
Paranoid: A Global Secure File Access Control System

Fareed Zaffar and Gershon Kedem
Department of Computer Science, Duke University

Box 90129, Durham, NC 27708
{fareed,kedem}@cs.duke.edu

Ashish Gehani
Department of Computer Science and Engineering, University of Notre Dame

384 Fitzpatrick Hall, Notre Dame, IN 46556
ashish.gehani@nd.edu

Abstract

The Paranoid file system is an encrypted, secure, global
file system with user managed access control. The system
provides efficient peer-to-peer application transparent file
sharing. This paper presents the design, implementation
and evaluation of the Paranoid file system and its access-
control architecture. The system lets users grant safe, se-
lective, UNIX-like, file access to peer groups across admin-
istrative boundaries. Files are kept encrypted and access
control translates into key management. The system uses
a novel transformation key scheme to effect access revoca-
tion. The file system works seamlessly with existing applica-
tions through the use of interposition agents. The interposi-
tion agents provide a layer of indirection making it possible
to implement transparent remote file access and data en-
cryption/decryption without any kernel modifications. Sys-
tem performance evaluations show that encryption and re-
mote file-access overheads are small, demonstrating that
the Paranoid system is practical.

1. Introduction

Computers around the globe are increasingly being used
to create, store and share confidential and private data.
Keeping such information secure is an increasingly difficult
job. As more and more computers get interconnected using
an untrusted and hostile network, the set of possible security
attacks has increased manifold. Security concerns are also
a major barrier to information sharing in a global comput-
ing environment. In-spite of security risks, the added func-
tionality provided by network interconnectivity and sharing
is so compelling that most people and companies willingly
assume these risks. Moreover, current systems are poor at

providing global information sharing mechanisms.
Traditional operating systems provide access protection

and controlled access to resources. However, these mecha-
nisms have proved to be fragile at best. Intruders routinely
exploit programming errors, system design errors, errors in
operating system settings or ”social engineering” to gain
super-user access rights, bypassing system protections.

New errors are introduced into the operating system just
as fast as old errors are discovered and corrected. The time
between a vulnerability being identified and its exploit be-
ing generated has reduced dramatically over the years. Op-
erating systems have become large and complex as new de-
vices and operating system services are continually added
or upgraded. Every operating system update potentially in-
troduces new errors that allow intruders to bypass the op-
erating system protection mechanisms. This unfortunate
steady-state of insecurity is not likely to improve any time
soon.

Another major design weakness of traditional operating
systems is the need for privileged access. A super-user ac-
count is a compromise, introduced in order to enable inter-
user operating system services and facilitate administrative
tasks such as, file-system and account management, email,
files backup, etc. This compromise creates opportunities for
attacks on the system. Most serious security breaches hap-
pen when an attacker finds a way to gain super-user privi-
leges, totally bypassing the operating system access control
mechanisms.

This paper introduces Paranoid, a global file Access
Control system that allows users to selectively, securely,
and easily share information with others, even those they
don’t know and don’t have prior trust relationships. It pro-
vides users with a global computing environment, without
the fear of compromising the security of information they
consider private or privileged. Each user is able to grant



selective file access privileges to others outside his admin-
istrative domain without having to create accounts or grant
outsiders any user privileges.

The file system lets users define access groups. A per-
son with Paranoid access privileges can access files regard-
less of whether they are trusted local users or outsiders.
One of the key features of Paranoid access control is that
each group member has cryptographic access to the group
accessible files without possessing a shared group secret.
The Paranoid secure file system is implemented as a toolkit
along with a set of dynamically loadable libraries. The file
system is implemented at the user level completely. Para-
noid is an encrypted file system, but the cryptographic na-
ture of the underlying file system is application transparent
through use of interposition agents [20]. The advantage of
this approach is that group owners don’t need super-user
privileges to securely share files with others, and existing
applications are used without re-compiling. The choice of
using interposition agents limits file system access to dy-
namically linked programs. However, most modern day
UNIX programs are dynamically linked. Statically linked
programs can’t use the Paranoid file system.

2. Design

2.1. Overview

The overall goal of the Paranoid system is to facilitate
global peer-to-peer file sharing with enhanced security and
privacy, minimal administrative overhead and application
transparency. File contents are locked via encryption and
are unlocked only with a correct key. Thus, access control
transforms into a key management problem. Users are im-
plicitly authenticated by their ability to gain access to keys.
Paranoid uses a novel approach usingtransform keys(de-
tailed in Section 3) to address the key distribution and re-
vocation problems. The transformation key approach elim-
inates the need for a shared group secret for file sharing.
To enhance security, key decryption is performed using a
trusted device. We call this trusted device a Personal Se-
curity Proxy (PSP) (see section 2.4) and suggest using a
commercial handheld computer for this purpose.

2.2. Encrypted Files

Files’ contents are locked and made inaccessible by en-
cryption. Paranoid uses a hybrid encryption system. Data
are encrypted with a symmetric cipher and symmetric keys
are encrypted with public key cipher. Each file is encrypted
with a different random key. Since public key ciphers are
too slow, a symmetric cipher is used. (Using public key
ciphers to encrypt and decrypt the entire file would add sig-
nificant delays to file operations.) The prototype system is

Figure 1. Sharing a file

implemented using DES [14] but any other symmetric ci-
pher could be used, such as AES [15]. Each symmetric
key is encrypted with the file owner’s public key. For shar-
ing, group access to a file is granted by encrypting the file’s
symmetric key with the group’s public key. This informa-
tion, along with the file digital signatures, version number
and a time-stamp are stored in a header, together with the
encrypted file’s contents. The headers use XML formatting
to store the data. Headers are described in Section 4.1. A
super-user can access the encrypted Paranoid files for ad-
ministrative tasks, such as file backup, but has no access to
the files’ contents.

2.3. Access Groups and File Sharing

When a file ownerA wants to share a file with person
B, the owner can encrypt the file’s symmetric key withB’s
public key. The encrypted key can be stored along with the
encrypted file or sent directly toB. Theoretically, this is
all that is needed for file sharing. However, if a group of



people is sharing a set of files, a more efficient method is
adopted. The owner of a set of files defines an access group
for the files. Group members encrypt files with symmetric
keys and encrypt the symmetric keys with the group public
key. In this case, the owner is responsible for distributing
the group’s private key to all group members. This scheme
poses logistical problems since explicit key distributionis
needed. One solution is to store group access information
in a file which can be provided upon request. A group ac-
cess information file holds group identities along with the
group’s private key encrypted with the public keys of group
members. In this scheme, when a user is trying to access
a file, he uses his identity to retrieve the group’s encrypted
private key from the group information file. He then de-
crypts it using his own private key. The group’s private
key in turn allows him to decrypt the file’s symmetric key,
granting him access to the file’s content. The group owner
is responsible for group management tasks such as adding,
deleting and updating entries.

This scheme is similar to the lockboxes adopted by
Cepheus [5] although they used a central group database
to distribute keys. Their scheme suffers from an inherent
weakness. Not only is the database a central point of vul-
nerability, but the scheme gives users more rights than nec-
essary. Group membership should only enable access to
shared files. With Cepheus, any group member can add new
members to the group by disclosing the group secret (pri-
vate key). Additionally, revoking access rights is difficult.
It requires changing the group’s public and private keys and
the re-encryption of all symmetric keys. Coordinating key
changes over the Internet is difficult.

The Paranoid system uses a novel scheme that does not
require sharing a group-specific secret. When a user (a
group owner) creates a new access group, he creates a new
public and private key pair for the group using the RSA pub-
lic key cipher [17]. He publishes the group public key, that
is the modulusN and the public exponentg. All group
members use the same modulusN but each group mem-
ber is assigned adifferent random exponentas a private
key. Associated with each group member’s private key is
a transform key known only to the group owner. When a
group member requests access to a file, the group owner ap-
plies a member-specific transform key to the file’s encrypted
symmetric key. The transformation changes the symmetric
key’s encryption from an encryption with the group public
key to an encryption that corresponds to the group mem-
ber’s unique private key. The encrypted file together with
the transformed encrypted symmetric key are sent to the
member. Please note that the system does not use explicit
authentication. The system relies on the fact that only the
designated group member posses the member-specific pri-
vate key, and therefore only she can access the file content.
Others may pretend to be group members, but they do not

posses a valid private key and thus can’t access the file’s
content. Details of how the transformation is computed are
given in section 3. Detailed descriptions of file operations
like read, write, create and delete are given in section 2.5.
The Paranoid file system uses XML group definition files
created by the owner. Users define their own read and write
access groups. Group definition files are digitally signed so
that any tampering can be detected. Each access group has a
public and private key pair that are used by the group owner
to encrypt and decrypt symmetric keys. The group private
key is kept a secret and is not shared with the group mem-
bers. Additions and deletions from the group are done by
the group owner using his Personal Security Proxy.

2.4. The Personal Security Proxy

The Paranoid file sharing system is secure provided keys
are random and are kept secret. To enhance key manage-
ment security, we developed software for an attached copro-
cessor that we call the Personal Security Proxy. The PSP is
an integral part of the system. The PSP can be implemented
on an attached portable device such as a Personal Digital
Assistant (PDA) or a smart card. The PSP is used to pro-
tect secrets and perform sensitive encryption and decryption
operations on behalf of its owner. The general purpose com-
puter communicates with the PSP through a secure protocol.
The owner’s password protected private key is stored on the
PSP along with private keys of groups owned by the user.
Once the PSP is activated, it authenticates the owner and en-
crypts and decrypts keys on behalf of the owner. The PSP
is responsible for communicating with the client and server
modules residing on the owner’s machine. The PSP is also
used for generating symmetric keys and computing digital
signatures. In the prototype implementation, the PSP opera-
tions were ”simulated” on a general purpose machine. After
the prototype development was completed we discovered
that all the functionality of the PSP can be implemented us-
ing the attached processor of the Trusted Computing Plat-
form (TCPA) [19]. Relatively small modifications of the
current Paranoid implementation could make the code work
with TCPA.

2.5. The Paranoid File System

File Access and Group Operations.The Paranoid sys-
tem is a global file system supporting global user names and
file names. The system uses email addresses as global user
identities, and for global file names the system uses a URL-
like naming convention. Each file name contains a global
host name followed by the file name. A protocol similar
to HTTP is use for communication. Paranoid files are en-
crypted using the toolkit developed. The toolkit takes a file,
encrypts it and attaches an extended header to it. The header



Figure 2. Paranoid system diagram

contains information about the encrypted keys, read access
groups, write access groups and digital signatures.

Each access group has an XML group definition file list-
ing members’ identities, transform keys, and access privi-
leges. The group definition file is encrypted with the group’s
public key. It is only accessible to the group owner. Adding
or removing group members and changing the access rights
for a file or directory are done by the group owner using
the toolkit. Shared files are accessed via a file server agent.
The file server enforces access rights, checks group mem-
bers’ access rights, applies key transformations and per-
forms write operations on behalf of legitimate users.

File headers, encrypted files, and group definition files
are digitally signed. While the system does not provide spe-
cial protection against malicious file deletion, any tamper-
ing with Paranoid files is detected. Operations that modify
files require users’ PSPs to be active and able to communi-
cate with the file server and client agent.

To globally share files, a file server agent must be run-
ning on the group owner’s machine. This process authenti-
cates access requests on behalf of the owner, performs key
transformations, sends requested files to group members
and writes files on behalf of group members. Modifying
group access rights is done by adding, removing or modi-
fying a member’s entry in the group definition file. Sym-
metric keys of files that a revoked user has already accessed
are lazily re-encrypted - that is, the operation is done at a
later stage when the file is next written to. Note that only
the group owner can perform these operations.

Adding a member to a group requires adding a new
member entry, generating a random private key, computing
a transform key, and delivering to the member his private
key. The Paranoid system assumes that private key informa-
tion is sent to members as an out of band operation. These
operations can only be done by the group owner.

Paranoid File Read. Table 1 describes the chain of
events triggered by an application running on a remote

Table 1. Sequence of events for reading a re-
mote Paranoid file.

Machine Action Tasks and Explanations
C openfile(r,<file>) User application opens the file for

reading
C Intercept Bypass intercepts the openfile sys-

tem call and passes control to the
client module.

C RemoteAccessReq The client agent opens a connec-
tion to file server, sends request,
User ID, File name.

S checkrequest The file server checks the user’s re-
quest: Does the file exist? What is
the access group? Is the user in the
access group? Does the user have
read rights?

S PSP key transform The server’s personal security
proxy applies member specific key
transformation

S sendfile The file-server signs the file-header,
sends file to client machine.

C receivefile The client agent receives the file,
parses the file-header.

C PSP decodekey The client’s PSP deciphers the sym-
metric key.

C decodefile The client agent decodes the file, re-
turns file pointer to Bypass.

C return Bypass returns control to applica-
tion, passes file pointer to applica-
tion.

client machine opening a Paranoid file for a read operation.
To keep the description simple it only covers a successful
file open case. The table has three columns. The first col-
umn lists the machine taking the action. There are four com-
puters involved: C, the client machine, CPSP, the client
Personal security proxy machine, S, the group file server,
and SPSP, the group owner’s Personal Security Proxy. The
second column in Table 1 lists the action taken. The third
column provides an explanation and lists steps associated
with each action.

When a client application opens a file for a read opera-
tion, the system call to open the file is trapped by the inter-
position agent created with Bypass. The request is checked
to see if its operand is a Paranoid file. If so, the interposition
agent invokes a client agent which sends out a read request
to the appropriate file server along with the requester’s cre-
dentials. The file server verifies that the files exist and that
the group member has read access privileges. This verifica-
tion is done using the group definition file. The file server
identifies which group the requester belongs to and applies
the requester-specific key transformation on the file’s sym-
metric key. The encrypted file is sent back to the client agent
along with a signed Paranoid header and the transformed
symmetric key. File tampering is caught by verifying the
digital signatures. The group member’s PSP decrypts the
transformed key and sends it to the client agent. The client
agent decrypts the file and sends it to the interposition agent,
which forwards it to the application.



Table 2. Sequence of events for writing a re-
mote Paranoid file

Machine Action Tasks and Explanations
C closefile Client application closes a modified

Paranoid file
C intercept Bypass intercepts the close file op-

eration, passes control to client
agent.

C encryptfile The client agent generates a random
symmetric key, encrypts the file, en-
crypts the symmetric key with the
group public key, generates a header
which includes a hash of the file.

C PSP encryptkey The client PSP signs the file hash
and signs the header hash.

C sendfile The client agent connects to the file
server sending a write request along
with the file name and user ID. It
sends the file.

S receivefile The file server receives the file,
parses the file header, checks mem-
ber authorization.

S PSP signaturetransform The server PSP transforms the
client signature into a group signa-
ture.

S write file The server copies the file into the
appropriate directory.

Writing Remote File. Remote file writes are done on
whole files. When an application creates or modifies a para-
noid file, the client agent performs read and writes on a local
copy. Once the file is closed, the client agent does a remote
write into the Paranoid file system. The client agent en-
crypts the file with a new random symmetric key. The sym-
metric key is encrypted with the member’s own private key
and the group’s public key. The encrypted file is attached
to the header and is digitally signed by the writer using his
group private key. The file is sent back to the file server. The
file server on the group owner’s machine verifies the group
member’s write authorization. Once credentials and signa-
tures are verified, the newer version of the file replaces the
old one. The Paranoid file addresses multiple concurrent
write back consistency by using a last writer wins policy.
However, older versions of files are archived. Remote file
and directory creations are the same as file write operations.
In case a group member has remote file creation rights, the
file server provides a default empty file to the requesting
client agent. Newly created files inherit the same access
groups as the directories they are created on. Alternatively,
default groups can be specified in a configuration file.

Table 2 describes the chain of events that follows a re-
mote client write request. Like Table 1, Table 2 has three
columns. The first column specifies the machine, the sec-
ond column specifies the action, and the third describes the
action and its associated sequence of steps.

3. Key Transformation

The Paranoid file system uses a modified version of the
RSApublic key cipher [17]. Each access group uses a dif-
ferent modulusN , but all the members of a group use the
same modulus. The modulus and the public exponent of
the group key pair are published and the private exponent
is only known to the group owner. Each group member is
given a random exponent to use as his group private key.
Associated with each group member is atransform key,
known only to the group owner, that can transform a sym-
metric key encrypted with the group’s public key into the
symmetric key encrypted by the ”public half” correspond-
ing to the member’s group private key. Thus each group
member can encrypt a symmetric key for group use, but he
can only decrypt a symmetric key after his specific transfor-
mation is applied to an encrypted key. The transformation
step prevents a group member from granting group access
rights to outsiders without revealing their group private key.
Since this can be easily traced, it is expected to dissuade
leakage. In contrast, systems that hand out the group pri-
vate key to users effectively allow them to add new users
by giving the key to others without any accountability. Fur-
ther, Paranoid’s scheme lets the owner remove a user from
a group without having to re-encrypt any keys or files.

This section describes the transformation in detail. When
a user creates a new group he creates a standardRSAmod-
ulusN whereN = pq wherep andq are two large random
prime numbers. The group has a public and private key pair,
g andg−1, where:

g × g−1 ≡ 1 (mod Φ)

where
Φ = (p − 1) × (q − 1)

Every group memberM , M = 1, 2, 3, ... is given a large
random private keyem that is relatively prime toΦ. The
group owner also computes the inverse of this keye−1

m , such
that:

em × e−1

m ≡ 1 (mod Φ)

Additionally, a transform keyτm is computed using the fol-
lowing formula:

τm = g−1 × e−1

m (mod Φ)

The inverse private keye−1

m is discarded and the transform
keyτm is stored in the group definition file together with the
member identityM . The group definition file is encrypted
and is kept on the owner machine where it is only accessible
to the file server.

Assume that a symmetric keyK is encrypted with the
RSA cipher using the public key< N, g >, that is:

E(g, K) = Kg (mod N)



When userM asks to read a file encrypted withK, the file-
server computesE(τm, E(g, K)) and sends it to the group
memberM . The group member computes:

K = E(τm, E(g, K))em (mod N)

Proposition:

K = E(τm, E(g, K))em (mod N)

Proof: Since the set of integers relatively prime toΦ is a
commutative group under multiplication moduloΦ:

τm × g × em (mod Φ)

≡ g−1 × e−1

m × g × em (mod Φ) ≡ 1 (mod Φ)

Therefore, usingEuler’s Totient Theorem,

E(τm, E(g, K))em (mod N)

≡ Kg
−1

×e
−1

m
×g×em (mod N) = K

QED.
Please note:Applying the transform keyτm to a signa-

tureH generated byM with his private keyem transforms
the signatureH into a group signature generated withg−1.
That is:

E(em, H)τm (mod N) ≡ E(g−1, H)

The proof is almost identical to the proof of the proposition
above and is left to the reader. Also note that as long as the
group owner keepsΦ, g−1, and the transform keys secret,
he can use the same modulusN for many different access
groups.

3.1. Transformation Security

A primary question concerning the key transformation
scheme is how secure is it? The answer is as follows. Since
each group member’s private key is a large random number,
knowledge of the group public key and a group-member’s
private key does not give an attacker the ability to gain addi-
tional capabilities beyond impersonating the member. Any
set of collaborating group members could not gain any ad-
ditional capabilities they don’t already have. For example,
if group access privileges were taken away from a set of
group members, they cannot regain group access by collab-
orating. Any group member getting hold of a symmetric
key encrypted with the group public-key could not decrypt
it without knowing the corresponding transform key.

However, the transform keysτm must be kept secret.
Any person that knows both a group-member private-key
em and the corresponding transform keyτm can decrypt
any symmetric key encrypted with the group’s public key
g. Thus she can access all the group files, bypassing any
access controls. If she was also able to penetrate the server,
then she could modify files, forge signatures and alter the
group definition file, adding or subtracting members.

<FILE name=... path=... hostname=...>
<OWNER name=.../>
<SYMMETRIC_KEY key=... iv=.../>

<READ_GROUPS>
<GROUP name=...>
<GROUP_SYMMETRIC_KEY key=... iv=.../>
</GROUP>

<GROUP name=...>
<GROUP_SYMMETRIC_KEY key=... iv=.../>
</GROUP>

</READ_GROUPS>

<WRITE_GROUPS>
<GROUP name=...>
<GROUP_SYMMETRIC_KEY key=... iv=.../>
</GROUP>

</WRITE_GROUPS>

<TIME_STAMP value=.../>
<SIGNATURE lastwriter=... value=.../>

</FILE>

Figure 3. XML headers for Paranoid Files

4. Implementation details and results

4.1. XML

Paranoid files are encrypted and stored in XML format.
An XML header is prepended to the encrypted data. Binary
data, such as encrypted keys, is stored in hexadecimal for-
mat for readability. A simplified schema of the XML file
header is given below. The header contains the file access
information along with the protected decryption keys. The
header also contains a list of groups having read or write
access rights. An encrypted symmetric key is stored with
each group name. The file contains a digital signature of
the XML header and the encrypted file.

4.2. Group Files

The XML group definition file is a list of group members
and members’ transform keys. The skeleton of one is shown
in Figure 4.

4.3. Client Modules

Applications communicate with the operating system
through the standard library that makes system calls to con-
tact the kernel. Since Paranoid files are kept encrypted,
applications can’t use them without decryption. Making
changes to the operating system or the input and output
library on requires super-user privileges on most systems.
Paranoid uses interposition agents to make sure existing ap-
plications run seamlessly without having any knowledge of
the underlying encrypted file format.



<GROUP name=...>
<OWNER name=.../>

<MEMBERS>
<MEMBER name=...>
<TRANSFORM_KEY value=.../>
</MEMBER>

<MEMBER name=...>
<TRANSFORM_KEY value=.../>
</MEMBER>

</MEMBERS>

<TIME_STAMP value=.../>
<SIGNATURE lastwriter=... value=.../>

</GROUP>

Figure 4. Paranoid Group Files

We use the Bypass system [20] to implement the Para-
noid global encrypted file system. The Bypass system al-
lows us to modify the behavior of a selected set of system
calls by replacing each selected system call with code that
we supply. The Bypass system traps system calls and exe-
cutes the supplied code in user space. Thus one can modify
or enhance the operating system without having to modify
the kernel or system libraries themselves.

A modified version of theC input/output (I/O) library,
implemented in the client agent, insulates applications from
Paranoid file system’s underlying details. The modified I/O
library supports transparent access to remote cryptographic
files. Relevant I/O system calls, such asopenandclose, are
intercepted. Then the client agent executes code to fetch re-
mote files, communicate with the PSP, and perform crypto-
graphic operations on the files. For example, when theopen
system call is issued by an application, the remote Paranoid
file is fetched and its content is decrypted. Control is then
returned to the running application once the file’s integrity
is verified. A local decrypted copy of the file is created its
descriptor is passed to the application in lieu of encrypted
file’s descriptor.

4.4. Global Files

Paranoid makes it as easy to use a remote encrypted file
as it is to use a local unencrypted file. Paranoid file names
extend the usual UNIX file naming convention. Like in
UNIX, a file name is a string with substring fields separated
by /. The first substring is the keyword/paranoid and the
second is[userID@]host[:port] whereuserID is an op-
tional user identity specifying the owner of the file,host
is the hostname or IP address andport is an optional port
number where the Paranoid server agent is running. The
default user identity and port number are specified in a con-
figuration file.paranoidrc in the user’s home directory. For
example, to edit a Paranoid file withvi, a user could type (in
an interactive shell):vi /paranoid/abc.cs.xyz.edu/file.txt.

The client agent opens a TCP socket connection to a file

File Size 1Mb 4Mb 8Mb 16Mb 64Mb
Verification 0.41 1.2 2.09 3.97 16.09
Decryption 0.65 2.47 4.95 10.08 41.42
Encryption 2.56 4.32 6.69 11.41 43.33
Transfer 0.26 0.8 1.51 2.97 12.93

Table 3. Latency observed (in seconds) to
openand then closea Paranoid file on a local
host.

File Size 1Mb 4Mb 8Mb 16Mb 64Mb

Transfer (S→C) 1.64 5.59 11.34 21.95 89.86
Verification 0.24 0.94 1.77 3.55 15.34
Decryption 0.6 2.38 4.78 9.7 42.25
Encryption 2.56 4.33 6.74 11.53 44.97

Transfer (C→S) 0.4 1.54 3.09 6.28 25.42

Table 4. Latency observed (in seconds) to
openand then closea Paranoid file on a remote
host.

server process running on the group owner’s machine which
in this case isabc.cs.xyz.edu. Since no user identity or port
were specified, the defaults are read from the configuration
file. A simple handshake protocol is used to send the remote
user credentials, request the file, and transfer the file to the
client machine. Note that requests and files are sent in the
clear since files’ contents are already encrypted, users are
implicitly authenticated, and responses are signed.

5. Performance

The overhead of trapping a system call using Bypass is
between 9 to 28µs [20]. Paranoid incurs a large cost for
encrypting, decrypting, signing and verifying files. The use
of cryptographic operations in the critical path of file oper-
ations has the potential to create a significant adverse im-
pact on overall performance. However, we argue that this
overhead is acceptable in the context in which Paranoid is
to be used since the file operations are dominated by the
latency introduced by the network transfers. Below we pro-
vide measurements of the time it takes to open and close
Paranoid files to illustrate the effect it has on performance.

The measurements were made using two 300 MHz In-
tel Pentium II machines connected through the network.
The benchmark program invokes theopenand closesys-
tem calls a number of times over a range of files of different
sizes. The tables shows the mean results over 10 runs each
for 5 file sizes between 1MB and 64MB. Table 5 shows
a client and server located on the same machine with the
client opening and closing a Paranoid file. Table 5 displays
times for a client and server located on different machines.



The first transfer time is the measurement when the file is
retrieved from the server by the client. This includes the
time to effect the transform key on the server. Thus this
time is much greater than the second transfer time which
occurs when the file is returned to the server after it has
been closed.

6. Related Work

Several previous projects have proposed the use of en-
cryption to lock data stored in files. The Cryptographic File
System (CFS) [1, 2], created at AT&T Bell Laboratories,
was one of the early realizations of such a scheme. How-
ever, CFS was designed as a local file system. Therefore,
the only way a file could be shared was by explicitly dis-
tributing file keys to other users. CFS used symmetric keys
for all protection. This meant that the keys were left unpro-
tected in memory while in use. Such a scheme is vulnerable
when an attacker gains access to the system since they then
have access to the keys as well. The use of a public key
scheme like that of Paranoid reduces this exposure. Fur-
ther, the granularity for file accesses in CFS is per directory.
Paranoid can be used to provide per file read or write access
and per directory create permissions.

The Transparent Cryptographic File System [3] is sim-
ilar to CFS but it moves the functionality from user space
to kernel space for performance and ease of use. Cryptfs
[21] uses a stackable file system infrastructure to provide
similar functionality. TCFS, Cryptfs and [8] have the same
weakness as CFS, which is that the symmetric keys are un-
protected. This can only be resolved through the use of a
public key cipher in the protocol.

Network of Attached Secure Disks [7] and Secure Net-
work Attached Disks (SNAD) [4] store data remotely and
operate at block level. Data is unprotected on the server in
the former with data servers cooperating with a single group
server for access control, making it a central point of fail-
ure. SNAD uses certificates for authentication. However,
since access is at the block, neither system can provide the
end-to-end security semantics that Paranoid can.

The Self-certifying File System (SFS) [11], from MIT,
addressed the problem of mutually authenticating servers
users. This was done in order to prevent an adversary from
spoofing the server. SFS achieves this through path names
which embed the public key. SFS-Read Only [6] extended
SFS to address the problem of securely sharing read only
data across the Internet.

Cepheus [5] focuses on the separation of storage and
group server functionality. It uses session keys to protect
communication between the server and clients. The storage
server does not need to be aware of the access control opera-
tions which are handled by the group server. A shortcoming
of the system is the fact that group members are given the

private key of the group. Paranoid’s transform keys prevent
a group member from granting his group access privileges
to an outsider without revealing his own private key. In con-
trast, possession of Cepheus’ group private key effectively
allows a user to add new users to the group without reveal-
ing who effected the delegation. By restricting access to the
group key to only the group owner, such direct leakage of
rights is not possible with Paranoid. The transform keys of
Paranoid force a user to divulge their personal private key
allowing the source of such leakage of rights to be uniquely
identified.

Plutus [10] uses a client based key distribution scheme.
It focuses on using file groups to reduce the number of
keys exchanged between users. Plutus, from HP Labs, pro-
vides group sharing by explicitly sharing the secret with all
the group users. This suffers from the same problems as
Cepheus described above. [16] compares several related
cryptographic filesystems.

The Encrypting File System of Windows 2000 [12] uses
symmetric keys to encrypt files. These are then encrypted
with a public key cipher for rights management. Since they
are stored on the host, rather than with a PSP, they are ex-
posed in the event of a system compromise. Further, Para-
noid’s transform keys extend the scheme to enable crypto-
graphic group access control.

The Secure File system, developed at the University of
Minnesota [9] uses a protocol similar to Paranoid. How-
ever, a key difference is that access control is arbitrated by
a group server rather than the end user. This does not have
the end-to-end security semantics guarantees of Paranoid.
In the event that a security compromise is detected in Para-
noid, only the currently active files are at risk. In the Secure
File System scheme, there is no way to prevent the attacker
from accessing all the remaining files that the group server
is responsible for but are not currently being used, if the
system is compromised.

The Trusted Computing Platform Alliance [19] is an al-
liance of industry leaders in hardware and software. It aims
to build a trusted computing environment on top of trusted
hardware. The IBM 4758 Cryptographic Co-processor [18]
is a high security, programmable PCI board which can be
used to provide data and cryptographic processing to im-
plement TCPA functionality. It contains tamper detection
sensors, circuitry of cryptographic operations, a micropro-
cessor, memory, and a random number generator. It aims to
provide security even in the face of a physical attack on the
device. Its high cost and weak processing power has ham-
pered widespread adoption. Palladium [13] provides lower
assurance security than such a trusted co-processor but is
cheap enough to be commercially feasible for commodity
desktop systems. Paranoid performs privileged tasks on the
PSP. Data is decrypted into the client’s volatile memory and
assumed to be secure if stored there temporarily. The PSP’s



functionality could instead be implemented using the IBM
4758 or Palladium.

7. Conclusions

This paper presents the Paranoid file system, an en-
crypted global file system that implements peer-to-peer
transparent file sharing with UNIX-like access controls.
Each user can define access groups and grant group ac-
cess rights to peers outside their protection domains with-
out the need for any intervention by an administrator. A
novel public key transformation scheme is used to facili-
tate low cost revocation of access rights. Performance mea-
surements show that the implementation overhead for the
encrypted global file system is low enough to make it prac-
tical. While the implementation described is Linux specific,
the Paranoid system could easily be ported to other operat-
ing systems by using dynamically loaded libraries that re-
define file I/O. All applications that use dynamic linking
would then be able to use the Paranoid file system. Im-
plementing Paranoid using the Trusted Computing Platform
(for secure management of cryptographic keys) can further
reduce system vulnerability.

References

[1] M. Blaze. A cryptographic file system for unix.Procedings
of First ACM Conference on Computer and Communications
Security, 1993.

[2] M. Blaze. Key management in an encrypting file system.
Proceedings of the USENIX Summer Technical Conference,
1994.

[3] G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiano. The
design and implementation of a transparent cryptographic
file system for unix. InProceedings of the FREENIX Track:
2001 USENIX Annual Technical Conference, 2001.

[4] W. Freeman and E. Miller. Design for a decentralized secu-
rity system for network-attached storage.Proceedings of the
17th IEEE Symposium on Mass Storage Systems and Tech-
nologies, 2001.

[5] K. Fu. Group sharing and random access in cryptographic
storage file systems. Master’s thesis, MIT, 1999.

[6] K. Fu, F. Kaashoek, and D. Mazieres. Fast and secure
distributed read-only file system.Proceedings of the 4th
USENIX Symposium on Operating Systems Design and Im-
plementation, 2000.

[7] G. A. Gibson, D. F. Nagle, W. C. II, N. Lanza, P. Mazaitis,
M. Unangst, and J. Zelenka. Nasd scalable storage systems.
Proceedings of USENIX Extreme Linux Workshop, 1999.

[8] P. Gutmann. Secure file system, 1996.
[9] J. Hughes and C. Feist. Architecture of the secure file sys-

tem. Proceedings of the Eighteenth IEEE Symposium on
Mass Storage Systems, 2001.

[10] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable secure file sharing on untrusted stor-
age, 2003.

[11] D. Mazieres.A Self Certifying File System. PhD thesis, MIT,
2000.

[12] Microsoft Corporation.Encrypting File system in Windows
2000, 1999.

[13] Microsoft Windows Trusted Platform Technologies.Mi-
crosoft Palladium: A Business Overview, 2002.

[14] National Bureau of Standards, U.S. Department of Com-
merce. Data Encryption Standard, number 46-1 in FIPS,
1988.

[15] National Institute of Standards and Technology.AES Pro-
posal: Rijndael, 2000.

[16] E. Riedel, M. Kallahalla, and R. Swaminathan. A framework
for evaluating storage system security.Proceedings of the
1st Annual Conference on File and Storage Technologies,
2002.

[17] R. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signature and public-key cryptosystems.Commu-
nications of ACM, 21, 1978.

[18] S. W. Smith and S. Weingart. Building a high-performance,
programmable secure coprocessor.Computer Networks,
31(9), 1999.

[19] http://www.trustedcomputing.org/.
[20] D. Thain and M. Livny. Multiple bypass: Interposition

agents for distributed computing.Journal of Cluster Com-
puting, 2001.

[21] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A stack-
able vnode level encryption file system. Technical Report
CUCS-021-98, Computer Science Department, Columbia
University, 1998.


