Maude 2.1 Demo

WRLA 2004

Overview

1. New features in 2.1
e Module expressions.
e Explicit lightweight polymorphism.
e upTerm/downTerm functions.
e More ascent functions.

e Minor enhancements.

2. Projects using Maude.
e JavaFAN.
e Pathway Logic.

Module expressions

Only allowed for imports.
Supports arbitrary nesting of renaming and summation.

Renaming respects import structure - only modules affected by
renaming get copied.

Sorts, operators and labels can be renamed; renamed operators
may change their syntactic attributes.

Modules created for module expressions are “virtual” - only parts
of their contents is generated to save memory.

Caching of module expressions ensures that a given module is only
imported once.

Renamed natural numbers

fmod 2NAT is
including NAT + NAT
(sort Zero to Zero’,
sort Nat to Nat’,
sort NzNat to NzNat’,
op 0 : -> Zero to z)

endfm

red 6 *x 7 .

red 6 *x (7).Nat
red (6 *x 7).Nat’
red z + 42 .

red O + 42 .

Explicit lightweight polymorphism

e Introduced to make the lightweight polymorphism implicit in
certain builtin operators such as if_then_else_fi and _==_
explicit:

op if_then_else_fi : Bool Universal Universal -> Universal
[poly (2 3 0)
special (id-hook BranchSymbol
term-hook 1 (true)
term-hook 2 (false))]

op _==_ : Universal Universal -> Bool
[prec 51 poly (1 2)
special (id-hook EqualitySymbol
term-hook equalTerm (true)
term-hook notEqualTerm (false))]

e However it is available for user defined constructors.

e Instances of polymorphic operators are created on demand on a
per kind basis.

Polymorphic lists

fmod POLY-LIST is

sort List

op nil : -> List [ctor]

op __ : Universal List -> List [ctor poly (1)]
endfm

fmod POLY-LIST-TEST is
pr POLY-LIST + CONVERSION + QID .
op list2string : List -> String .

var L : List . var S : String . var Q : Qid .

var R : Rat . var F : Float
eq list2string(nil) = "" .
eq list2string(S L) = S + list2string(L)
eq list2string(Q L) = "’" + string(Q) + list2string(L)
eq list2string(R L) string(R, 10) + list2string(L)
eq list2string(F L) string(F) + list2string(L)

endfm

red list2string("The answer is " 42.0 " but that is only "
1/2 " of the " ’problem "." nil)

up Term/down Term builtin functions

Move terms from the object level to the metalevel and back.

Module must include the object signature as well as the metalevel
signature.
Typing is solved by the lightweight polymorphism:

op upTerm : Universal -> Term

[poly (1) special (...)]

op downTerm : Term Universal -> Universal
[poly (2 0) special (...)]
Second argument of downTerm provides both the object level kind
and the object level return value if the metaterm does not

represent a term in that kind.

Remaining ascent functions

e All parts of modules in the module database and whole modules

can be lifted to the metalevel:
op upModule : Qid Bool “> Module [...]

op upImports : Qid > ImportList [...]

op upSorts : Qid Bool "> SortSet [...]

op upSubsortDecls : (Qid Bool "> SubsortDeclSet
[...]

op upOpDecls : Qid Bool > OpDeclSet [...]

e Hooks for builtin operators are correctly handled and resulting
metamodules can be passed to descent functions.

Up and down example

red in META-LEVEL : upModule(’META-LEVEL, true)
red in META-LEVEL : upModule(’NAT, true)

red in META-LEVEL :
downTerm(getTerm(metaReduce (upModule (’NAT, true),
> _*_[upTerm(6), upTerm(7)])),
undef :Nat)

red in META-LEVEL :
downTerm(getTerm(metaReduce (upModule (’META-LEVEL, true),
’metaReduce [upTerm(upModule (’NAT, true)),
upTerm(’ _*_[upTerm(6), upTerm(7)]1)]1)),
undef : Term)

Minor enhancements

Source tree now includes a test suite.

Standard prelude quo/rem/gcd/lcm/divides functions extended to
rationals.

show module/show all commands now handle specials/hooks.

Constructor coloring now supported for iter operators.

Many bug fixes!

JavaFAN (Java Formal ANalyzer)

Work by Azadeh Farzan, José Meseguer and Grigore Rocu at
Urbana.

Tool for the formal analysis of Java Virtual Machine (JVM)
bytecode produced by compiling Java programs.

Executable specification of the 150 most commonly used JVM
bytecode instructions.

Deterministic JVM features specified by 300 equations.

Concurrent JVM features specified by 40 rewrite rules.

Analysis methods include symbolic execution, safely property

checking by proof search and model checking using Maudes LTL
model checker.

11

JavaFAN - Dining Philosophers

The example uses the Maude LTL model checker to find a
deadlock for 4 (naive) philosophers.

JavaFAN can find a deadlock for version with 9 philosophers.

It can also prove deadlock freeness for fixed version with 7
philosophers.

Java PathFinder chokes on 4 philosophers.

JavaFAN - Thread Game

Thread Game (J. S. Moore) consists of two process accessing a

common variable c.

Each thread reads ¢ twice and writes the sum of the two values
back to c.

The problem is to find an interleaving of executions that leaves c
with a given value n.

The example uses the Maude seach command to solve this for
n = 50.

Pathway Logic - Protein Domain Modules

Proteins are sequences of amino acids; biologists refer to certain

subsequences as domains or motifs.

In the domain level Maude model, a protein is a pair consisting of
a name and a multiset of domains (e.g. SBM) and amino acid
sites (e.g. (S 43)).

Both domains and amino acid sites can take modifiers to indicate
that they are bound or phosphorylated.

The overall system state is a multiset of protein and edges
between specific domains or amino acid sites.

Rules encode possible interactions that change peices of the

system state.

Pathway Logic - phosphorylation of Raf

Raf rule #1

Raf rule #2

Raf rule #3

Raf rule #4

Raf rule #5

Raf rule #6

[[s43]RBD] C1 [S259]S338] Y341 [PABM[S621] INIT'AL STATE:
Activated PKCz Ii] lil h Inactive Raf1

phosphorylates 14-3-3. This i i in Cytoplasm
causes 14-3-3 to changeits [PKCz - act] l - Rafi.inact
shape and loosen its hold on '

phosphorylated S259

[s43 [RBD] C1_[S259 [S338 [Y341 PABM[S621]
P

S259 is no longer protected

by 14-3-3 and is PP2A l
dephosphorylated by PP2A.

C1 and/or PABM are now [[s43[RBD] C1_[S259[S338] Y341 [PABM] S621]

exposed so Rafi can attach [Pffssoass]
to phosphatidylserine (PS)

and/or phosphatidic acid PS and/or PA

(PA) which are components
of the cell membrane. | Phosphatidy! Serine [CM] | | Phosphatiaic Acid [GM] |

Rar

Now that Raft | o [(s43]ReD] T [s259]s338] Y341 [PABM[S621] Activation
ow that Raf1 is attache: |_] SBD [14-3-3] 7
it lesaiieg) evel 17

to the cell membrane it is
available to be bound by [Ras - GTP] l

activated Ras.

|RafBD[Ras]| [F‘hcsphahdy\ Serine [CM] | [Phospt vatld\cAc\d o] |

[s43] RBD[o [s259]s338] Y341]PABM| S621]
Activated Pak l—l M

phosphorylates [Pak - act] / \ [Src-act] Raf rule #6
Raf1 at S338

|RafBD[Ras]| | Phosphaudy\ Serine [CM] | { Phosphaud.cAmd icm) | |RafBD[Ras]| | Phosphaudy\ Serine [CM] | { Phosphaud.cAmd icm] |

[[s43] RBD| T [s259] 5338 Y341 [PABM] S621] [s42] RBD| T [s259] 5338] Y341 IPABM|8621|
P

I_I .| SBD [14-3-3] lil I_I J sBD [14-3-3]

Activated Src
phosphorylates [Src - act] \ / [Pak - act] Raf rule #5
Raf1 at Y341

FINAL STATE:
|RateD [Ras]l [Phcsphahdy\ Serine [CM] | [Phosphatidic Acid [CM] | Active Raf1 at

[s43] RBD[T 18259|8338[Y341]PABM| S621] Cell Membrane
I 2] = = [Raf1 - act]

Pathway Logic - example rule

rl[Raf1#3.PS.PA]:
{CM | cm PS PA
{cyto [Rafl | (S 43), (S 259), (S 338), (Y 341),
(S 621 - phos - bound), C1, PABM, raf:Atts]
[14-3-3a | (SBD - bound), (DMD - bound), la:Atts]
[14-3-3b | SBD, (DMD - bound), (T 141 - phos)]
e((14-3-3a, DMD), (14-3-3b,DMD))
e((Rafl, (S 621)), (14-3-3a,SBD))}}

cm PS PA
[Raf1 | (S 43), (S 259), (S 338), (Y 341),
(S 621 - phos - bound), (Cl - bound), (PABM - bound), raf:Atts]

[14-3-3a | (SBD - bound), (DMD - bound), la:Attsl]

[14-3-3b | SBD, (DMD - bound), (T 141 - phos)]

e((14-3-3a,DMD), (14-3-3b,DMD))

e((Raf1, (S 621)), (14-3-3a,SBD))

e((Raf1, C1), b(PS)) e((Raf1,PABM), b(PA))
{cyto}} .

[metadata "21278045(R-20) 20379031(D) for PA 99426181(D) for PS"]

Pathway Logic - execution

findPath runs the model checker and extracts a simple path (list
of rule labels and the final state) from the counterexample.

Look for the desired final state:

red findPath(qraf, praf0)

Look for an expected intermediate state

red findPath(qraf, prafl)

Look for an undesired intermediate state

red findPath(qraf, praf2)

