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Abstract. We conducted a longitudinal study to analyze the misuse of
Bitcoin. We first investigated usage characteristics of Bitcoin by analyz-
ing how many addresses each address transacts with (from January 2009
to May 2018). To obtain a quantitative estimate of the malicious activity
that Bitcoin is associated with, we collected over 2.3 million candidate
Bitcoin addresses, harvested from the dark web between June 2016 and
December 2017. The Bitcoin addresses found on the dark web were la-
beled with tags that classified the activities associated with the onions
that these addresses were collected from. The tags covered a wide range
of activities, from suspicious to outright malicious or illegal. Of these
addresses, only 47,697 have tags we consider indicative of suspicious or
malicious activities.

We saw a clear decline in the monthly number of Bitcoin addresses
seen on the dark web in the periods coinciding with takedowns of known
dark web markets. We also found interesting behavior that distinguishes
the Bitcoin addresses collected from the dark web when compared to
activity of a random address on the Bitcoin blockchain. For example, we
found that Bitcoin addresses used on the dark web are more likely to
be involved in mixing transactions. To identify mixing transactions, we
developed a new heuristic that extends previously known ones. We found
that Bitcoin addresses found on the dark web are significantly more ac-
tive, they engage in transactions with 20 times the neighbors and 4 times
the Bitcoin amounts when compared to random addresses. We also found
that just 2,828 Bitcoin addresses are responsible for 99% of the Bitcoin
value used on the dark web.

1 Introduction

Understanding how cryptocurrencies may affect society depends on being able to
analyze their use and misuse. We present a first step in this direction. Our study
shows a decline in the level of malicious Bitcoin activity over the years, when
measured in terms of the number of addresses involved. The decline of Bitcoin’s
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usage in suspicious and malicious activities is not surprising for those who follow
the space closely. There is now an increased awareness about the lack of strong
anonymity in Bitcoin, in comparison with other privacy-preserving coins, such as
Monero [18] and Zcash [24]. Even though Bitcoin usage in suspicious activities is
declining, our study is still useful since it provides a quantitative understanding
of the trend. We believe that our findings can benefit other researchers as well as
help educate administrators and law enforcement as they create and implement
new regulations.

1.1 Cryptocurrency Studies

Analysis of Bitcoin: One of the first attempts to analyze the Bitcoin blockchain
was performed in 2012 by Ron and Shamir [21]. They studied Bitcoin’s transac-
tions graph and identified interesting patterns in it. The scale and complexity of
the graph has exploded in the seven years since that study was performed. Subse-
quent analyses [16, 1, 23, 4, 19, 20] have used heuristics to cluster Bitcoin wallets,
based on evidence of shared authority, and then perform active re-identification
attacks – for example, by purchasing goods and services to classify the operators
in clusters [16], and searching for transaction patterns on exchanges [20].

BitRank [3] is a proprietary wallet scoring system developed by the startup
Blockchain Intelligence Group (BIG). BIG’s website states that the current beta
version of BitRank performs real-time risk assessment to determine the relative
safety of pending Bitcoin transactions. As of January 2019, the site provides little
public information about the technical details of the system. There are several
other services that analyze Bitcoin (and other systems such as Ethereum and
Litecoin) to aid businesses and law enforcement. These include Chainanalysis [9],
CipherTrace [10], and Elliptic [11]. To the best of our knowledge, they have not
published analysis that covers the material in our study for the duration we
consider.

In parallel to our effort, Lee et al. [15] collected 27 million dark web pages and
extracted a mix of 10 million unique Bitcoin, Ethereum, and Monero addresses.
They classified the usage of the addresses, identified their use in the trade of
illicit goods, and traced cryptocurrency flows, to reveal black money activity on
the dark web. Their analysis shows that more than 80% of Bitcoin addresses
found on the dark web were involved in malicious activities. The monetary value
of the associated cryptocurrency activity was estimated to be $180 million.

Other Cryptocurrencies: In recent work [17], some transactions of the privacy-
focused cryptocurrency Monero [18] were found to be highly linkable. We do not
claim that any of our analysis or results apply to privacy-preserving cryptocur-
rencies. This paper only considers Bitcoin, with similar analysis of Monero left
as challenging future work.

1.2 Contributions

We provide the following:



– A quantitative study on the misuse of Bitcoin in malicious contexts. Such
activities are identified by collecting Bitcoin addresses that are advertised
as a means of payment on dark web onions associated with a wide range
of undertakings, such as selling illegal substances, human trafficking, and
ransomware.

– New heuristics to identify CoinJoin mixing transactions. We believe that
our heuristics are of independent interest.

We emphasize that our study does not claim that Bitcoin has been (or is)
used only for malicious or illegal activities. Our aim is to provide a quantitative
assessment of the extent of such activities. This is critical for researchers, regu-
lators, law enforcement, and the wider community to understand the magnitude
and scope of the problem. We believe that this understanding is necessary for
the cryptocurrency ecosystem to mature.

1.3 Summary of Findings

We highlight some of our results below.

1. Bitcoin Ownership and Use (in Section 3.1): Less than 0.06% of all
Bitcoin addresses own over 99% of all bitcoins. In particular, that 0.06%
consists of 2,266,265 out of 397,301,155 unique addresses observed. Between
January 2009 and May 2018 each address participated in at least one of
the 316,386,663 transactions that we analyzed. Most addresses were used at
most a few times, which is what we expect based on how wallet software is
designed and used.

2. Bitcoin on the Dark Web (in Section 3.3): Of the 2,093,568 Bit-
coin addresses found on the dark web, 276,549 were from mirrors of the
Blockchain.info explorer. 82% of the remaining addresses were active – that
is, participated in at least one transaction. In particular, there were 1,491,709
active addresses. Of these, only 47,697 had tags that we considered indica-
tive of suspicious or malicious activities. Just 2,828 addresses owned 99% of
the bitcoins that were involved in the dark web. There was a clear decline
the number of Bitcoin addresses appearing on the dark web in the months
in which dark web markets were taken down.

3. Mixing Transactions (in Section 4): The fraction of all Bitcoin addresses
that participate in at least one CoinJoin transaction is only 0.4%. However,
our analysis found that on the dark web, this fraction was 5 times higher –
that is, 2.3% of Bitcoin addresses found here were part of CoinJoin opera-
tions.

4. Transaction Characteristics (in Sections 5.1 and 5.2): When consider-
ing all Bitcoin addresses, 340,138,543 (85.7%) of them have transacted with
less than 10 other addresses, while only 25,7925 (0.06%) have transacted



with more than a 1,000 addresses, and only 6,178 (0.002%) transacted with
more than 10,000 addresses. In contrast, 597,744 (40.1%) of Bitcoin addresses
found on the dark web have transacted fewer than 10 other addresses, while
61,330 (4.1%) have transacted with more than 1,000 addresses, and 3,244
(0.2%) have transacted with more than 10,000 addresses. The higher partic-
ipation in mixers is one reason that the Bitcoin addresses found on the dark
web have transacted with more addresses.

1.4 Study Limitations

Given the significant scope of the effort, it had its limitations. We note three in
particular:

1. Coverage of dark web: The data spans June 2016 to December 2017. No
claim is made regarding its completeness. Section 3.2 describes our collec-
tion methodology and the resulting data.

2. Dark web data labeling: We relied on previous research on (thematic) label-
ing of dark web onions to describe the activities that they are involved in.
An address that is collected from an onion inherits its labels (which we call
tags). Note that only a subset of tags are indicative of suspicious or malicious
activities. Section 3.2 describes how the labeling was performed in prior work.

3. Analysis accuracy: Since we did not have the ground truth for much of the
analysis that we performed, we could not cross-check the accuracy of our
inferences. The transaction graph is based on publicly available information,
ensuring its reliability. There is also a basis for confidence in the labeling of
the dark web data since some of it was manually verified. Since our work on
detecting mixing transactions depends on heuristics, the results may have
both false positives and false negatives. However, we did verify as many
mixing transactions as we could.

1.5 Outline

Section 2 covers background on Bitcoin and mixers (especially CoinJoin). Sec-
tion 3 provides an overview of the data sets used in our study, a characterization
of behavior observed in the individual data sets, a description of our modified
heuristic for detecting mixing transactions, and the properties of such transac-
tions. Section 5 presents more details of our Bitcoin analysis and our findings.
Section 6 concludes with a discussion of future work.

2 Bitcoin Preliminaries

2.1 Identifying Bitcoin Addresses

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA). Each user
has at least one ECDSA key pair. A user can digitally sign a transaction with



their private key. The user’s public key can be used to verify that the signature is
valid. The user’s Bitcoin address is an encoding of the 160-bit hash of the public
key [6]. A Bitcoin address contains a built-in checksum. This allows detection of
malformed addresses, as may occur if the address is mistyped.

A Bitcoin address can be generated offline using wallet software. Even if it is
listed on web pages, it may never be used. We only consider an address active if
it has appeared on the public Bitcoin blockchain. When bitcoins are sent to an
address that is well-formed but not owned by any user (or if the user has lost
the corresponding private key), the bitcoins will be lost. In the latter case, the
private key may be recovered by alternate means [5].

To construct a Bitcoin address, the hash of the user’s ECDSA public key and
checksum are converted to an alphanumeric representation. This is done using
the Base58Check custom encoding scheme. The resulting address can contain all
alphanumeric characters except 0, O, I, and l. Normal addresses start with 1,
while addresses from script hashes begin with 3. An address that is used on the
main Bitcoin network is 25-34 characters long. Most are 33 or 34 characters in
length.

Initially, a regular expression was used to extract candidate Bitcoin addresses
from the dark web pages. (See Section 3.2 for more information.) Of the 2.3
million found, 0.2 million failed to pass the checksum test [7]. It is expected that
some addresses that were classified as inactive in the study will subsequently be
used.

2.2 Mixing Transactions

A CoinJoin is a specific type of Bitcoin transaction. It enables a participant to
increase their anonymity by “mixing” their payment with that of other users.
Each participant creates a new Bitcoin address. Next, they construct a fixed size
payment to it. This is then sent to an aggregator that collects all the participants’
payments. The aggregator constructs a single transaction that includes all of the
payments. This transaction is sent to all the participants for them to sign. The
security of the CoinJoin depends on the fact that the transaction is not valid
till every participant provides a signature. Once all the signatures are received,
the transaction can be posted for inclusion in a block by a miner. Since the
payments are all the same amount, there is no direct way to connect an output
to a specific input. All of these steps are handled by wallet software. See the
CoinShuffle paper [22] for more information.

The aggregator can be a centralized service or a peer-to-peer protocol. Some
services are available on the public web, such a JoinMarket and CoinShuffle.
Other services are only present on the dark web. Since the payment from a
participant in a CoinJoin should only be connected to a single output, this class
of transactions introduces noise in our analysis. Of equal concern is that all the
other participants appear as payees. This motivated us to develop a heuristic
to detect CoinJoins so that they can be excluded from selected portions of our
analysis. See Section 4 for more detail.



3 Bitcoin and Dark Web Data Sets

Fig. 1: Monthly used Bitcoin addresses Fig. 2: Active (in last 3 months, blue) and
inactive Bitcoin addresses (orange)

Fig. 3: Bitcoin transactions per month Fig. 4: Amount of bitcoins sent

3.1 Bitcoin’s Blockchain

From the genesis of Bitcoin in 2009 to the end of May 2018, the blockchain
contains 397,301,155 unique addresses that have participated in at least one
of the 316,386,663 transactions that occurred in that timeframe. The number
of addresses used in a given month has increased rapidly, as seen in Figure 1.
Since we collected this information using a Bitcoin client, we also cross-checked
the numbers with data from the Blockchain.info explorer [2]. The number of
transactions per month is also increasing, as seen in Figure 3. However, the
quantity of bitcoins transferred each month is significantly more volatile than
the number of addresses used or transactions. This can be seen in Figure 4.

Bitcoin addresses behave very differently from each other. Most addresses
are only used a few times. This is because the reuse of a single address makes
a user more susceptible to deanonymization. A payment from an address must
reference and not exceed the sum of past Unspent Transaction Outputs (UTXOs)
to that address. To avoid overpayment, a change address is used. In principle,



this can be the payer’s original address. In practice, it is a different address for
the aforementioned reason. The use of wallet software automates the process of
using a new address for each transaction and a different change address.

Many addresses participate in several transactions. Some participate in a
large number of transactions. For multiple measures, such as the number of
transactions per address, or the number of bitcoins received by each address,
the resulting graphs can be approximated by a Pareto power-law distribution.
For instance, more than 99% of bitcoins used in transactions belong to just
0.06% of the number of addresses that have been used. (The 0.06% set consisted
of 2,266,265 addresses.)

3.2 Dark Web Data

Prior work at SRI focused on collecting, labeling, and categorizing information
from the dark web [12]. The effort had to first receive approval from SRI’s Insti-
tutional Review Board (IRB) due to the complex legal and ethical considerations
involved. We have not focused on these aspects in our research. Instead, we use
data from that study, consisting of labels associated with Bitcoin addresses found
on the dark web. Section 1.4 on the limitations of our work identifies this labeling
of dark web data as a possible source of error.

For completeness, we briefly discuss the methodology used to collect the data
from the dark web. See the description by Ghosh et al. [12] for further detail.
An acquisition infrastructure was constructed to discover new onion websites,
crawl their content, and integrate them into an indexed repository. This lever-
aged OnionCrawler, a fully automated crawling tool to identify new Tor onion
domains. The dark web crawling system was run continuously, twice per day, to
address diurnal patterns in onion site availability. If a string that matched the
Bitcoin address format was found on a page, the address was associated with
the onion (and its labels).

Seed data was used from previously published onion data sets, references
to onions in a large collection of DNS resolver logs, and an open repository of
(non-onion) web crawl data, called the Common Crawl. The automated catego-
rization was used to label each onion with tags describing the activity found on
its pages. We believe the tag provides a clear indication of the activity it refers
to. We focused on the following tags in most of our analysis: PONZI, MARKET,

HUMAN TRAFFIC, HACKER, DRUGS, CHILD P, COUNTERFEIT, RANSOM, CASINO,

NATIONALSEC, HOSTING PROVIDER, PIRATEBAY, HITMAN, WEAPONS, JIHAD,

EXPLOSIVES, CREDIT CARD FRAUD, DISCLOSURES, ANONYMOUS, PIRATE BAY,

MURDER, DOXBIN, ALPHA MARKET, ESCORT, WIKILEAKS, DECRYPT RANSOM.
About 2.3 million candidate Bitcoin addresses were found in the dark web

pages. As explained in Section 2.1, 0.2 million of these were strings that matched
a regular expression for detecting the presence of an address on a web page but
subsequently failed the Bitcoin checksum test [7]. After eliminating these false
positives, we were left with 2,093,568 Bitcoin addresses. Table 1 shows how many
of these addresses were associated with each of the 20 most frequent suspicious
tags. More detail is provided next in Section 3.3.



Number of
Addresses

Number of Neigh-
bors

Owned Bitcoins

CHILD P
1,696 mean = 2,505 mean = 94.41

median = 7 99% = 67.05

HUMAN 1,876 mean = 2,350 mean = 85.52
TRAFFIC median = 7 99% = 60.16

MARKET
2,604 mean = 2,023 mean = 63.2

median = 6 99% = 85.52

DRUGS
1,704 mean = 2,585 mean = 94.11

median = 8 99% = 76.78

HACKER
1,817 mean = 2,433 mean = 88.3

median = 8 99% = 65.17

PONZI
4,011 mean = 2,622 mean = 5.63

median = 7 99% = 66.49

RANSOM
1,546 mean = 210 mean = 0.12

median = 6 99% = 1.41

COUNTERFEIT
1,561 mean = 2,385 mean = 68.80

median = 9 99% = 80.56

CASINO
1,421 mean = 2,891 mean = 112.64

median = 7 99% = 89.15

NATIONALSEC
1,415 mean = 2,951 mean = 112.56

median = 8 99% = 84.55

PIRATE BAY
1,152 mean = 2,956 mean = 7.27

median = 8 99% = 87.84

HOSTING PROVIDER
1,276 mean = 2,741 mean = 76.59

median = 8 99% = 89.32

CURRENCY
41,883 mean = 786 mean = 10.47

median = 3 99% = 7.88

BITCOIN 2,985 mean = 5,630 mean = 9.74
WALLET median = 4 99% = 154.93

FORUM 1,473 mean = 1,095 mean = 5.26
SOFTWARE median = 3 90% = 52.32

REGISTRATION
1,332 mean = 3,710 mean = 80.27

median = 11 99% = 88.68

HOSTING 1,317 mean = 4,041 mean = 8.75
PROVIDER median = 21 99% = 0.0

ELECTRONICS
1,298 mean = 2,651 mean = 75.23

median = 8 99% = 0.0

BLOG
1,220 mean = 2,798 mean = 6.88

median = 8 99% = 84.11

NO TAG
1,440,12 mean = 234 mean = 0.8

median = 25 99% = 0.19

Table 1: Number of neighbors and bitcoins owned for active dark web addresses (limited
to top 20 dark web tags considered suspicious or malicious)



Number
of Tags
(N)

Number of
Potential
Addresses
with N Tags

Number of Ac-
tive Addresses
with N Tags

Number
of Tags
(N)

Number of
Potential
Addresses
with N Tags

Number of
Active Ad-
dresses with
N Tags

1 143,130 41,783 14 696 69

2 45,152 2,319 15 2,210 78

3 24,331 1,519 16 175 30

4 68,236 290 17 76 17

5 4,761 67 18 127 36

6 1,382 32 19 16 3

7 176 57 20 258 53

8 598 151 21 417 344

9 482 60 22 187 13

10 284 44 23 551 41

11 290 66 24 147 33

12 485 31 25 203 65

13 841 75

Table 2: Number of potential and active Bitcoin addresses on the dark web with N
tags. Total number of addresses with tags is 296,069. Among them 47,697 are active
and have tags we consider suspicious or malicious.

3.3 Bitcoin on the Dark Web

About 32% of the Bitcoin addresses that were found on the dark web – that is,
649,556 addresses – were labeled with tags. 1,444,012 addresses did not have any
tags. A subset (of size 0.3 million) of the addresses were determined to be from
mirrors of Blockchain.info explorer pages. These were eliminated from further
analysis. The remaining addresses had a total of 49 unique tags associated with
them.

We studied the addresses associated withe 20 most frequent suspicious tags.
Table 1 reports the number of addresses, neighbors, and bitcoins associated with
each of these tags. Though most addresses have few tags, some are labeled with
many as seen in Table 2. Since some of the addresses may only be present on a
dark web page without ever having been used, we performed the same analysis
with active addresses. The results are reported in the same table to facilitate
comparison. The histograms in Figures 5 and 6 depict the data from Table 2.

The 20 most frequently associated tags differ significantly when all Bitcoin
addresses are considered versus when only active ones are analyzed, as can be
seen from Figures 5 and 6. The inactive addresses that we eliminated appear to
serve as decoys – that is, they are correctly constructed but unused. In the case
of active addresses, the most frequently associated tag is “CURRENCY”, indicating
the prevalence of Bitcoin use in onions. We note that the histograms alone cannot
be used to judge the significance of a topic on the dark web.



Fig. 5: Number of times a (top 20) tag ap-
pears with potential Bitcoin addresses on
the dark web

Fig. 6: Number of times a (top 20) tag ap-
pears with active Bitcoin addresses on the
dark web

Of the 1,491,709 Bitcoin addresses found on dark web pages, only 47,697
had tags that we considered suspicious or malicious. The tags are shown in
Table 1. To gain insight into suspicious activities that involve Bitcoin, our dark
web analysis focused on addresses with these tags.

The number of addresses collected from the dark web each month grew ini-
tially, but then fell significantly. Figure 7 shows this for all Bitcoin addresses
found on the dark web. To better understand usage, Figure 8 how many ad-
dresses appeared in a transaction on the blockchain for the first time in each
month. The mid-2017 drops in the graphs may be explained by the seizure and
shutdown of the Alphabay and Hansa dark web markets [14]. The final drop in
early 2018 is due to our dark web data only extending to the end of 2017.

We note that this data must be interpreted with caution. In particular, there
may be suspicious and malicious activity on the dark web that is not captured by
the tags we use, creating false negatives. Further, dark web sites may reference
benign addresses other than the mirrored Blockchain.info explorer pages that
we were able to identify and exclude. This would have created false positives.

4 Detecting CoinJoins

CoinJoins are not first class primitives in Bitcoin. Hence, they cannot be defi-
nitely identified from inspecting the blockchain. In a minority of cases, a CoinJoin
is listed explicitly on a web site, such as a discussion forum. In general, CoinJoin
transactions must be detected using a heuristic based on their characteristics.

We build on an algorithm from Goldfeder et al. [13] that was designed to iden-
tify JoinMarket transactions. First, we identify the most common value (MCV)
among the bitcoin amounts in the outputs of a transaction. The number of out-



Fig. 7: Number of times a Bitcoin address
found on the dark web appears in a trans-
action on the blockchain

Fig. 8: Number of times a Bitcoin address
found on the dark web first appears in a
transaction on the blockchain

puts that have this value is considered to be the number of participants in such
a transaction. In addition, the following three conditions must be satisfied:

1. The number of participants should be more than half the number of outputs.
This is because up to half the outputs could be to change addresses.

2. The number of participants should be less than or equal to the number of
inputs. This is because each participant must use at least one address as the
source of their payment.

3. There should be at least one possible match between the inputs and the out-
puts, after considering the Bitcoin transaction fees and a liquidity payment
(that is explained below).

Some services, such as JoinMarket, have users that continuously provide their
bitcoins for use in CoinJoin transactions. These users serve as liquidity providers
so that others who want to perform a CoinJoin can easily find peers with whom
they can engage in such transactions. In exchange, such liquidity providers re-
ceive a percentage P of the MCV.

Our objective is then to find a set of disjoint input sets (S) so that each
one can be matched with an output address (with a change address, denoted as
chng). Each match translates to the following equation, with P being the max
percentage of what a CoinJoin user pays for the liquidity provider, n being the
number of participants, and MCV is the most common value in the transaction:

∀ inpt ∈ S : inpt ∈ [MCV · (1− P ) + chng, MCV · (1 + (n− 1)P ) + chng + fees]
(1)

Since a liquidity provider may receive fees from n − 1 other members, the
upper limit of the interval contains a factor of (1 + (n − 1)P ). In our analysis,
the payment P to the liquidity provider is allowed to be up to 2%.



4.1 Algorithm Details

The heuristic used to identify CoinJoin transactions is described detail in Al-
gorithm 1. The general problem of finding a set S that satisfies equation 1 is
NP-complete. It is harder than the problem of variable-sized bin-covering in the
unit supply model. Approximation algorithms for generalized and variable-sized
bin-covering do exist. However, the intervals in our setting are small enough
that most instances can be easily eliminated. Indeed, in most cases the fees and
the percentage given to the liquidity providers are usually very low when com-
pared to the inputs. When this fact is taken into account, the problem becomes
tractable.

Our heuristic solves the problem using the following steps. First, the outputs
are computed by adding each change address to an MCV. Next, we perform a
depth-first search of a tree. The nodes of the tree correspond to the output that
is being taken into account, and a list of the remaining inputs. At a specific node,
we look for all possible sets of remaining inputs that can satisfy equation 1 with
respect to the output at the node. A new child node with the next output is
created for each feasible set.

This approach avoids the exponential explosion that would result from ex-
haustively generating all possible combinations of sets of inputs. In practice, we
found that when a solution exists, the depth-first search usually found it quickly.
When there is no solution, the analysis must still traverse the entire tree.

In Algorithm 1, the function subsets between two values recursively com-
putes all subsets of the list provided as the first argument, subject to the con-
straint that their sum must be between the second and third arguments. This
function’s algorithm is also NP-hard. For instance, if the second argument is 0
and the third is +∞, then it must return all possible combinations of elements
of the input list (provided as the first argument). This will be a set of length 2n.

Finally, we use simple rules to filter cases that are unlikely to be CoinJoins.
One example is checking whether a transaction involves known addresses, such
as those of SatoshiDice or other similar services. We also check that the fees
are below a threshold fraction of the MCV. These rules allow us to reject many
transactions early. These optimizations are not described in Algorithm 1.



Algorithm 1: CoinJoin Identification Heuristic

input : A transactions T with a list of inputs and a list of outputs (addresses
+ Bitcoin amounts)

output: A boolean indicating (if assigned True) that the function is classified
as a CoinJoin

1 Find the most common value MCV among outputs, and its number of
appearance n participants;

2 if n participants <
⌊

length(outputs)+1
2

⌋
then

3 return False;
4 end
5 if n participants > length(inputs) then
6 return False;
7 end
8 if length(inputs) > 17 then
9 return True;

10 end
11 new outputs← array of length n participants with value MCV in all cases;
12 i← 0;
13 for value in outputs do
14 if value 6= MCV then
15 new outputs[i]← new outputs[i] + value;
16 i← i + 1;

17 end

18 end
19 Sort inputs and new outputs in decreasing order; //This does not really change

anything, it is just performed for convenience
20 remaining inputs list← [(new inputs, 0)]; //This list contains sublists. Each

one of them is a node in the tree, representing a list of remaining inputs, and
the index of the output which has to be considered. We use this as a LIFO list
to make the tree search depth-first oriented.

21 fees to provider ← max(2 ∗MCV/100, 0.0001BTC);
22 while remaining inputs list is not empty do
23 remaining inputs, output index← remaining inputs list.pop();
24 current output← outputs[output index];
25 lower limit← current output− fees to provider;
26 upper limit←

current output + fees + fees to provider ∗ (n participants− 1);
27 new set of feasible inputs←

subsets between two values(remaining inputs,
28 lower limit, upper limit);
29 if output index = length(new outputs)− 1 and new set of feasible inputs

is not empty then
30 return True;
31 end
32 for remaining inputs in new set of feasible inputs do
33 remaining inputs list.append(
34 (remaining inputs, output index + 1));

35 end

36 end
37 return False;



4.2 Analysis Results

The heuristic outlined above performs well in practice for CoinJoins with less
than 18 inputs. Out of about 400,000 transactions that satisfy the two first
conditions, the algorithm requires 180 seconds of computation time on a 2016
Macbook Pro. The heuristic identified 157 transactions that required deeper
analysis.

More than 90% of all CoinJoin transactions have less than 18 inputs [13]. We
automatically consider transactions with more than 17 inputs that pass the two
first conditions to be CoinJoins. We found that 18% of all transactions considered
to be CoinJoins by our heuristic have more than 17 inputs. Among transactions
with fewer than 18 inputs, between 25% and 50% of those that satisfy the first
two conditions also meet the third criterion. We concluded that between 4.5%
and 9% of the CoinJoin transactions have more than 17 inputs. This is close to
the result reported by Goldfeder et al. [13].

According to the heuristic, 114,925 transactions were CoinJoins. This rep-
resents 0.036% of the transactions that were analyzed. A total of 2,035,978 ad-
dresses were part of these CoinJoin transactions. This set of addresses was inter-
sected with those found on the dark web, allowing us to conclude that over 2.3%
of the addresses on the dark web have been CoinJoin participants. In contrast,
this is only true for 0.4% of all Bitcoin addresses. We could not identify a specific
dark web category that used more CoinJoins than others.

Dark web addresses appear to be 5 times more likely to participate in Coin-
Join transactions. We noted with interest that only 2.3% of addresses appearing
on the dark web have participated in CoinJoins, since that is a small fraction.
It is conceivable that this is due to the use of alternative mixing approaches.

5 Bitcoin Neighborhood Analysis

We first report our findings from analyzing the activity of all addresses in the
Bitcoin blockchain. After this, we focus on the subset of addresses that have
participated in transactions as well as appeared on the dark web.

5.1 Across the Blockchain

A wide range of behaviors were exhibited by the 397,016,130 Bitcoin addresses
that we analyzed. To characterize them, we studied how many other addresses
an address has transacted with, how many transactions it has been involved in,
the amount of bitcoin that has flowed into it, from it, and is owned by it. Table 3
reports our findings.

To identify the neighbors of addresses we constructed the transaction graph,
with one vertex per address, and undirected edges between two addresses if
they are both listed in (at least) one transaction, with one as a sender and the
other as a receiver. As noted earlier, we excluded CoinJoins before inferring the
neighbor relationship. We also do not consider two senders (or receivers) in the
same transaction to be neighbors.



For all (397,301,155)
addresses with at
least one transaction

Number of
Neighbors

BTC In BTC
Out

BTC
Owned

Number
of Tx’s

Mean 11.92 10.0687 10.03 0.04 3.62
Std 372.26 989.07 987.60 22.55 316.79
Median 3 0.05 0.048 0.00 2
Max 4,586,602 9,351,251 9,356,600 175,236 3,195,815
Min 1 0 0 0 1
Percentile 90% 19 4.37 4.31 0 2
Percentile 99% 137 126.61 126.11 0.03 24
Percentile 99.9% 758 965.99 963.64 1.99 197
Percentile 99.99% 2,846 8,329.38 8,314.63 41.10 1,059

Number of addresses that hold more than 99% of bitcoin: 2,266,265

Table 3: Characterization of all addresses in terms of neighbors, transactions, and
amount of bitcoin in/out/owned. (BTC = Bitcoin, Tx = transaction)

Number of Addresses with ...

Less than 10 neighbors 34,013,8543 85.67%

More than 1000 neighbors 257,925 0.06%

More than 10000 neighbors 6,178 0.00156%

Table 4: Breakdown of neighbor count of all (397,301,155) addresses with at least one
transaction

The standard deviation of the number of neighbors per address is large,
significantly exceeding the 99% percentile. This indicates that the extreme values
are located far from the average. This is also confirmed by the fact that the mean
is much larger than the median. While 50% of the addresses have transacted
with less than 3 other addresses, approximately 6,000 addresses have more than
10,000 neighbors. A few addresses have more than a million neighbors. The
latter addresses are probably not manually controlled by humans. Most outliers
are addresses that come from exchange services, which are involved in many
transactions.

The results for the number of transactions exhibit similar characteristics,
with a large standard deviation. The mean and the median are closer. Most ad-
dresses are involved in few transactions. Specifically, the number of transactions
is smaller than the number of neighbors for most addresses.

The quantity of bitcoin owned by each address also varies widely. The average
is 0.04 bitcoin, while the standard deviation is 500 times larger. Most addresses
have no bitcoins left. This is explained by the fact that in a transaction the
sender needs to use all the bitcoins from each past input referenced. If there is
an excess it must either be sent to a change address or it will become part of
the fee to the miner.



We found that the addresses that owned the largest quantities of bitcoin
corresponded to the ones listed on websites that track wallet addresses with
large holdings [8]. Most such addresses belong to exchanges. An exception is
“1KAt6STtisWMMVo5XGdos9P7DBNNsFfjx7”, which was ranked sixth at the
time of writing. Each of the top six addresses own more than 0.5% of the total
number of bitcoins.

5.2 Addresses on the Dark Web

The statistics for the addresses used on the dark web differ significantly from
those of addresses across the entire blockchain. On the dark web, 90% of the
Bitcoin addresses have transacted with up to 400 other addresses, participated
in over 200 transactions, and been involved with 12 bitcoins. Across the entire
blockchain, 90% of the addresses have transacted with fewer than 20 other ad-
dresses and only dealt with amounts totaling 4 bitcoins. The differences can be
seen in Tables 3 and 6.

For (1,491,709) dark-
web addresses with at
least one transaction

Number of
Neighbors

BTC In BTC
Out

BTC
Owned

Number
of Tx’s

Mean 255.09 153.97 152.91 1.12 143.68
Std 3,723.62 14,554.28 1,4536.67 239.37 5,102.65
Median 23 0.10 0.097 0.00 4
Max 2,277,764 9,351,251 9,350,599 175,236 3,195,815
Min 1 0 0 0 1
Percentile 90% 426 12.85 12.61 0.00089 220
Percentile 99% 27,45 375.15 366.29 0.21 1459
Percentile 99.9% 20,891 10577.64 10,287.04 40.00 7,674
Percentile 99.99% 114,947 226,413.71 226,405.41 800.00 8,3299

Number of addresses that hold more than 99% of the bitcoin
(limited to addresses found on the dark web): 2,828

Table 5: Characterization of Bitcoin addresses found on the dark web, in terms of
neighbors, transactions, and amount of bitcoin in/out/owned. (BTC = Bitcoin, Tx =
transaction)

The same analysis for active addresses found on the dark web indicates that
they transact more than addresses on the Bitcoin blockchain. This can be seen
by comparing Table 3 with Tables 5, 7, and 8. The average amount of bitcoin
owned is also larger for addresses found on the dark web. In addition, 99% of the
coins touched by dark web addresses are owned by just 2,828 dark web addresses.

These results need to be interpreted with caution. The addresses found on the
dark web were publicly accessible. This may have skewed the analysis in favor
of addresses that are more popular and frequently used. This could explain the
significant difference in the characteristics of addresses found on the dark web



Number of Addresses with Absolute Number Percentage

Less than 10 neighbors 597,744 40.09%

More than 1000 neighbors 61,330 4.11%

More than 10000 neighbors 3,244 0.22%

Table 6: Breakdown of transaction neighbor counts for active addresses found on the
dark web

in comparison to those across the entire blockchain. This may also account for
the fact that 10% of the Bitcoin addresses found on the dark web participate in
more than 220 transactions each.

The difference in the number of neighbors per address is even larger, this can
be explained by the observation that dark web addresses are more likely to use
mixing methods (as our CoinJoin analysis indicated), and those methods will
increases the neighbors in our analysis. Also, the sum of the bitcoins owned by
these addresses represent less than 10% of all bitcoins. This number is far from
exact, and is in fact much smaller, as several of the richest addresses have been
cited in forms and discussion on the dark web, so can be found in this set.

For (35,492) dark web
addresses with at least
one CoinJoin transac-
tion

Number of
Neighbors

BTC In BTC
Out

BTC
Owned

Number
of Tx’s

Mean 1,745 2,618 2,612 7.07 1,429

Std 12,726 71,325 71,335 616 28,479

Median 159 1.99 1.97 0 48

Percentile 90% 2341 100 100 0 732

Table 7: Characterization of Bitcoin addresses found on the dark web, with at least
one CoinJoin transaction, in terms of neighbors, transactions, and amount of bitcoin
in/out/owned. (BTC = Bitcoin, Tx = transaction)

Participation in a CoinJoin is unusual (as can be seen in the statistics re-
ported in Section 4). This motivated us to study Bitcoin addresses found on the
dark web that have participated in at least one CoinJoin transaction. Table 7
reports the results. In particular, the mean and standard deviation of both the
number of neighbors and exchanged Bitcoins are higher than for addresses that
do not participate in a CoinJoin.

Assume that the more an address participates in transactions, the higher the
chance that it will be part of a CoinJoin. This would explain why the Bitcoin
addresses that appear most often on the dark web are likely to be part of Coin-
Join transactions. However, we found that even Bitcoin addresses on the dark
web that appear at the median frequency are more likely to have participated in



For (7,713) dark web ad-
dresses with at least one
malicious tag

Number of
Neighbors

BTC In BTC
Out

BTC
Owned

Number
of Tx’s

Mean 1,465 8,234 8,213 22.8 1,527

Std 1,8351 152,755 15,2754 1,269 22,023

Median 6 2.55 2.48 0 3

Percentile 90% 347 295 295 0.004 217

Table 8: Characterization of Bitcoin addresses found on the dark web, with at least one
malicious tag, in terms of neighbors, transactions, and amount of bitcoin in/out/owned.
(BTC = Bitcoin, Tx = transaction)

CoinJoins. An explanation supported by the data is that transactions associated
with Bitcoin addresses found on the dark web involve larger amounts, motivating
increased caution.

We stress that the dark web is also used for several legitimate activities. As
an additional filter for teasing out real suspicious or malicious activities, we focus
on the set of dark web addresses that contained tags associated with what we
judged as the most suspicious (and in cases very obvious malicious) activities,
i.e., addresses containing at least one tag from the following list: PONZI, MARKET,

HUMANTRAFFIC, HACKER, DRUGS, CHILD P, COUNTERFEIT, RANSOM, CASINO,

NATIONALSEC, HOSTING PROVIDER, HITMAN, WEAPONS, JIHAD, EXPLOSIVES,

CREDIT CARD FRAUD, DISCLOSURES, ANONYMOUS, PIRATE BAY, WIKILEAKS,

MURDER, MARKET, ESCORT, DECRYPT RANSOM. We note that some addresses as-
sociated with some of these tags are not active on the blockchain so not all these
tags show up in all our analysis.

We notice that these addresses (see results in Table 8) do not do many
more transactions that the whole dark web address set, but these figures remain
much bigger than the ones obtained from regular addresses. Moreover, the BTC
amounts these dark web addresses handle are even larger. Even the median has a
higher value. As the size of the set is small, these addresses are probably among
the most well-known addresses used for malicious activities, and a lot of them
are used extensively.

6 Future Work

This study provides a quantitative characterization of suspicious and malicious
activities involving Bitcoin. In addition to addressing the limitations discussed
in Section 1.4, we envision the following avenues of research in future work.

1. Similar analyses could be performed for other popular cryptocurrencies, such
as Bitcoin forks, Ethereum, and Litecoin. In particular, comparing results
from other cryptocurrencies to those from Bitcoin may yield new insights.

2. Augmenting the data sets used in this study with ones that may help at-
tribute malicious activities to geographic location. This could include data



mapping addresses to well-known wallets or entities, as well as to IP ad-
dresses (for which geolocation data is typically available).

3. Studying cross-cryptocurrency transaction activity could enable detection of
synchronized addresses. This may provide a new means for detecting when
seemingly unrelated addresses are controlled by the same user or pertain to
coordinated activity. Detecting synchronized activity may also offer insight
into significant events in the history of cryptocurrencies.
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