Maude 2.2 Demo

WRLA 2006

Overview

e New features in 2.2
Random numbers
Counters
External objects
Parameterization
Predefined container modules

Linear Diophantine solver

e Work in progress

— Builtin strategy language

Random numbers

We use the Mersenne Twister as a source of high quality random

numbers.

The sequence of numbers generated from a particular seed is

viewed as a function random from the natural numbers into
[(),...,232 —1].

Internally, the state of the Mersenne Twister is cached so that if
random was last called on n, calling it on n + k requires k steps of

the twister; usually k£ = 1.

The seed is set at startup time with the command line flag
-random-seed={(int) so the sequence is constant for any given run
of Maude.

Counters

It is often useful to have implicitly stored state, especially when
working with random numbers.

Such state cannot be functional but is available in system modules
via counters.

counter is a special constant of kind [Nat| that each time it is
rewritten (by rules) generates the next larger natural number.

It can be viewed as a special builtin strategy for executing the
otherwise nonexecutable rule:

rl counter => N:Nat [nonexec]

Additional counters can be created using renamed copies.
Reseting of counters between commands is avoided by

set clear rules off

External objects

Maude 2.2 supports external objects to represent entities in the

external world.

Configurations that want to communicate with external objects
must contain at least one portal.

sort Portal

subsort Portal < Configuration

op <> : -> Portal [ctor]

erewrite is used to start rewrite sequences that may involve

external objects.

erewrite may not terminate even if no rewrites are possible; this is
because there may be incomplete transactions with external
objects and more rewriting may be possible once they complete.

Internet sockets

Maude 2.2 supports IPv4 TCP client and server sockets.

Sockets are created by sending a message to a special external
object called:

op socketManager : -> 0id [special (...)]

The created socket external objects are named using the

constructor
op socket : Nat -> 0id [ctor]

send and receive messages can then be sent to the newly created

socket objects.

Message are usually paired - a user object sends a message to an
external object and waits for a reply message. This enforces
sequentialization in the otherwise concurrent Maude configuation.

Parameterization

Core Maude now supports a subset of Full Maude module
parameterization.

Modules may now take a list of parameters:

fmod MAP{X :: TRIV, Y :: TRIV} is

Sorts may be parameterized:
sorts Entry{X,Y} Map{X,Y} .

Instances of parameterized modules must be fully instantiated
before they can be imported.

Instantiating by a module-view removes the parameter.
Instantiation by a theory-view changes the theory of a parameter.

The final instantiation in a module may instantiate using
parameters from the enclosing module.

Predefined Parameterized Modules 1

The predefined module LIST provides associative lists over TRIV

Adding or removing elements from either end is amortized
constant time except for pathological cases.

Concatenation and reversal is linear time.
The predefined module SET provides sets over TRIV.
Insertion and deletion of elements is O(logn) time.

Union, intersection and difference are O(nlogn) time where n is
the size of the largest set involved.

Views from TRIV are provided for all the standard builtin data
types.

Predefined Parameterized Modules 2

The theory TAO-SET decribes transitive, antisymmetric orderings
(reflexivity is unspecified).

This structure is just strong enough for merge and sorting to work
correctly.

The predefined module SORTABLE-LIST builds on top of LIST
and provides an O(nlogn) time sorting operation for lists over
TAO-SET.

Views from TAO-SET are provided for the standard builtin data
types where it makes sense.

The predefined module LIST-AND-SET provides conversion
between lists and sets and allows a list to be filtered by a set.

Predefined Parameterized Modules 3

The predefined module MAP provides maps from TRIV to TRIV
with O(logn) time lookup and updating.

The theory DEFAULT describes data types with a distinguished
element.

The predefined module ARRAY closely resembles MAP but has
DEFAULT as its target theory.

Mapppings to the distinguished element are not stored, and
missing entries are assumed to map to the distinguished element.

Views from DEFAULT are provided for the standard builtin data
types where it makes sense.

Nestable versions of lists and sets are provided by LIST* and
SET*.

Linear Diophantine solver

Integer vectors and matricies are implemented as instantiations of
module ARRAY.

The predefined module DIOPHANTINE contains a solver for
non-negative solutions of (homogenous and inhomogenous) linear

Diophantine equations.
The solution is a pair of sets of integer vectors A and B.

The non-negative solutions are formed by adding a vector from A
to a non-negative linear combination of vectors from B.

Two algorithms are currently implemented - Contejean-Devie and
a method based on Gaussian elimination and extended gcd.

11

Builtin strategy language 1

e Rewritng with a strategy is invoked by:
srewrite [<nat>] in <module> :

<term> using <strategy> .

e Leaf strategies implemented so far:

fail produce the empty set of successors

idle produce the identity rewrite

all apply any rule

| apply a rule with label |

I[s] apply a rule with label | and substitution s

Builtin strategy language 2

e Combinators implemented so far:

s * do s 0 or more times
S + do s 1 or more times
do s and then s’
dosors’
do t, if it produces results, do s on them;

else do f on the original term

