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Abstract

This paper explores the application of goal-
oriented machine-learning techniques, and in
particular leveraging recent advances in deep
reinforcement-learning (RL) networks to auto-
matically discover deviations from normal net-
work activity and choose actions that miti-
gate unwanted network flows. We develop
a software-defined network (SDN)-based eval-
uation environment called EIReLaND, using
OpenAI gym and ContainerNet. We demon-
strate that EIReLaND successfully mitigates
three popular attack techniques (TCP state
exhaustion, CPU/memory exhaustion, brute-
force). Finally, we identify the strengths and
blindspots of these trained models using four
different interpretability techniques.

1 Introduction

Despite decades of development, network monitoring
and defense systems [12; 28; 26; 22] still face chal-
lenges due to increasing volumes of traffic, diversity
in application mix, and attack sophistication [13; 36;
33]. Our specific objective in this work is to develop a
framework for explainable reinforcement-learning-based
network defense. To that end, we begin with a formu-
lation of highly dynamic and autonomous network de-
fenses as a deep reinforcement learning (RL) problem.
Here, we consider the application of RL for common
types of attacks that modern networks are subject to
– specifically, distributed denial of service (DDoS) and
brute-force attacks – and conduct our experiments in the
context of software-defined networks (SDNs) [9]. How-
ever, the broad formulation can be extended to tradi-
tional networks and other attacks.

We describe our work in the context of a new frame-
work to design and evaluate SDN-based RL defenses that
we call EIReLaND. The broad objectives of this system
are three fold. First, we need the capability to exper-
iment with RL-based defenses in both simulation and
emulation, for a variety of network attack scenarios (us-
ability). Second, we need the ability to evaluate against

a broad class of implementation choices for our modu-
lar system (modular extensibility): client traffic modeling
(different attack generation tools, attack patterns, and
benign/malicious IP subnet distributions); RL agent de-
sign choices (various RL algorithms and policy model ar-
chitecture choices); and RL environment design (choice
of system observables to track and means of combin-
ing them into a reward function). Finally, we need
to be able to reason about the correctness and perfor-
mance of generated RL-models (interpretability). Our
work is informed by a few notable recent efforts [8; 18;
2; 1] that have attempted to develop RL-based environ-
ments for evaluating network-based cyber-defenses; how-
ever, none of them consider model interpretability.

The reward function is a crucial component in any RL
system, serving as the agent’s only means of feedback
on the policy it learns. In our experiments, the reward
function corresponds to some aspect corresponding to
preservation of network health (i.e., allowing continued
operation of normal network activities while preserving
security), which is sensed through the continuous anal-
ysis of the live sensor data as the new defenses are acti-
vated. We formulate our approach using an input space
of observations from network monitors, application logs,
and host system logs. We employ RL to learn an optimal
policy, mapping network state to defensive actions such
that the reward – corresponding to network health – is
maximized. Defensive actions include fine-grained pol-
icy decisions to neutralize attack vectors, such as flow
interventions and network filter deployment. These pol-
icy adjustments can also be passive, such as the dynamic
reconfiguration of mechanisms aimed to improve intru-
sion detection and characterization accuracy, or to tune
activity logging to continually adjust the fidelity of the
security audit trail.

To validate the efficacy of the RL approaches, we con-
ducted comprehensive simulation and emulation studies
for different attack scenarios. Specifically, we consid-
ered a suite of model-free1 RL algorithms [24]. These
include policy-based algorithms (Proximal Policy Op-
timization (PPO) [31], Advantage Actor Critic (A2C)

1Model-based approaches require specification of an ex-
plicit model and are thus less generalizable. Exploring these
is future work.

1



and Asynchronous Advantage Actor Critic (A3C)) [17],
and Q-learning-based algorithms (Deep Q Network
(DQN) [39]). Our reward functions involve features
from different sources: network-layer features like IP ad-
dresses, network flow features, host features like CPU
and memory utilization, and application-level features
such as outcomes of SSH authentication events. We sys-
tematically explore various dimensions of the design and
attack space, including use of state vectors, and charac-
teristics of attack and benign traffic (e.g., distribution of
attack and benign endpoints, and timing and intensity
of traffic).

A fundamental challenge with deep-learning systems
is lack of explainability [5]. To address this challenge, we
develop a set of interpretability analysis techniques that
enable a network analyst to explore and reason about
RL policies generated by the system. Specifically, we de-
velop four complementary analysis techniques that pro-
vide a deeper perspective into the models. The first is de-
cision tree analysis that distills the models into human-
readable decision trees. The second is an input-space de-
cision analysis technique that illustrates how the learned
policy model makes its decisions by analyzing the deci-
sions it makes as a function of its inputs. Third, we de-
scribe an input-space confidence analysis technique that
provides a more holistic view on the decision boundaries
where the model performance degrades. Finally, we de-
scribe attribution analysis techniques that identify the
key features that contribute to the decision process and
how they vary in different regions of the input space.

Contributions: In summary, we make the following
contributions:

• Develop a new SDN-RL framework for evaluating
autonomous network defenses

• Present three different network attacks as a rein-
forcement learning problem

• Experimentally validate the proposed SDN-RL de-
fenses in both simulation and emulation environ-
ments

• Identify the strengths and weaknesses of trained
models using four different interpretability analysis
techniques

2 Background

2.1 RL Algorithms

RL algorithms may be broadly classified into two cat-
egories: model-based and model-free algorithms. Our
work on EIReLaND so far has been exclusively focused
on model-free algorithms which in turn may be divided
into policy-optimization-based and Q-learning-based al-
gorithms.

Policy-optimization algorithms: These algo-
rithms optimize parameters either directly by gradient
ascent (or descent) on the performance objective J(πθ),
or indirectly, by maximizing local approximations of
J(πθ). Examples of policy-optimization algorithms that
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Figure 1: High-level overview of the EIReLaND architec-
ture and its components.

we consider include PPO [31], A2C, and A3C [17]. While
A2C and A3C directly maximize performance by per-
forming gradient descent on the performance objective
function, PPO does so indirectly by using a surrogate
performance-objective function. These algorithms are
referred to as on-policy algorithms as each update only
uses data collected from acting on the most recent policy.

Q-learning algorithms: These algorithms work by
learning an approximatorQθ(s, a) for the optimal action-
value function Q∗(s, a). Unlike policy-optimization algo-
rithms, these are off-policy, i.e., each update step may
use data collected at any previous point during training.
DQN [39] is a classic example of an off-policy algorithm
that we study in this paper.

2.2 Motivating Attack Scenario

We have studied the efficacy of EIReLaND using three
broad attack classes, namely, volumetric denial-of-
service attacks (e.g., TCP SYN flood [34]), algorithmic-
complexity-based resource exhaustion (e.g., Apache
range-header attacks [16]), and application-level brute-
force attacks (e.g., SSH bruteforce password guessing).
Our goal here is not to develop better defense than ex-
isting solutions against those attacks, but to investigate
the versatility of our RL-based approach against various
network attacks. For the sake of brevity, we use SYN
flood as a running scenario in this paper.

SYN flood is a canonical example of TCP state ex-
haustion attack that exploits the state allocated for
three-way handshakes in establishing TCP connections.
In a SYN flood attack, an adversary crafts and sends a
large number of spoofed SYN packets to a target. When
the target receives these SYN packets, it will send SYN-
ACK packets to the clients, and keep track of the “half-
open” TCP connections using the connection table data
structure. However, the adversary is unable to complete
the spoofed handshake as it does not receive the SYN-
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Figure 2: SYN Flood Attack Mitigation [Case 1; Simulation]: PPO (left), DQN (middle-left), A3C (middle-right),
A2C (right)

ACK reply from the server. As a result, the connection
table of the target will be filled up with half-open TCP
connections that prevent other clients from establishing
TCP connections with the target.

3 Experimental Setup

We employ a two-tier, simulation-emulation experimen-
tal approach for conducting empircial evaluations. In
a nutshell, we performed initial exploration of the ef-
fectiveness of RL algorithms, observables, and reward
functions using simulations, and conducted emulation
experiments for the candidates that presented promis-
ing results. Compared with emulation, simulation en-
ables us to explore a much larger space of RL algorithms
and key parameters quickly, while emulation involves
fine-grained, long-running experimental environments to
study their effectiveness in a more realistic setting.

For simulations, we use the OpenAI Gym environ-
ment [25] (reinforcement learning toolkit) and Stable
Baselines3 [23] (learning library based on the Gym API),
which supports a myriad of RL algorithms, including
PPO, DQN, A2C, and A3C. Our emulation platform is
developed over ContainerNet [27] (software-defined net-
work emulator based on Mininet and Docker containers)
using the Ryu [32] SDN controller that we integrated
with OpenAI Gym.

Figure 1 depicts the high-level topology for the
software-defined network used for our experiments. The
OpenFlow switch is connected to an OpenFlow con-
troller, which handles network flows that don’t match
any flow rule in the switch, and makes changes to the
flow table of the switch. In this work, the OpenFlow
controller employs reinforcement learning algorithms to
make decisions based on information about network
flows (e.g., numbers and sizes of flows) and data col-
lected from the servers (e.g., CPU and memory uti-
lization). Harpoon was used for benign traffic gener-
ation [35]. Scapy [30] and Medusa [20] were used for
attack traffic generation.

4 Experimental Evaluation

In this section, we describe evaluation results that at-
tempt to answer the following research questions:

• RQ 1: Can RL-based defenses be used to model
and effectively mitigate various forms of network at-
tacks?

• RQ 2: How robust are these defenses to vari-
ous choices of RL algorithms, hyper-parameters, re-
ward functions, and attacker/benign subnet distri-
butions?

• RQ 3: Can we use interpretability methods to un-
derstand how the learned policies are performing?

4.1 Evaluating SDN-RL Defenses in
Simulation and Emulation

We conducted simulations to investigate the effective-
ness of various RL algorithms under different attack
settings. Specifically, we tested the following RL al-
gorithms: PPO, DQN, A2C, A3C, Soft Actor Critic
(SAC), and APEX-DQN. For attack settings, we stud-
ied various distributions of benign and attack subsets,
from using a single benign IP address subnet whose first
two octets were disjoint from those of the malicious sub-
nets, to more challenging cases that used multiple benign
and malicious subnets with more overlap in the first two
octets.

For the reward function, we computed the number of
correct actions (i.e., blocking or allowing TCP connec-
tion attempts from IP addresses) minus the number of
incorrect actions. In other words, for an IP address that
is a source of SYN flood attacks, the reward for the RL
agent is incremented by 1 if the action is block; other-
wise, it is decremented by 1. Similarly, for a benign IP
address, the reward is incremented (resp. decremented)
by 1 if the action is allow (resp. block).

There are two subtle points that are noteworthy here.
The first is that rewards provided are cumulative delayed
rewards, and not instantaneous rewards. We use delayed
rewards because we don’t know if the allow action was for
a benign or malicious connection attempt until after the
TCP handshake has had a chance to be completed. The
second point is that while the EIReLaND system never
has explicit knowledge of the ground truth of any flow,
in the case of the SYN flood attack, the system may infer
ground truth of any flow it allows by checking whether
the TCP handshake succeeds. This means a blocking
action introduces a tradeoff: while blocking a flow may
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Figure 3: SYN Flood Mitigation [Cases 1-4; Delayed Reward (nIPs/episode): 10, 20, 50, 100; Simulation: PPO]

help mitigate the attack, it also prevents reward signal
feedback about whether the block action was correct. In
this work, we chose to allow all flows during the learning
phase, regardless of the RL agent’s recommended action,
to determine perfect ground truth.

RL Algorithms: We performed simulations using
different RL algorithms to compare their efficacy for mit-
igating SYN flood attacks. The results for PPO, A3C,
DQN, and A2C are depicted in Figure 2. The x-axis
corresponds to training timesteps, and the y-axis cor-
responds to the observed reward. Each timestep corre-
sponds to arrival of a new IP address. Delayed rewards
are provided at the end of each episode. Maximum re-
ward per episode is 100. Using the 4-byte vector state
representation for detecting and mitigating sources of
SYN flood attacks, we found that PPO (Figure 2 (left))
converged quickly to the optimal reward value of 100.
A3C and DQN were unable to achieve high rewards. For
A2C (Figure 2 (right)), although it reached high reward
values, they fluctuated significantly. In other experi-
ments, not shown here, we employed SAC and APEX-
DQN; we found that SAC performed poorly, and APEX-
DQN failed to converge unless we reduced the delayed
reward interval to once every 50 IP addresses instead of
once every 100 IP addresses.

Malicious IP Address Distribution: We studied
different degrees of “separation” between the benign sub-
net addresses and the malicious subnet addresses. Intu-

itively, the more the separation, the easier it is to learn a
model to distinguish between benign and malicious sub-
nets. In particular, we studied the following four cases
with decreasing separation between benign and mali-
cious subnets:

(1) Only one benign subnet with the first two octets
disjoint from those of the malicious subnets. The
benign subnet address is 10.1/16, and malicious sub-
net addresses are A.B/16, where A,B ∈ [100− 255]

(2) For cases 2-4, we employed multiple benign sub-
nets with subnet addresses 10.1/16, 20.5/16, and
130.105/16. The first octet of malicious subnet
addresses may be smaller or larger than that of
one of the benign subnets. Specificially, the ma-
licious subnet addresses are A.B/16, where A ∈
[50− 100, 150− 200], and B ∈ [150− 255]

(3) The first two octets of malicious subnet addresses
may be smaller or larger than that of one of the
benign subnets. The malicious subnet addresses are
A.B/16, where A,B ∈ [50 − 255], A ̸= 130, and
B ̸= 105.

(4) The malicious subnet addresses are A.B/16, where
A /∈ {10, 20, 130} and B /∈ {1, 5, 105}

Simulation Results: Using PPO as the RL algo-
rithm, we evaluate robustness against SYN flood attacks
for a variety of malicious IP distributions (cases 1-4) and
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delayed reward values (nIps per episode ranging between
10 and 100), as shown in Figure 3. We note that the
maximal reward is roughly equal to the number of IPs
per episode (nIps).

For smaller delayed reward intervals, the learned poli-
cies quickly converge to a steady state with few fluc-
tuations. This is expected, as the learning problem is
less complex. For larger delayed reward intervals, the
learned policies tend to converge more slowly, to lower
reward values, and with larger fluctuations in the quasi-
steady state. We note that even for the largest delayed
reward values we explored (nIps=100), all four cases dis-
play reasonable training progress.

We also note that case 1 for nIps=20 and case 4 for
nIps=50 experience delayed or failed convergence that
appear to break the trend in the vertically adjacent train-
ing plots, which can be explained by non-determinism in
the training process.

For validation, we have conducted experiments to
compare the results for using simulation and emulation
to evaluate using the PPO algorithm for protecting SDN
against SYN flood. We found that both approaches yield
comparable results.

Discussion: For RQ 1, our experimental results
showed that the RL-based approach is effective for de-
fending SDN from various forms of network attacks, in-
cluding SYN flood, range-header, and SSH brute-force.

For RQ 2, we evaluated four different RL policies
(PPO, A2C, A3C, and DQN) and found significant dif-
ferences in their performance against the the attacks
with PPO performing the best. We also studied vari-
ous experimental settings, including several benign and
malicious IP address distributions. We found that the
RL-based approach is generally robust across different
settings, although we observed degraded performance
for the more challenging scenarios (e.g., Case 4 in Sec-
tion 4.1).

4.2 Interpretability Analysis

Previously in this analysis, we evaluated the performance
of learned policies using plots of aggregate metrics, such
as percentage of flows of each type (benign, malicious)
that are allowed and dropped, the reward value, and
observables such as CPU and memory usage (for range-
header attacks) and percentage of allowed flows which
resulted in successful connections (for SSH brute-force
attacks).

To perform finer grained analyses of the learned poli-
cies’ performance, we now present a variety of inter-
pretability techniques, each of which is useful in different
circumstances. First we present decision tree analysis,
followed by input space decision analysis, input space
confidence analysis, and finally attribution analysis.

Decision tree analysis: We train a decision tree as a
proxy for the learned policy, showing where the policy
overwhelmingly makes mistakes. We provide training
examples for the decision tree by freezing the policy and
caching its predictions in a clone of the environment in

Figure 4: Visualizing the decision boundaries of a deci-
sion tree proxy for a learned policy for SYN flood, case
4. This is a more complicated case, where the decision
tree is less concise. Blue regions indicate regions of IP
octet A,B space the decision tree classified as benign,
and red regions were classified as malicious. The only
truly benign subnets were 10.1, 20.5, and 130.105.

which it was originally trained. Inputs to the decision
tree are the same as the inputs to the original policy
model (the current state of the environment), and the
expected prediction used as “ground truth” to train the
decision tree is the original policy’s chosen action.

By construction these decision trees provide binary
output: all examples which fall on a particular leaf are
labeled by the decision tree as either allowed or blocked.
As each leaf corresponds to a region in input space, this
method will only detect mistakes in the learned policy if
the mistakes are being made for a significant fraction of
examples.

Thus the decision tree divides the input space (pri-
marily the possible values of the four IP octets) into dis-
joint regions, and it assigns a single decision value (allow
or block) to each region. This is desirable if indeed the
original learned policy made uniform decisions in a given
region; however, if the original policy assigned different
actions to examples within a single such region, the de-
cision tree proxy will reflect only the majority action.
This smoothing has a natural de-noising effect, but it
can ignore a strong minority of coherent mistakes.

The decision trees we discuss here were trained only
with octets A and B as input. In simple cases, this was
enough to capture the full activity of the policies, which
didn’t make any mistakes. (See SYN flood cases 1 and
2.) In the more complex case (SYN flood case 4), we
trained the decision tree proxy only on octets A and B
for ease of visualization. We note that training on only a
subset of the inputs exacerbates the “smoothing” effects
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Figure 5: Input space decision analysis for range-header
case 2, indicating the fraction of truly malicious IPs
which were correctly identified, as a function of differ-
ent IP octets. This model performs well, so the fractions
are high.

discussed above.
In simple cases, we were able to completely character-

ize the learned policy using a decision tree with only a
single decision rule:

• SYN Flood Case 1: Learned Decision Tree:
if A <= 55, allow; else, block

• SYN Flood Case 2: Learned Decision Tree:
if B <= 127.5, allow; else, block

In more complicated cases, the tree can have many
(more than 10) decision rules, which makes it difficult
for a human to interpret directly. We can visualize the
decision boundaries to make it more human understand-
able. See Figure 4 for an example, where the decision
tree visualization highlights that while the policy cor-
rectly classifies the truly benign subnets, it also misclas-
sifies the immediately surrounding regions as benign.

Input space decision analysis: We attempt to more
directly understand how the learned policy model makes
its decisions by analyzing the decisions it makes as a
function of its inputs.

Because the model receives four IP octets as its inputs,
it is challenging to directly visualize the decisions as a
function of the inputs. Instead, we plot an indicator of
the decisions versus only two IP octets. A natural choice
of pairings is octets A and B (which meaningfully dis-
criminate between benign and malicious IP addresses)
and octets C and D (which never fully discriminate be-
tween benign and malicious IPs). We split each axis into
bins and plot a heatmap showing the fraction of correct
decisions made in each bin. For ease of visualization,
we make separate plots for (ground truth) benign and
malicious IPs.

We note that our particular choice for visualization
(fraction correct) requires knowledge of the ground truth
(benign or malicious) for each IP. One could imagine
making a slightly different visualization (e.g., the frac-
tion of IPs classified as malicious) which does not require
ground truth, which might be useful to examine the per-
formance of a policy learned in the wild, where ground
truth is unknown. This comes at the cost of mixing the

benign and malicious IPs, which can have very different
distributions, making the plots more difficult to inter-
pret.

We evaluate the learned policy in the environment in
which it was trained, noting which input features result
in mistakes. Figure 5 shows an example for range-header
simulations. These plots show that the few mistakes the
model makes are concentrated in regions where IP octet
B is small, as well as where C is large and D is small, or
more sporadically where D is large. There are also more
mistakes when octet A is small.

Input space confidence analysis: In certain cases,
we can obtain an even more granular picture of how the
learned policy model makes its decisions by looking not
at the decision the policy makes, but rather at the quan-
titative output from the underlying multi-layer percep-
tron (MLP) model.

Under the hood, the model’s dense layers output
a “logit” score for each possible decision (‘allow’ and
‘block’, corresponding to the classes ‘benign’ and ‘mali-
cious’). The scores are then normalized by a softmax
function, allowing them to be roughly interpreted as
probabilities (assigned by the model) of belonging to
each class. Because there are only two classes and the
probabilities sum to one, we can characterize the model’s
output by a single probability. We choose to look at the
probability corresponding to the ‘malicious’ class, which
we will refer to as pmal. The policy makes a decision
based on the model’s output using a majority threshold:
if pmal ≥ 0.5, the policy blocks the IP; otherwise, the
policy allows the IP.

First we look at the distribution of pmal over all evalua-
tion examples, keeping in mind the imbalance of benign
and malicious examples. (Each episode of our simula-
tions consists of a fixed number of IPs (between 10 and
100), 20% of which are benign.) We can also look at
the distributions separately for ground truth benign and
malicious IPs. In specific cases, we can further subdivide
the benign and malicious sets of IPs into different group-
ings. For the range-header case we’ll continue discussing
from the previous section. A a natural choice is to split
the benign IPs into the three A.B subnets (10.1, 20.5,
130.105), and the malicious IPs into 50 < A < 100 and
150 < A < 200, as shown in Figure 6.

Next we look at a scatter plot distribution of pmal

versus each of the four IP octet values. We can do this
for any of the “bins” of IPs defined above: all, benign,
malicious, or further subdivisions described above.

Figure 7 illustrates an example applied again to range-
header case 2, focusing on malicious IPs. We immedi-
ately notice that above a certain threshold in octet B
(approximately B > 160), the model makes entirely cor-
rect predictions, with uniformly high confidence. Below
this threshold, however, the model makes more and more
predictions of lower confidence, including some mistakes.
This agrees with the story told by the input space deci-
sion analysis (Figure 5), where mistakes were only made
for malcious IPs with low values of octet B. However,
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this analysis paints a more complete picture: while only
a small fraction of the IPs were classified incorrectly,
many more were classified correctly but with low confi-
dence (pmal closer to 0.5 than to 1). Rather than identi-
fying a discrete decision boundary, we can instead iden-
tify a larger region where the model’s confidence in its
predictions slowly decreases.

Attribution analysis: We compute attributions of the
model’s decision with respect to its input features (pri-
marily the 4 octets of the IP address), and look at how
they vary in different regions of input space.

We use the integrated gradients [37] method, imple-
mented by the captum [14] library. Note that the rein-
forcement learning environment library we used, stable-
baselines3, doesn’t directly expose the output of the un-
derlying pytorch MLP model when making a prediction,
so we needed to use a lower level API to access the un-
derlying model itself. Then we were able to pass the
appropriate model to captum and compute attributions.

We align “sorted feature plots” (Figure 8) with attri-
butions (Figure 9), where horizontal axes align between
the two plots and each x-axis value corresponds to a sin-
gle example. We make a few observations. First, for all
malicious IPs, the attribution due to octet B is larger
in magnitude than not only that due to any other single
input, but also the sum of any subset of other inputs.
This indicates the model always considers octet B most
strongly, even when the model assigns a malicious IP
low confidence or misclassifies it altogether. One puzzle
is how this can be true while the mistakes are so highly
concentrated near certain extreme values of octets C and
D (see plots of fraction classified as malicious vs octets
C and D in Figure 5), yet the model assigns relatively
small attributions to octets C and D in those regions.

Figure 7: Plots of pmal vs each of the four IP octet values
(A.B.C.D) for malicious IPs. pmal < 0.5 indicates an
incorrect prediction that the given IP is benign.

Second, the model assigns uniformly low attribution to
CPU and memory usage. This indicates that the model
bases its decisions on the other inputs instead (i.e., the
IP octets).

5 Related Work

5.1 RL-based Network Defense

Luong et al. [15] surveyed applications of RL for net-
work management to optimize network performance un-
der uncertainty and for complex and large networks. For
SDN, Dake et al. [4] presented a more recent survey
on using RL approaches for traffic engineering. Han et
al. [10] studied the feasibility for applying RL for se-
curing SDN. To facilitate studying the efficacy of RL-
based SDN defense approaches in a robust, generaliz-
able, and reproducible manner and to support modeling
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Figure 8: Input feature values for each evaluation exam-
ple, plotted vs example index (sorted first by IP octet A,
then octet B, etc). Each x-axis value corresponds to a
single example, and the y-axis values indicate the input
features for that example.

of sophisticated adversarial behavior, Molina-Markham
et al. [18] presented the design of a network environment
and software framework called FARLAND. CybORG is
another RL-based toolkit for simulating and emulating
autonomous cyber-defense operations [1]. While EIRe-
LaND shares many high-level goals with FARLAND and
CybORG, it differs in evaluating the effectiveness of RL-
based SDN defense against three classes of network at-
tacks, and in developing a framework for investigating
the interpretability of the trained models. Mudgerikar
et al. [21] proposed a security-constrained RL framework
for protecting SDN that optimizes network performance
and enforces security policies.

CyberBattleSim [2] provided an Open AI Gym simu-
lation environment, with high-level abstraction of com-
puter networks and vulnerabilities, for the training of
automated RL-based cyber-defense agents. While the
system is focused on simulating network topology and
adversarial lateral movement, a limitation of the system
is that no real network traffic is generated and no exploit
code is executed.

Feng et al. [8] proposed an RL-based approach for mit-
igating application-level DDoS attacks. A main chal-
lenge pertaining to those attacks is that it may be diffi-
cult to accurately distinguish attack traffic from benign
traffic. Their approach is based on Q-learning [38] and
involves using a variety of environmental and contextual
factors, including network and system load (e.g., CPU
and memory, and I/O), and application-level behavior of
clients (e.g., request frequency, size, and content). Our
work is closely related to [8] with the following key dif-
ferences: (1) [8] depends on the availability of ground
truth to compute the reward functions in the training
phase, whereas our reward function doesn’t have such
dependency; (2) [8] focuses on application-level DDoS
attacks, and our work investigates a wider spectrum of
network attacks, including range-header (an application-
level DoS attack), SYN flood, and SSH brute-force; (3)
[8] exclusively studies the use of Q-learning, while our
work evaluates several RL algorithms.
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Figure 9: Attribution of pmal with respect to each input
feature, indicating how much each feature contributes to
the model’s decision. Each value on the x-axis corre-
sponds to a single example (sorted first by IP octet A,
then B, etc). For malicious examples, attribution due
to octet B dominates, with some contributions coming
from octets C and D. CPU and memory usage are not
assigned significant attribution.

5.2 Interpretability

Hinton and Frosst [11] distill the content of a neural
network into an interpretable surrogate model, in the
form of a soft decision tree. This is like the decision
trees we use, except each branch is thresholded not on
a single feature value, but on a linear combination of all
features. Molnar [19] discusses the use of a decision tree
as a more interpretable global surrogate model that can
be used to understand the original black box model.

Miller et al. [3] use a soft decision tree as a global sur-
rogate in an RL context. However, because we find the
policies in this work depend only on the characteristics
of an individual example (in this case, the IP address
of a particular flow) rather than more aggregate charac-
teristics (such as CPU and memory usage), there is no
need to use the additional machinery that [3] develops
to handle a truly state dependent system.

Feng et al. [7] directly trains an explainable RL model,
using k-nearest neighbors (KNN) clustering in conjunc-
tion with a k-dimensional tree rather than a neural net-
work model. Decisions made by their model can be ex-
plained by examining a particular input’s distance from
the nearest clusters. We make a few notes: (1) [7]’s ap-
proach loses the increased flexibility that comes with a
neural network policy model, and possibly an RL-based
method’s ability to respond to novel attacks. (2) This
method of comparing input features’ distance from some
reference features (in this case, the center of a cluster)
is more likely to be useful for aggregate features such
as the number of successful/unsuccessful SYN connec-
tions made by each IP address or average packet size
sent and received by a given IP address, rather than for
flow-specific features like the IP octets themselves.

While training a global surrogate model such as a
decision tree can be useful, we have a few comments.
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First, though the surrogate model is more interpretable
by construction, there’s a tradeoff between complexity
and faithfulness to the original model. In particular, a
surrogate model that is sufficiently complex to give a use-
ful description of the model’s behavior is often too com-
plex to easily interpret. Second, in our case the model
makes its decisions based solely on a handful of features
– the four IP octets. We find that by directly analyzing
the decisions the model makes as a function of this low-
dimensional input space, typically through plots, we are
often able to better interpret the model’s behavior than
by attempting to interpret a global surrogate.

Ribeiro et al. [29] propose the Local Interpretable
Model-Agnostic Explanations (LIME) framework to ex-
plain a black box model by training not a single (i.e.,
global) surrogate model, but rather by training a surro-
gate model that explains the local behavior of the net-
work around an example input. This allows each sur-
rogate model to be extremely simple, and hence easily
interpretable. The tradeoff is that a single local explana-
tion is able to explain only the simplest models, so one
needs to choose multiple neighborhoods, such that the
original model’s input space can be explained on more
and more of its input space. The limiting factor then
becomes how many such local surrogate models a user is
willing to consider, how to choose exactly which neigh-
borhoods to locally explain, how one is able to synthe-
size the local behaviors into a coherent picture, and how
confident one can be that “enough” of the model’s full
behavior is considered. We note also that Dieber and
Kirrane [6] provide an assessment of the LIME frame-
work’s effectiveness several years after LIME was first
introduced. We leave it to future work to determine
whether local surrogate models serve as a useful alterna-
tive to our global surrogates.

Sundararajan et al. [37] introduce an axiomatic con-
struction for computing attribution; i.e., quantifying the
contribution each of a model’s input features had on that
model’s output prediction for a particular input exam-
ple. While we found attribution analysis to be a good
way of confirming that models largely ignored the CPU
and memory usage in favor of the four IP octets, we
generally found direct interpretability methods (such as
input space decision and confidence analyses) and train-
ing an interpretable surrogate decision tree model to be
more useful methods of explaining model behavior in this
domain.

6 Conclusion

We have described the design and evaluation of a new
framework for SDN-RL-based network defense evalu-
ation called EIReLaND. We evaluated the system us-
ing three exemplar network attacks: SYN flood, range-
header, and SSH brute-force, using both policy-based
and off-policy RL algorithms. In our experiments, we
found PPO was the best performing algorithm, and PPO
was successfully able to generate defenses against all
three attacks. An important component of EIReLaND

is the ability to introspect the models generated by the
system. To that end, we described four different analysis
techniques that interpret the decision process captured
by the generated models. In future work, we plan to
expand the set of attacks and analysis techniques sup-
ported by EIReLaND, as well as conduct a deeper ex-
ploration of additional model-based and model-free RL
algorithms.
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