is h(ri), the hash of ri, the most recently
generated block of sensor readings. (Throughout this paper
h() denotes a one-way hash function.) The second entry
is h2(ri−1) = h(h(ri−1)), the hash of the hash of ri−1,
the previous block of sensor readings. Successive entries
of the FIFO are the result of composing the hash function
an increasing number of times and using sequentially ear-

As FIFO
w

2

r
21

r
n

rr
α

r
α−1

rh()r

2
 α−1h () r

h()h()r rh()n−1

 rh ()n−2

α
h (n−) α r

rh()n−1 rh ()n−2

α
h (n−) α r

HeadTail

α

w

w
α

r
n−1

r
α+1

α−2 n−2

Sensor Reading Block

2
 n−3

 r2 2
 α−2

 r
 α−3

 rh () h ()

W
itn

es
s

Se
t

α rh (n−) α−1

α
rh()α
rh()α
r

α−1 h()

h ()

α
 1

 rh ()

1
rh()

Elements

Implemented

1

Figure 3. The current set of witnesses are stored in a FIFO implemented as a circular array. The
column over ri is the state of the witness FIFO when the ith block of data is generated by the sensor.
hj(ri) represents the result of composing the hash function j times using ri as the input.

lier blocks of readings as the input. Thus, the last entry
is hα(ri−(α−1)). In practice, a FIFO entry has the form
{bi, h

j(ri)}, where bi is the base station to which the read-
ings ri were sent.

Each time the sensor readings buffer fills, it is transmit-
ted to the base station. After this completes, the element
stored at the location of the FIFO’s head pointer is over-
written with the transmitted block’s hash. The head pointer
is then decremented by one (modulo its size, α), making the
new hash the last in the circular array. Each of the other el-
ements in the FIFO are replaced with the result of hashing
themselves. Thus, the FIFO element hj(ri) is replaced with
hj+1(ri) = h(hj(ri)). bi does not have to be updated. (ri

is the set of readings in block i and hj+1(ri) is the (j +1)th

witness. i and j are indexes modulo α.) Figure 3 illustrates
the state of the FIFO over time as new blocks of readings
are generated.

Since the hash function is assumed to be difficult to in-
vert, if an adversary gains access to the FIFO, it can not
use its contents to generate the previous values stored in
the FIFO. The contents of the FIFO can not be generated
without access to sensor data stream. Finally, every FIFO
entry is related to the current block by the property that it
is derived from one of α preceding blocks. Thus, the en-
tries in the FIFO possess the properties needed to serve as
witnesses.

3.3. Testimony Verification

A sensor shares a unique symmetric encryption key with
each base station that acts as a notary on its behalf. At the
time of deployment, the sensor is provisioned with keys to
communicate with β base stations. A β-element array Ψ in
the sensor stores entries of the form {bv, kv} where bv is a
base station’s address and kv is its key. A pseudorandom

generator is used to permute the array elements at initializa-
tion. Subsequently, after every β blocks have been transmit-
ted, the array is randomly permuted again. This prevents an
adversary from predicting which base stations will be desig-
nated as notaries for a given block of readings. As a result,
the best an adversary can do is to compromise a random
base station. Thus, when authenticating a block, the proba-
bility that a notary is compromised is uniformly µb.

When a set of readings are to be transferred to a base
station, they are formatted into a block like the one depicted
in Figure 2. First, the block’s index is incremented by one.
Then, the last reading’s timestamp is stored. Next, the hash
of the readings is computed. The contents of the witness
FIFO are copied starting from the head. Finally, the next
entry {bv, kv} from the array Ψ is retrieved. kv is used to
symmetrically encrypt the aforementioned fields. Then the
sensor’s address, s, is entered in the source field and bi in
the destination field. Finally, the PAST block is transmit-
ted to the closest base station which acts as a gateway and
forwards the block to bv. bv decrypts it and commences
verification.

bv will attempt to verify each witness. This requires ac-
cess to the block of readings used to generate each witness.
However, these can not be used directly. If they were ac-
cessible, then an adversary could use the data to generate
fraudulent witnesses. Instead PAST utilizes an interactive
protocol between base stations. When bv needs to validate
the witness {bi, h

j(ri)}, it does the following. First, it sends
a message to bi with the source sensor’s address, s, the in-
dex i of the block whose integrity is being validated, the po-
sition j of the witness in the header and a random nonce, x.
Since bi had previously received ri from s, it can calculate
w = hj(ri). bi then sends bv the blinded witness, h(w⊕x).
(The hash prevents an eavesdropper from gaining any infor-
mation.) bv computes h(hj(ri)⊕x) and checks if it matches
w. If it does, the witness has validated the current block.

If bv does not receive a response within a fixed amount
of time, it aborts. This is necessary for three reasons. The
first is that the network may be partitioned and the remote
node may not be accessible. The second is that an adversary
may control the remote node and be attempting to halt the
validation protocol. The third reason is that the remote node
may not yet have received ri from s. The latter case can be
addressed by bv explicitly signaling to bi how long it can
wait for ri to arrive.

As testimony from more witnesses is validated, the cer-
tainty of the block’s integrity increases. However, it should
be noted that even a single validated witness is a strong au-
thenticator. The reason is that compromising a base station
only allows an adversary to deny the validity of a legitimate
witness. It can not use the control of the base station to
falsely validate a witness since that would require comput-
ing a hash preimage, which is computationally prohibitively
expensive.

3.4. Timestamp Notarization

Once the authentication process described in Section 3.3
completes, the timestamp ti and block of sensor readings ri

are concatenated. This is then encrypted using a randomly
generated encryption key kc and symmetric cipher S() to
produce ei = Skc(ti||ri). kc is encrypted with the stor-
age server’s public key ks and an asymmetric cipher A()
to yield k′

c = A(ks, kc). Such a scheme is necessary since
asymmetric ciphers are significantly slower than symmetric
ones. The hybrid protocol allows data to be encrypted at
the rate supported by the symmetric cipher while being de-
cryptable only with the storage server’s private key. Since
the key kc is not reused, signing k′

c with a forward-secure
signature suffices to distinguish data from different time pe-
riods. (If kc were reused, then ei would also need to be
signed.) As described in Section 3.1, an identity-based dig-
ital signature scheme with offline verification key evolution
is needed. This will allow timestamp and data integrity ver-
ification to occur in the face of transient connectivity or the
presence of network partitions.

We first describe Shamir’s original identity-based signa-
ture scheme [15]. After that we explain how we modify it
to allow offline evolution of the verification key. First, an
RSA modulus N (which is a product of two large primes) is
chosen. A large prime p that is relatively prime to φ(N) is
selected. (φ() is the Euler totient function.) h is a one-way
hash function. N, p, h() are global parameters and can be
broadcast. Only the administrator knows the factorization
of N . It can use this to derive a unique value g which sat-
isfies gp = η (mod N), where η is the user’s identity. g
is only shared with the user η. Only knowledge of g allows
a message to be signed such that η can be used as the key
to verify the signature. η can sign the key k′

c by selecting a
random number x, then computing γ = xp (mod N) and
δ = g.xh(γ||k′

c) (mod N). The signature {δ, γ} can be

verified by checking whether δp ?= η.γh(γ||k′
c) (mod N).

To make the signature forward-secure, the identity can
be replaced with the concatenation of the recipient η and

the timestamp τ . Wherever η was used, η||τ is now used.
However, this requires the signer to obtain a new signing
key gτ from the administrator for each distinct value of τ .
One method to implement this is by contacting the admin-
istrator online each time a new signature is to be generated.
The other possibility is that the user obtains signing keys
for a large range of values of τ in advance, incurring sig-
nificant storage overhead. The scheme we introduce be-
low does not suffer from either of these drawbacks. (To
see why the above scheme is forward-secure, note that once
time τ passes, gτ is discarded. When the node is compro-
mised, signatures for earlier time periods can not be gen-
erated since the corresponding gτ keys have already been
deleted.)

Our scheme is initialized with the same global parame-
ters N, p, h() as the original scheme [15]. At the outset, a
user with identity η is provided with the same key, denoted
by g0 instead of g. As before, gp

0 = η (mod N). After
time τ passes, the signer computes gτ+1 = g2

τ (mod N)
and then discards gτ . Deriving gτ from gτ+1 is as in-
tractable as the factorization problem [14]. This ensures the
forward-security of the signing key. Thus, if an adversary
compromises a base station at time τ + 1, they will not be
able to obtain the signing keys for time τ or earlier.

The procedure for generating a signature must be
modified. If γ is being created at time τ , it is constructed as
γ = x2τ p (mod N). Similarly, when δ is created at time
τ , it is defined to be δ = gτ .x2τ h(γ||k′

c) (mod N). The
signature for k′

c is now {τ, δ, γ}. Finally, the verification

condition becomes: δp ?= η2τ

γh(γ||k′
c) (mod N)

To see why this condition should hold, note that:

δp = (gτ .x2τ h(γ||k′
c))p (mod N)

= (g2τ

0 .x2τ h(γ||k′
c))p (mod N)

= (g0.x
h(γ||k′

c))2
τ p (mod N)

and:

η2τ

.γh(γ||k′
c) = (gp

0)2
τ

.(x2τ p)h(γ||k′
c) (mod N)

= (g0.x
h(γ||k′

c))2
τ p (mod N)

Our scheme’s security directly reduces to that of the orig-
inal signature scheme. If an adversary can generate fraudu-
lent signatures for our scheme, then they can do so for time
τ = 0. This would mean that they can generate fraudulent
signatures for the original scheme.

4. Security Analysis

We analyze PAST’s robustness in the face of attacks on
network links, compromises of sensors and base stations
and Sybil attacks.

4.1. Network Attack

Data generated by a sensor traverses three different types
of network links. The first is between the sensor and the

Figure 4. The x-axis represents the fraction of
compromised base stations in the entire sen-
sor network. The y-axis depicts the certainty
with which a timestamp can be certified. The
threshold for accepting the timestamp is 2,
that is at least 2 witnesses must verified. The
plots show the certainty of timestamp verifi-
cation as 3, 4 or 5 witnesses are included in
each PAST block.

closest base station that acts as a gateway. The second is
the link between the gateway and the base station acting
as a notary. The third is between the notary and the stor-
age server. A PAST block includes a hash of the readings
which serves as an integrity check. Except for the source
and destination address, the rest of the block is encrypted.
Thus, the integrity and confidentiality of the data is assured
during the first two links, from the sensor through the gate-
way to the notary. Once a notary validates a PAST block,
it encrypts the data with the storage server’s public key and
signs the result with its own key. Therefore the confiden-
tiality, integrity and authenticity are ensured over the third
link.

Base stations are assumed to have sufficient storage to
buffer and retransmit data. Therefore an adversary that in-
terferes with the second and third network link will only
slow data transmission, not halt it. However, the first link is
more vulnerable to attack. This is because the sensor must
complete the transmission of a PAST block within a lim-
ited period of time. After that, it will either have to stop
sampling the physical environment since it will not have
sufficient memory to store new readings, or it will have to
discard the PAST block. This problem can be addressed by
splitting the memory between a current PAST block and one
that is in the process of being transmitted. While this will
double the metadata overhead, it will provide the sensor a
large window of time within which it can retransmit the pre-
vious PAST block if an adversary is jamming the network
link to the gateway.

Figure 5. The x and y axes have the same se-
mantics as in Figure 4. Each PAST block con-
tains 7 witnesses. The threshold for validat-
ing a block’s timestamp is varied from 1 to 5
witnesses.

4.2. Node Compromise

Since sensors and base stations are deployed in the field,
an adversary may gain complete control over some of them.
Once a sensor is compromised, it can be made to generate
readings of an adversary’s choosing. If the readings have
fraudulent timestamps claiming they were generated in an
earlier time period, PAST can detect this. This is ensured by
evolving the authenticating witnesses with a one-way func-
tion each time a new PAST block is constructed. Similarly,
when a base station is compromised, an adversary is limited
because of the use of a forward-secure digital signature ap-
plied to all data sent to the storage server. If new data with
old timestamps is sent, the inconsistency will be detected.

PAST distributes the attestation operations among multi-
ple nodes. This allows it to tolerate the subversion of a frac-
tion of the deployed base stations. As the fraction of com-
promised base stations in the network increases, the prob-
ability that a designated notary will choose not to validate
a legitimate witness increases. This is depicted in Figure 4,
where at least 2 witnesses must provide valid attestations for
the timestamp to be accepted. The number of witnesses in-
cluded in each PAST block is varied from 3 to 5. Each curve
is associated with a different number of witnesses present
in a PAST block. When the block contains more witnesses,
there is a greater likelihood of finding 2 that are associated
with uncompromised notaries that will validate them. This
can be seen in Figure 4 since the plot for a witness count
of 5 has uniformly higher certainty than the one where the
witness count is 4 (and similarly the plot for 4 has higher
certainties than the one for 3). Even with 35% of the net-
work’s base stations compromised, the timestamps can be
validated with 96% probability using just 5 witnesses per
PAST block, as can be seen from Figure 4.

The threshold for validating a block’s timestamp is the
number of witnesses that must be verified before it can be
certified. In principle, a threshold of 1 should suffice since

Figure 6. The storage overhead is plotted as a
function of the number of witnesses included
in a PAST block.

forging even a single witness would require computing the
preimage of the hash function’s output. However, the MAC
used in TinySec is 32 bits [9] since it must be computed
on a sensor. An adversary that compromises a sensor could
send a stream of PAST blocks that are identical except for
the use of differing values for the witnesses. In this manner,
they could reduce the difficulty of computing a valid preim-
age. For example, if 256 variations of a PAST block are
sent, then the complexity of forging a witness would drop
to 232−8 = 224. If the threshold for accepting a timestamp
is increased to 2 witnesses, then this attack’s complexity
increases quadratically. Thus, using a higher threshold is
warranted when more assurance is required.

Figure 4 showed the benefit of increasing the number of
available witnesses with a fixed threshold. In Figure 5, the
PAST block is provisioned with 7 witnesses. The threshold
is varied from 1 to 5. As the standard for validating a block
is increased, there is a decrease in the certainty with which
the timestamp can be certified. The curve for a threshold of
1 has the highest certainty, while the curve for a threshold
of 5 has the lowest. Timestamps can be validated with high
probability even if a stringent threshold is mandated. As
seen in Figure 5, when 35% of the network’s base stations
are compromised and 4 witnesses must be verified out of 7
in a PAST block, the timestamp can still be validated with
96% probability.

The size of the memory in a sensor bounds the num-
ber of readings that can be buffered. As a result, there
is a limit to the extent to which the storage overhead of
the witnesses can be amortized by batching readings to-
gether. In the case of the MICA mote, the memory size
is 512KB. A witness would be implemented using a Tiny-
Sec MAC which is 4 bytes long [9] and the associated no-
tary would be represented using a 2 byte TinySec address.
As shown in Figure 6, PAST uses very little storage over-
head for reasonable numbers of witnesses. If we used 7
witnesses to achieve the assurance of Figure 5, the storage
overhead would be 0.01%. If a 100 witnesses were included
in each PAST block, the storage overhead would be 0.11%.

Storage overhead directly translates to power consumption
since the metadata must be transmitted and communication
requires a sensor to operate at its peak power level. PAST’s
utility derives from the fact that PAST imposes a small over-
head while providing a high level of certainty in the sensor’s
timestamps.

4.3. Sybil Attack

To avoid a central point of failure, a protocol may re-
quire multiple nodes to participate. A Sybil attack [5] works
around this by masquerading a single node as a set. The pro-
tocol can then be made to fail since the nodes it relies on are
not independent and distinct. Such an attack is of particu-
lar significance in sensor network settings. The reason is
that it is common for each sensor to be in communication
range of a single base station. In such a case, when a sensor
attempts to communicate with other nodes in the network,
the gateway can effect a Sybil attack. It can masquerade
as any remote node since all network traffic to and from
the sensor passes through that gateway. PAST specifically
guards against such attacks. All sensor output is encrypted
using a key that is not known to the gateway. This prevents
the gateway from masquerading as the originating sensor.
A different key is used to encrypt a sensor’s communica-
tion with distinct base stations. This prevents a notary from
masquerading as a sensor.

5. Related Work

Bellare and Miner introduced the idea of forward-secure
signatures in 1999 [2]. Przydatek, Song and Perrig subse-
quently framed the problem in the context of sensor net-
works [13]. As part of their work on secure information
aggregation in 2004, they proposed the following scheme.
Each sensor shares a key with a base station. The data gen-
erated by the sensor is hashed using this key. After a prede-
fined period of time passes, a new shared key is computed
by hashing the old one which subsequently discarded. The
same operation is simultaneously performed on the sensor
and the base station. When data from the nth epoch needs
to be authenticated, the nth key is needed. Assuming the
current epoch is later than the nth epoch, there is no way
to retrieve the earlier key. Therefore the verifier must be
provisioned with the initial key and they must compose the
hash function n times to derive the nth key from the first.
Since sensors are deployed in the field for long periods, n
can grow large. Performing n hashes to verify each read-
ing becomes expensive, making the scheme computation-
ally unscalable. Alternatively, the verifier can pre-compute
and store the composed hashes. However, this makes the
scheme unscalable in terms of space usage. The paper ac-
knowledges the scheme’s deficiency and leaves its resolu-
tion as an open problem. PAST uses a small constant num-
ber of hashes to verify a single reading. This makes it scal-
able in terms of both time and space, at the cost of a small
reduction in the probability of verification. Further, PAST
does not rely on synchronized clocks.

Subsequent work on providing forward-secure authenti-
cation and secrecy focused on the problem of managing the
keys [12]. It used the same hash chaining scheme as above.
However, the first key is split using a polynomial-based se-
cret sharing scheme. The pieces are then either distributed
among the neighboring nodes of either a sensor or a data
aggregation node. When a piece of sensor data is to be veri-
fied, a request goes to its source which then reconstitutes the
first key. This is then used to compose the hash function n
times if the data was the nth reading and verify the value’s
integrity. The advantage of this scheme over previous work
is that the verifier does not need to store and manage the
keys used for checking sensors’ output. Since nodes in the
field have limited storage, composed values of the keys can
not be stored. Therefore, this scheme must also rely on n
hash compositions to verify the nth reading. (PAST only
needs to perform a small constant number of operations to
verify a reading, rather than an unbounded sequence.) In
addition, an adversary can use their verification protocol to
force a node to reconstitute the first key at a time of the
adversary’s choosing. Since the nodes are deployed in the
field, the adversary can subvert it at this point and get the
first key. With this, they can forge past sensor data. PAST is
not susceptible to such an attack since it does not store the
original key indefinitely. Specifically, it is discarded after
the first few sensor readings are generated.

6. Conclusion

We have described PAST, a probabilistic protocol for
timestamping sensor data. It provides forward-secure
timestamp authentication when sensor and base station
cryptographic keys are compromised. It only requires a
small constant number of operations to verify a reading.
This improves over previous forward-secure sensor network
protocols which required O(n) hashes to verify the nth

reading in the data stream. Unlike previous schemes, PAST
does not rely on synchronized clocks.

PAST ensures that the data stream generated by a sensor
is distributed through multiple nodes in the network to avoid
a central point of failure. It also prevents an adversary from
gaining any information about earlier witnesses if a sensor
is compromised. PAST provides a high level of confidence
in the timestamps’ validity while imposing a low storage
and power consumption overhead.

References

[1] http://www.ibm.com/security/cryptocards/

[2] Mihir Bellare and Sarah Miner, A Forward-Secure
Digital Signature Scheme, Advances in Cryptology,
Lecture Notes in Computer Science 1666, 1999.

[3] http://www.intrinsyc.com/products/cerfcube/

[4] http://www.cyberflex.com

[5] John Douceur, The Sybil Attack, Proceedings of
the 1st International Workshop Peer-to-Peer Systems,
2002.

[6] Vipul Gupta, Matthew Millard, Stephen Fung, Yu
Zhu, Nils Gura, Hans Eberle and Sheueling Chang
Shantz, Sizzle: A Standards-Based End-to-End Secu-
rity Architecture for the Embedded Internet, Proceed-
ings of the 3rd IEEE International Conference on Per-
vasive Computing and Communications, 2005.

[7] Mike Horton, David Culler, Kris Pister, Jason Hill,
Robert Szewczyk and Alec Woo, MICA - The Com-
mercialization of Microsensor Motes, Sensors, 19(4),
2002.

[8] Gene Itkis and Leonid Reyzin, SiBIR: Signer-Base
Intrusion-Resilient Signatures, Advances in Cryptol-
ogy, Lecture Notes in Computer Science 2442, 2002.

[9] Chris Karlof, Naveen Sastry and David Wagner, Tiny-
Sec: A Link Layer Security Architecture for Wireless
Sensor Networks, Proceedings of the 2nd ACM Con-
ference on Embedded Networked Sensor Systems,
2004.

[10] Alan Mainwaring, Joseph Polastre, Robert Szewczyk,
David Culler and John Anderson, Wireless Sensor
Networks for Habitat Monitoring, ACM International
Workshop on Wireless Sensor Networks and Applica-
tions, 2002.

[11] David Malan, Crypto for Tiny Objects, Harvard Uni-
versity Technical Report TR-04-04, 2004.

[12] Yi Ouyang, Zhengyi Le, James Ford and Fillia Make-
don, Local Data Protection for In-Network Processing
in Sensor Networks, IEEE International Conference
on Pervasive Services, 2005.

[13] Bartosz Przydatek, Dawn Song and Adrian Perrig,
SIA: Secure Information Aggregation in Sensor Net-
works, Proceedings of the ACM Conference on Em-
bedded Networked Sensor Systems, 2003.

[14] Michael Rabin, Digital signatures and public-key
functions as intractable as factorization, MIT Techni-
cal Report TR-212, 1979.

[15] A. Shamir, Identity-based cryptosystems and signa-
ture schemes, Advances in Cryptology, Lecture Notes
in Computer Science 196, 1984.

[16] Ronald J. Watro, Derrick Kong, Sue-fen Cuti, Charles
Gardiner, Charles Lynn and Peter Kruus, TinyPK: se-
curing sensor networks with public key technology,
Proceedings of the 2nd ACM Workshop on Security
of Ad hoc and Sensor Networks, 2004.

