
Maude 2.1 Demo

WRLA 2004

1



Overview

1. New features in 2.1

• Module expressions.

• Explicit lightweight polymorphism.

• upTerm/downTerm functions.

• More ascent functions.

• Minor enhancements.

2. Projects using Maude.

• JavaFAN.

• Pathway Logic.

2



Module expressions

• Only allowed for imports.

• Supports arbitrary nesting of renaming and summation.

• Renaming respects import structure - only modules affected by

renaming get copied.

• Sorts, operators and labels can be renamed; renamed operators

may change their syntactic attributes.

• Modules created for module expressions are “virtual” - only parts

of their contents is generated to save memory.

• Caching of module expressions ensures that a given module is only

imported once.

3



Renamed natural numbers

fmod 2NAT is

including NAT + NAT *

(sort Zero to Zero’,

sort Nat to Nat’,

sort NzNat to NzNat’,

op 0 : -> Zero to z) .

endfm

red 6 * 7 .

red 6 * (7).Nat .

red (6 * 7).Nat’ .

red z + 42 .

red 0 + 42 .

4



Explicit lightweight polymorphism
• Introduced to make the lightweight polymorphism implicit in

certain builtin operators such as if then else fi and ==
explicit:

op if_then_else_fi : Bool Universal Universal -> Universal

[poly (2 3 0)

special (id-hook BranchSymbol

term-hook 1 (true)

term-hook 2 (false))] .

op _==_ : Universal Universal -> Bool

[prec 51 poly (1 2)

special (id-hook EqualitySymbol

term-hook equalTerm (true)

term-hook notEqualTerm (false))] .

• However it is available for user defined constructors.

• Instances of polymorphic operators are created on demand on a

per kind basis.

5



Polymorphic lists
fmod POLY-LIST is

sort List .

op nil : -> List [ctor] .

op __ : Universal List -> List [ctor poly (1)] .

endfm

fmod POLY-LIST-TEST is

pr POLY-LIST + CONVERSION + QID .

op list2string : List -> String .

var L : List . var S : String . var Q : Qid .

var R : Rat . var F : Float .

eq list2string(nil) = "" .

eq list2string(S L) = S + list2string(L) .

eq list2string(Q L) = "’" + string(Q) + list2string(L) .

eq list2string(R L) = string(R, 10) + list2string(L) .

eq list2string(F L) = string(F) + list2string(L) .

endfm

red list2string("The answer is " 42.0 " but that is only "

1/2 " of the " ’problem "." nil) .

6



upTerm/downTerm builtin functions

• Move terms from the object level to the metalevel and back.

• Module must include the object signature as well as the metalevel

signature.

• Typing is solved by the lightweight polymorphism:

op upTerm : Universal -> Term

[poly (1) special (...)] .

op downTerm : Term Universal -> Universal

[poly (2 0) special (...)] .

• Second argument of downTerm provides both the object level kind

and the object level return value if the metaterm does not

represent a term in that kind.

7



Remaining ascent functions

• All parts of modules in the module database and whole modules

can be lifted to the metalevel:
op upModule : Qid Bool ~> Module [...] .

op upImports : Qid ~> ImportList [...] .

op upSorts : Qid Bool ~> SortSet [...] .

op upSubsortDecls : Qid Bool ~> SubsortDeclSet

[...] .

op upOpDecls : Qid Bool ~> OpDeclSet [...] .

• Hooks for builtin operators are correctly handled and resulting

metamodules can be passed to descent functions.

8



Up and down example
red in META-LEVEL : upModule(’META-LEVEL, true) .

red in META-LEVEL : upModule(’NAT, true) .

red in META-LEVEL :

downTerm(getTerm(metaReduce(upModule(’NAT, true),

’_*_[upTerm(6), upTerm(7)])),

undef:Nat) .

red in META-LEVEL :

downTerm(getTerm(metaReduce(upModule(’META-LEVEL, true),

’metaReduce[upTerm(upModule(’NAT, true)),

upTerm(’_*_[upTerm(6), upTerm(7)])])),

undef:Term) .

9



Minor enhancements

• Source tree now includes a test suite.

• Standard prelude quo/rem/gcd/lcm/divides functions extended to

rationals.

• show module/show all commands now handle specials/hooks.

• Constructor coloring now supported for iter operators.

• Many bug fixes!

10



JavaFAN (Java Formal ANalyzer)

• Work by Azadeh Farzan, José Meseguer and Grigore Ro cu at

Urbana.

• Tool for the formal analysis of Java Virtual Machine (JVM)

bytecode produced by compiling Java programs.

• Executable specification of the 150 most commonly used JVM

bytecode instructions.

• Deterministic JVM features specified by 300 equations.

• Concurrent JVM features specified by 40 rewrite rules.

• Analysis methods include symbolic execution, safely property

checking by proof search and model checking using Maudes LTL

model checker.

11



JavaFAN - Dining Philosophers

• The example uses the Maude LTL model checker to find a

deadlock for 4 (naive) philosophers.

• JavaFAN can find a deadlock for version with 9 philosophers.

• It can also prove deadlock freeness for fixed version with 7

philosophers.

• Java PathFinder chokes on 4 philosophers.

12



JavaFAN - Thread Game

• Thread Game (J. S. Moore) consists of two process accessing a

common variable c.

• Each thread reads c twice and writes the sum of the two values

back to c.

• The problem is to find an interleaving of executions that leaves c

with a given value n.

• The example uses the Maude seach command to solve this for

n = 50.

13



Pathway Logic - Protein Domain Modules

• Proteins are sequences of amino acids; biologists refer to certain

subsequences as domains or motifs.

• In the domain level Maude model, a protein is a pair consisting of

a name and a multiset of domains (e.g. SBM) and amino acid

sites (e.g. (S 43)).

• Both domains and amino acid sites can take modifiers to indicate

that they are bound or phosphorylated.

• The overall system state is a multiset of protein and edges

between specific domains or amino acid sites.

• Rules encode possible interactions that change peices of the

system state.

14



Pathway Logic - phosphorylation of Raf

15



Pathway Logic - example rule
rl[Raf1#3.PS.PA]:

{CM | cm PS PA

{cyto [Raf1 | (S 43), (S 259), (S 338), (Y 341),

(S 621 - phos - bound), C1, PABM, raf:Atts]

[14-3-3a | (SBD - bound), (DMD - bound), 1a:Atts]

[14-3-3b | SBD, (DMD - bound), (T 141 - phos)]

e((14-3-3a, DMD), (14-3-3b,DMD))

e((Raf1, (S 621)), (14-3-3a,SBD))}}
=>

{CM | cm PS PA

[Raf1 | (S 43), (S 259), (S 338), (Y 341),

(S 621 - phos - bound), (C1 - bound), (PABM - bound), raf:Atts]

[14-3-3a | (SBD - bound), (DMD - bound), 1a:Atts]

[14-3-3b | SBD, (DMD - bound), (T 141 - phos)]

e((14-3-3a,DMD), (14-3-3b,DMD))

e((Raf1, (S 621)), (14-3-3a,SBD))

e((Raf1, C1), b(PS)) e((Raf1,PABM), b(PA))

{cyto}} .

[ metadata "21278045(R-20) 20379031(D) for PA 99426181(D) for PS"] .

16



Pathway Logic - execution

• findPath runs the model checker and extracts a simple path (list

of rule labels and the final state) from the counterexample.

• Look for the desired final state:

red findPath(qraf, praf0) .

• Look for an expected intermediate state

red findPath(qraf, praf1) .

• Look for an undesired intermediate state

red findPath(qraf, praf2) .

17


