
The Design of an Extensible High Performance
Term Rewriting Engine

Steven Eker

Computer Science Laboratory
SRI International
Menlo Park, CA

October 27, 2015



Implementing Term Rewriting

Different applications and issues; different answers depending
on various assumptions.

Reduction strategy: lazy vs. eager, sequential vs. parallel,
executions vs. search.

Restrictions on term rewriting system: left linear, orthogonal,
confluent, terminating, constructor discipline.

Extensions: conditional rewriting, rule precedences,
congruence class rewriting, user definable strategies, strictness
annotations, order-sorted rewriting, higher-order.

Steven Eker Extensible High Performance Term Rewriting Engine 2 / 40



Term Rewriting Basic Tasks

(Theory normalization: find unique representative of
congruence class.)

Redex location: select a rule and locate a redex according to
some strategy; compute a substitution.

Replacement: Construct and instance of rules righthand side
using substitution.

(Sort calculation: compute sort of node in the term graph.)

Garbage collection: reclaim unreachable nodes.

Steven Eker Extensible High Performance Term Rewriting Engine 3 / 40



Transparency 1

Advantages of actually doing the rewrites:

Can offer tracing (real-time or as a rewrite proof).

Can show the user the current state after a ctrl-C interrupt.

Can offer single stepping, break-points.

Naively performing the rewrites means we always retain an internal
state that coincides with the user’s model of what is going on —
the interpreter look and feel.

Steven Eker Extensible High Performance Term Rewriting Engine 4 / 40



Transparency 2

Alternative is to keep pending evaluations on the stack and only
build term-graph nodes when they are reduced up to strategy.

Save time building nodes (stacking is usually cheaper than
consing).

Nice implementation as C function calls (using the C stack).

Hash consing feasible (constructed nodes aren’t rewritten).

Generational garbage collection feasible (no pointers from old
to new).

No need for in-place replacement (with the problem that
replaced node may be smaller than replacement).

If we are never going to let the user see the internal workings we
could also try transforming the user’s term rewriting system.

Steven Eker Extensible High Performance Term Rewriting Engine 5 / 40



Free Theory Matching (naive)

The obvious recursive algorithm does a depth-first traversal of
pattern and subject:

1 If pattern and subject have the same function symbol, match
on their corresponding subterms.

2 If pattern and subject have different function symbols, fail.

3 If pattern has an unbound variable, bind it to subject.

4 If pattern has a bound variable, compare binding to subject
and fail if not equal.

Most failures occur due to (2) — time wasted binding variables.

Steven Eker Extensible High Performance Term Rewriting Engine 6 / 40



Free Theory Matching (one-to-one) 1

Faster alternative compiles pattern into a (non-branching)
automaton.

f (g(X ,Y ), h(X ,Z ))

Λ test for f
Λ.1 test for g
Λ.2 test for h

Λ.1.1 bind X
Λ.1.2 bind Y
Λ.2.2 bind Z

Λ.2.1 compare X

Steven Eker Extensible High Performance Term Rewriting Engine 7 / 40



Free Theory Matching (one-to-one) 2

Save term pointers in array locations (semi-compilation) or
registers (full compilation) determined at compile time for
constant time access to positions in subject.

Three tight loops (semi-compilation) or linear code (full
compilation).

Match symbols before binding variables.

Bind all variables before checking nonlinear variables.

Steven Eker Extensible High Performance Term Rewriting Engine 8 / 40



Free Theory Matching (many-to-one) 1

Even faster alternative compiles (possibly linearly ordered) set
of patterns into an automaton (aka discrimination net,
decision tree, decision diagram).

Consider patterns

f (g(X ,Y ), h(X ,Z )) (1)

f (g(a,X ), i(Y )) (2)

f (X , h(b,Y )) (3)

Steven Eker Extensible High Performance Term Rewriting Engine 9 / 40



Free Theory Matching (many-to-one) 2

.2

.1.1

.2.1

.2

.2.1

.1

.2

.2.1

?

h

b

1, 3 1

2

1, 3 1

3

{3}

{1,3}

{3}

g

{1,2,3}

a

{1,2,3}

?
{1,3}

i
{2}

h
{1,3}

b
{1,3}

?
{1}

b
{1,3}

?

{1}

h {3}

f {1,2,3}

Steven Eker Extensible High Performance Term Rewriting Engine 10 / 40



Free Theory Matching (adaptive traversal) 1

No need to traverse subject depth-first left to right.

Adaptive traversal can produce automata with shorter average
path length, short maximal path length, fewer states etc.

Finding optimal automaton under most reasonable criteria is
known to be NP-hard.

Various heuristics are effective; for example choose the
position that minimizes the sum of the number of live
patterns over all exiting arcs.

Automaton can be compiled to nested switch statements for a
compiled implementation.

Steven Eker Extensible High Performance Term Rewriting Engine 11 / 40



Free Theory Matching (adaptive traversal) 2

.2.1 .2.1

?

f {1,2,3}

.2

{2}

ih

{1,3}

.1

g
{1,3} {3}

?b

{1}{1,3}

1, 3

.2.1

3 2

.1

{2}

{2}

g

ab {3}

1

Steven Eker Extensible High Performance Term Rewriting Engine 12 / 40



Free Theory Matching (Maude implementation)

Need to find all matching rules (because rule may fail due to
sorts of variables being to small, clash on non-linear variable,
failure of condition)

Interpretation: Ternary tree in order to use a single tight loop;
index by sign bit trick to avoid an unpredictable branch.

Have several versions of loop for more restricted (but faster)
cases; e.g. where all patterns are composed of free symbols
with arity ≤ 3.

Slot allocation: number slots independently on different
branches, renumber slots using find-union so that variable can
be bound from the same slot in each branch, renumber again
using graph coloring to minimize number of slots.

Slot storage allocated at compile time (matching is thus
non-reentrant; causes various problems but much faster)

Steven Eker Extensible High Performance Term Rewriting Engine 13 / 40



Free Theory Righthand Side Construction

Naive recursive algorithm copies righthand replacing variables
with their bindings.

Better algorithm compiles righthand side into an automaton.

Combine common subexpressions.

Implementation trick: make substitution vector big enough to
hold construction stack; then access to a variable binding is
same as access to previously built node — save a test and
branch at run time.

Each instruction creates a new term graph node with a given
symbol and arguments.

Steven Eker Extensible High Performance Term Rewriting Engine 14 / 40



Congruence Class Rewriting

Some equations cannot be oriented to give a terminating
system (commutativity).

Other equations can be oriented but it is convenient to use
them both ways during a computation (associativity, identity,
idempotence).

Solution is to group these as a set E of axioms and rewrite on
the congruence classes modulo E .

Let E = {f (X ,Y ) = f (Y ,X )}.

[f (a, g(f (b, c)))]E = {f (a, g(f (b, c))), f (a, g(f (c , b))),

f (g(f (b, c)), a), f (g(f (c , b)), a)}

Steven Eker Extensible High Performance Term Rewriting Engine 15 / 40



Motivating Example

fmod EXPR is

sort Int .

op 0 : -> Int .

op -_ : Int -> Int .

op _+_ : Int Int -> Int [assoc comm] .

op _^_ : Int Int -> Int [assoc comm] .

vars X Y : Int .

eq 0 + X = X .

eq X + - X = 0 .

eq X ^ 0 = X .

eq X ^ X = 0 .

endm

Would like to be able to simplify:

(a + b + c + - a) ^ a ^ (b + c)

Steven Eker Extensible High Performance Term Rewriting Engine 16 / 40



E -matching

Congruence classes are too large to generate in practice.

Congruence class rewriting can often be effective simulated by
choosing a normal form for terms modulo E and using
matching modulo E (possibly with extension) instead.

Idea is to permute the pattern instead of the subject. Find
one (or all) σ such that

[pσ]E = [s]E

Steven Eker Extensible High Performance Term Rewriting Engine 17 / 40



Disjoint Theories

E -matching for arbitrary E is of course undecidable.

Practical approach is to allow E = E1 ∪ · · · ∪ En where the
theories E1 . . .En are disjoint and each Ei is restricted to a set
of axioms for which a matching algorithm is known.

For almost all interesting theories Ei , matching is at least
NP-hard if non-linear patterns are allowed.

AC matching is NP-complete even for a single equation
consisting of AC symbols on top of variables (pattern only)
and constants.

Steven Eker Extensible High Performance Term Rewriting Engine 18 / 40



Supported Theories 1

Maude allows the following axioms for a single binary function
symbol f .

f (X ,Y ) = f (Y ,X ) C Commutativity
f (f (X ,Y ),Z ) = f (X , f (Y ,Z )) A Associativity
f (1,X ) = X Ul Left Unit (Identity)
f (X , 1) = X Ur Right Unit (Identity)
f (X ,X ) = X I Idempotence

Maude currently supports the following 17 combinations
(U = Ul + Ur ):

C ,CU,CI ,CUI ,A,AUl ,AUr ,AU,Ul ,Ur ,U,

I ,Ul I ,Ur I ,UI ,AC ,ACU

Steven Eker Extensible High Performance Term Rewriting Engine 19 / 40



Supported Theories 2

Associativity-Commutativity (AC) and
Associativity-Commutativity-Identity (ACU) correspond to
multisets and are the most important combinations for
practical applications and are the most heavily optimized in
the engine. (Binary search, bipartite graph matching,
inhomogeneous Diophantine equation solving.)

Associativity (A) and Associativity-Identity (AU) correspond
to lists or strings and are also fairly important. (Boyer-Moore,
directed acyclic graph traversal, word partitioning.)

Non-associative theories are much less useful; efficient (on
average) algorithms are implemented but little special case
optimization.

Steven Eker Extensible High Performance Term Rewriting Engine 20 / 40



Unsupported Theories

Theories that involve both Associativity and Idempotence are
not yet implemented.

ACI/ACUI correspond to sets.

AI/AUI correspond to square free strings and have special
problems.

Steven Eker Extensible High Performance Term Rewriting Engine 21 / 40



Theory Normalization

Associativity can be handled by flattening

f (a, f (f (b, c), d)) ≡ f (a, b, c , d).

Commutativity can be handled by sorting. We need a total
ordering on subterms in normal form. For example
lexicographic ordering in the A case and multiset ordering in
the AC case.

Identity can be handle by collapsing out identity elements.

Idempotence can sometimes be handled by collapsing out
duplicates. (Doesn’t work for AI for example.)

Steven Eker Extensible High Performance Term Rewriting Engine 22 / 40



Extension

Sometimes a pattern p may match some subterm t ′ of t ∈ [s]E but
not a subterm of s. For example if

E = {f (X , f (Y ,Z ) = f (f (X ,Y ),Z )}

p = f (g(X ), h(Y ))

s = f (g(a), f (h(b), i(c)))

Here in order to accurately simulate congruence class rewriting we
need matching with extension - part of s is not matched. Can be
achieved with extension variables or notion of extension can be
built into matching algorithm.

Steven Eker Extensible High Performance Term Rewriting Engine 23 / 40



3 Phase Matching 1

Typically there may be many solutions to an E -matching
problem.

For conditional equations we want to generate them
systematically.

Want to use recursion to handle nested theories rather than
exhaustive search.

Want solutions returned sequentially from a generator object.

Steven Eker Extensible High Performance Term Rewriting Engine 24 / 40



3 Phase Matching 2

The Maude interpreter rewrite engine handles E -matching in 3
phases.

Compile Pattern is compiled to a hierarchy of matching
automata; structure of hierarchy follows structure of
theories in pattern.

Match Matching automata is applied to subject to generate
a hierarchy of subproblem objects which compactly
represent all solutions.

Solve Solutions are extracted iteratively by iterative search
algorithms for each theory.

Last phase is incremental; next solution is obtained by modifying
current solution.

Steven Eker Extensible High Performance Term Rewriting Engine 25 / 40



Constraint Propagation Analysis 1

Order in which matching subproblems are solved is important
if there are variables shared between them.

Consider pattern

f (g(V ,W ), f (g(W ,X ), g(Y ,Z ),V ), g(X ,Y ))

with f free and g commutative.

Naive approach is to search for solutions of the four
commutative subproblems that are consistent on variable
bindings.

Better solution is to propagate bindings on variables.

V can be bound uniquely once subject is known as its 2nd
occurrence only has free symbols above it.

Steven Eker Extensible High Performance Term Rewriting Engine 26 / 40



Constraint Propagation Analysis 2

Once V is known we can find unique solutions for each
subpattern in turn: g(V ,W ) (binding W ), g(W ,X ) (binding
X ), g(X ,Y ) (binding Y ) and g(Y ,Z ) (binding Z ).

With deep nesting of theories things can become more
complicated.

In general, compile phase figures out an optimal (in a
particular sense) order in which to solve matching
subproblems.

Steven Eker Extensible High Performance Term Rewriting Engine 27 / 40



Greedy Matching 1

Often patterns are very simple and we only need a single
solution.

Greedy algorithms work on a very restricted subset of patterns
(restrictions depend on theory - also no sharing of variables
between theories unless they are guaranteed already bound).

Idea is to find a single solution as quickly as possible or show
that no solution exists.

Can occasionally return “undecided” — then we need to run
the full algorithm.

Greedy algorithms fully integrated with full algorithms;
possible to match part of a pattern greedily and part use a full
algorithm.

Steven Eker Extensible High Performance Term Rewriting Engine 28 / 40



Greedy Matching 2

Failing quickly is very important — most E -matching
attempts fail.

Consider the problem

f (g(X ), h(Y ),Z ) ≤?
E f (α1, . . . , αn)

with f AC, (AC terms are flattened). Can declare failure if
nothing under f in the subject matches g(X ). Using binary
search this can be very fast.

Many-to-One AC matching algorithms have been proposed
but in practice greedy matching seems to win.

Steven Eker Extensible High Performance Term Rewriting Engine 29 / 40



E-rewriting on Large Terms 1

AC/ACU terms are often used to represent large sets.

A/AU terms are often used to represent long lists.

In fact Maude encourages this since its predefined
list/set/array/map data structures are implemented in Maude
using this technique.

Patterns used to match into these kind of subterms are often
simple - typically pulling out one or more arguments.

Uses of variables bound to this kind of subterms in righthand
sides are often simple - typically adjoining one ore more
arguments.

Even greedy matching is too slow, since both the matching
and replacement/normalization algorithms would have to
touch hundreds or thousands of arguments.

Steven Eker Extensible High Performance Term Rewriting Engine 30 / 40



E-rewriting on Large Terms 2

fmod LIST is

sorts Elt List .

subsort Elt < List .

ops a b c d e : -> Elt .

op nil : -> List .

op __ : List List -> List [assoc id: nil] .

ops rev1 rev2 : List -> List .

vars E E’ : Elt .

var L : List .

eq rev1(nil) = nil .

eq rev1(E L) = rev1(L) E .

eq rev2(nil) = nil .

eq rev2(E L E’) = E’ rev2(L) E .

endfm

Steven Eker Extensible High Performance Term Rewriting Engine 31 / 40



E-rewriting on Large Terms 3

Store flattened argument lists in persistent data structures
and use special versions of the greedy matching algorithms
and normalization algorithms.

Supported algorithms strip off (by matching) one or two
arguments and put the remaining arguments in a term that is
bound to an unbound variable.

Patterns stripping off an argument is either variable (bound or
unbound) or an alien subpattern.

Stripping of an argument during matching corresponds to
deletion.

Adjoining an argument during rhs construction/normalization
corresponds to insertion.

Steven Eker Extensible High Performance Term Rewriting Engine 32 / 40



E-rewriting on large terms 4

AC/ACU uses persistent red-black trees to achieve O(log n)
matching/normalization.

A/AU uses persistent deques - to achieve amortized O(1)
matching/normalization (most of the time).

Conversion of array based argument lists to persistent form is
a heuristic in the theory normalization routines.

Conversion of persistent form back to arrays is by need (only a
few specialized algorithms handle the persistent form).

Steven Eker Extensible High Performance Term Rewriting Engine 33 / 40



In-place Replacement 1

In practice a term is represented as directed acyclic graph
(dag) rather than a tree.

When a shared dag node t rewrites we would like to see its
replacement appear on all paths, not just on the path we
came down.

Replacement node might be bigger — more arguments for
example.

One alternative is an indirection table and replace pointers
instead — expensive.

In Maude rewrite engine all dag nodes are the same size. Part
of the node is theory independent: virtual function pointer,
symbol/copy pointer, sort info, flags.

Steven Eker Extensible High Performance Term Rewriting Engine 34 / 40



In-place Replacement 2

Part of the node is theory dependent and can be used for storing:

argument pointers (for small arity); or

(base, used length, actual length) of an external argument list
(may be variadic); or

special non-term data (say a machine integer); or

a pointer to an external object (say a bignum).

C++ allows a new object to be created, overwriting an old object.

Steven Eker Extensible High Performance Term Rewriting Engine 35 / 40



Garbage Collection

Each rewrite typically produces several dag nodes and these
usually become garbage very quickly.

Keep track of subset R of root pointers.

Restrict garbage collects to safe-points (at least 1 per rewrite)
when all in-use dag nodes are reachable from R.

Mark reachable dag nodes and copy-compact argument lists.

Incremental sweep — collect garbage dag nodes during
allocation — churn through memory once per usage cycle.

Steven Eker Extensible High Performance Term Rewriting Engine 36 / 40



Miscellaneous Issues

Sort computation (ordered decision diagrams) and testing
(byte vectors with short cuts)

Stable symbol optimizations (binary searching, insertion in
free theory net).

Inter-theory collapse (collapse analysis, variable abstraction).

Sharing and strategies (eager-laziness analysis, graph copying).

Smaller sets of solutions for conditional equations.

Left to right subexpression sharing.

Special cheap-to-compute orderings on terms in theory normal
form.

Fancy subterm sorting algorithms using extra info.

Maintaining (partial) normal form through matching.

Steven Eker Extensible High Performance Term Rewriting Engine 37 / 40



Coherence

Sometimes the term rewriting system T is not terminating
and confluent.

Split T in to equations E and rules R.

E should be terminating and confluent.

R need only be coherent wrt E .

If t →R t ′, t ′ →!
E w and t →!

E u then we require that there
exists a step u →R u′ such that u′ →!

E w .

Idea is we can fully reduce using E after every R step without
losing behavior/states.

Maude has various execution mechanisms for R: search, LTL
model checking, various notions of fairness, metalevel
execution.

Steven Eker Extensible High Performance Term Rewriting Engine 38 / 40



Maude Virtual Machine

Building terms is expensive to compared to keeping pending
evaluations on a stack.

Implement a virtual machine for building righthand sides.

Pending evaluations are stored as a stack of pointers into rhs
instructions sequences.

Terms are only built when no rule matches (i.e. fully reduced).

Lots of implementation tricks possible; e.g. dispatch
instructions using gcc’s computed goto extension; specialized
instructions/linear code for each small arity.

Initial experiments give a 2× speed up in the best case.

Get back transparency (when needed) by having an alternative
execution routine for pending instructions that constructs
rather than evaluates to obtain (at some cost) the term that
was virtually there but otherwise not explicitly constructed.

Steven Eker Extensible High Performance Term Rewriting Engine 39 / 40



Recent Developments

Narrowing - like rewriting but use unification rather than
matching.

Folded variant narrowing (controlled version of narrowing that
carries extra information around - used for implementing new
unification algorithms).

Rewriting modulo SMT - a form of conditional rewriting when
the side conditions are accumulated rather than evaluated (in
general not executable). Conjunctions checked by an SMT
solver (currently CVC4) solved to kill infeasible paths.

Steven Eker Extensible High Performance Term Rewriting Engine 40 / 40


