
Maude 2.2 Demo

WRLA 2006

1



Overview

• New features in 2.2

– Random numbers

– Counters

– External objects

– Parameterization

– Predefined container modules

– Linear Diophantine solver

• Work in progress

– Builtin strategy language

2



Random numbers

• We use the Mersenne Twister as a source of high quality random

numbers.

• The sequence of numbers generated from a particular seed is

viewed as a function random from the natural numbers into

[0, . . . , 232 − 1].

• Internally, the state of the Mersenne Twister is cached so that if

random was last called on n, calling it on n + k requires k steps of

the twister; usually k = 1.

• The seed is set at startup time with the command line flag

-random-seed=〈int〉 so the sequence is constant for any given run

of Maude.

3



Counters

• It is often useful to have implicitly stored state, especially when

working with random numbers.

• Such state cannot be functional but is available in system modules

via counters.

• counter is a special constant of kind [Nat] that each time it is

rewritten (by rules) generates the next larger natural number.

• It can be viewed as a special builtin strategy for executing the

otherwise nonexecutable rule:

rl counter => N:Nat [nonexec] .

• Additional counters can be created using renamed copies.

Reseting of counters between commands is avoided by

set clear rules off .

4



External objects

• Maude 2.2 supports external objects to represent entities in the

external world.

• Configurations that want to communicate with external objects

must contain at least one portal.

sort Portal .

subsort Portal < Configuration .

op <> : -> Portal [ctor] .

• erewrite is used to start rewrite sequences that may involve

external objects.

• erewrite may not terminate even if no rewrites are possible; this is

because there may be incomplete transactions with external

objects and more rewriting may be possible once they complete.

5



Internet sockets

• Maude 2.2 supports IPv4 TCP client and server sockets.

• Sockets are created by sending a message to a special external

object called:

op socketManager : -> Oid [special (...)] .

• The created socket external objects are named using the

constructor

op socket : Nat -> Oid [ctor] .

• send and receive messages can then be sent to the newly created

socket objects.

• Message are usually paired - a user object sends a message to an

external object and waits for a reply message. This enforces

sequentialization in the otherwise concurrent Maude configuation.

6



Parameterization

• Core Maude now supports a subset of Full Maude module

parameterization.

• Modules may now take a list of parameters:

fmod MAP{X :: TRIV, Y :: TRIV} is

• Sorts may be parameterized:

sorts Entry{X,Y} Map{X,Y} .

• Instances of parameterized modules must be fully instantiated

before they can be imported.

• Instantiating by a module-view removes the parameter.

• Instantiation by a theory-view changes the theory of a parameter.

• The final instantiation in a module may instantiate using

parameters from the enclosing module.

7



Predefined Parameterized Modules 1

• The predefined module LIST provides associative lists over TRIV

• Adding or removing elements from either end is amortized

constant time except for pathological cases.

• Concatenation and reversal is linear time.

• The predefined module SET provides sets over TRIV.

• Insertion and deletion of elements is O(log n) time.

• Union, intersection and difference are O(n log n) time where n is

the size of the largest set involved.

• Views from TRIV are provided for all the standard builtin data

types.

8



Predefined Parameterized Modules 2

• The theory TAO-SET decribes transitive, antisymmetric orderings

(reflexivity is unspecified).

• This structure is just strong enough for merge and sorting to work

correctly.

• The predefined module SORTABLE-LIST builds on top of LIST

and provides an O(n log n) time sorting operation for lists over

TAO-SET.

• Views from TAO-SET are provided for the standard builtin data

types where it makes sense.

• The predefined module LIST-AND-SET provides conversion

between lists and sets and allows a list to be filtered by a set.

9



Predefined Parameterized Modules 3

• The predefined module MAP provides maps from TRIV to TRIV

with O(log n) time lookup and updating.

• The theory DEFAULT describes data types with a distinguished

element.

• The predefined module ARRAY closely resembles MAP but has

DEFAULT as its target theory.

• Mapppings to the distinguished element are not stored, and

missing entries are assumed to map to the distinguished element.

• Views from DEFAULT are provided for the standard builtin data

types where it makes sense.

• Nestable versions of lists and sets are provided by LIST* and

SET*.

10



Linear Diophantine solver

• Integer vectors and matricies are implemented as instantiations of

module ARRAY.

• The predefined module DIOPHANTINE contains a solver for

non-negative solutions of (homogenous and inhomogenous) linear

Diophantine equations.

• The solution is a pair of sets of integer vectors A and B.

• The non-negative solutions are formed by adding a vector from A

to a non-negative linear combination of vectors from B.

• Two algorithms are currently implemented - Contejean-Devie and

a method based on Gaussian elimination and extended gcd.

11



Builtin strategy language 1

• Rewritng with a strategy is invoked by:

srewrite [<nat>] in <module> :

<term> using <strategy> .

• Leaf strategies implemented so far:

fail produce the empty set of successors

idle produce the identity rewrite

all apply any rule

l apply a rule with label l

l[s] apply a rule with label l and substitution s

12



Builtin strategy language 2

• Combinators implemented so far:

s * do s 0 or more times

s + do s 1 or more times

s ; s’ do s and then s’

s | s’ do s or s’

t ? s : f do t, if it produces results, do s on them;

else do f on the original term

13


