
The Maude LTL Model Checker and its
Implementation

Steven Eker, SRI

José Meseguer and Ambarish Sridharanarayanan, UIUC

1

Introduction (I)

Maude is a executable specification language based on term
rewriting (semantics given by rewriting logic).

Equations are assumed to be confluent and terminating and are
used to define algebraic data types.

Rewrite rules need not be terminating or confluent and naturally
express concurrency and nondeterminism (need to satisfy coherence
however).

Execution of rewrite rules generates rewrite graphs where states are
terms are reduced (i.e. in normal form) w.r.t. the equations.

2

Introduction (II)

The Maude model checker provides LTL model checking for finite
rewrite graphs.

Parameterized families of state predicates are defined by Maude
equations.

Rewriting takes place modulo the axioms of associativity,
commutativity and identity for chosen functions symbols,
generalizing list, set and multiset rewriting.

Expressiveness of term rewriting extends model checking beyond
traditional domains such as hardware and communication protocols
to areas such nested and/or mobile processes and discrete cell
biology models.

Allows deep embedding of other languages.

3

Dekker (I)

fmod MEMORY is inc INT . inc QID .

sorts Memory .

op none : -> Memory .

op __ : Memory Memory -> Memory [assoc comm id: none] .

op [_,_] : Qid Int -> Memory .

endfm

fmod TESTS is inc MEMORY .

sort Test .

op _=_ : Qid Int -> Test .

op eval : Test Memory -> Bool .

var Q : Qid . var M : Memory . vars N N’ : Int .

eq eval(Q = N, [Q, N’] M) = N == N’ .

endfm

4

Dekker (II)

fmod SEQUENTIAL is inc TESTS .

sorts UserStatement Program .

subsort UserStatement < Program .

op skip : -> Program .

op _;_ : Program Program -> Program

[prec 61 assoc id: skip] .

op _:=_ : Qid Int -> Program .

op if_then_fi : Test Program -> Program .

op while_do_od : Test Program -> Program .

op repeat_forever : Program -> Program .

endfm

5

Dekker (III)

mod PARALLEL is inc SEQUENTIAL .

sorts Pid Process Soup MachineState .

subsort Process < Soup .

op [_,_] : Pid Program -> Process .

op empty : -> Soup .

op _|_ : Soup Soup -> Soup

[prec 61 assoc comm id: empty] .

op {_,_,_} : Soup Memory Pid -> MachineState .

vars P R : Program . var S : Soup .

var U : UserStatement . vars I J : Pid .

var M : Memory . var Q : Qid .

vars N X : Int . var T : Test .

6

Dekker (IV)

rl {[I, U ; R] | S, M, J} => {[I, R] | S, M, I} .

rl {[I, (Q := N) ; R] | S, [Q, X] M, J} =>

{[I, R] | S, [Q, N] M, I} .

rl {[I, if T then P fi ; R] | S, M, J} =>

{[I, if eval(T, M) then P else skip fi ; R] |

S, M, I} .

rl {[I, while T do P od ; R] | S, M, J} =>

{[I, if eval(T, M) then (P ; while T do P od) else

skip fi ; R] | S, M, I} .

rl {[I, repeat P forever ; R] | S, M, J} =>

{[I, P ; repeat P forever ; R] | S, M, I} .

7

Dekker (V)

mod DEKKER is inc PARALLEL .

subsort Int < Pid .

ops crit rem : -> UserStatement .

ops p1 p2 : -> Program .

op initialMem : -> Memory .

op initial : -> MachineState .

eq initialMem = [’c1, 1] [’c2, 1] [’turn, 1] .

eq initial = { [1, p1] | [2, p2], initialMem, 0 } .

8

Dekker (VI)

eq p1 =

repeat

’c1 := 0 ;

while ’c2 = 0 do

if ’turn = 2 then

’c1 := 1 ;

while ’turn = 2 do skip od ;

’c1 := 0

fi

od ;

crit ;

’turn := 2 ; ’c1 := 1 ;

rem

forever .

9

Dekker (VII)

mod CHECK is inc DEKKER . inc MODEL-CHECKER .

subsort MachineState < State .

ops enterCrit exec : Pid -> Prop .

var M : Memory . vars R : Program .

var S : Soup . vars I J : Pid .

eq {[I, crit ; R] | S, M, J} |= enterCrit(I) = true .

eq {S, M, J} |= exec(J) = true .

endm

red modelCheck(initial,

[] ~ (enterCrit(1) /\ enterCrit(2))) .

red modelCheck(initial, ([]<> exec(1) /\ []<> exec(2)) ->

([]<> enterCrit(1) /\ []<> enterCrit(2))) .

10

Implementation

On-the-fly LTL model checking consists of two major steps.

1. Construct a Büchi automaton for the negation of the temporal
logic formula that recognizes the language of counterexamples.

2. Lazily form the synchronous product of the Büchi automaton
with the Kripke structure K(R, State) associated to the rewrite
theory R, searching for an accepting cycle which is reachable
from the initial state.

We make use of Binary Decision Diagrams (BDDs) to deal with
pure propositional formulae used to label arcs in the various
automata we use.

11

LTL Formula Preprocessing

• Put ¬φ in negative normal.

• Etessami and Holzman method using notions of pure
eventuality formulae and pure universality formulae.

• Syntactic definitions that map neatly on to Maude’s sort
system.

• Method requires 8 unconditional equations; we add an extra
equation:

var pr : PureFormula .

eq O pr = pr .

where PureFormula is the intersection of PE-Formula and
PU-Formula.

• Also use the rules from Somenzi and Bloem method that are
not subsumed by Etessami and Holzman.

12

Büchi Automaton Construction

Modified Gastin and Oddoux’s algorithm:

1. Construct a very weak alternating automaton V from ψ.

2. Remove unreachable states from V

3. Convert V into a generalized Büchi automaton G with multiple
fairness conditions on arcs.

4. Iterate (combine parallel arcs, delete subsumed arcs, combine
equivalent states).

5. SCC optimizations: delete dead components, simplify fairness
conditions.

6. Repeat step (4).

7. Convert G into a regular Büchi automaton B.

8. Regular version of step (4).

13

Searching the Synchronous Product

Use double depth first method (Holzmann et al.). Store the Kripke
structure as it is generated with extra 5 bit vectors per state.

• Propositions tested in state.

• Propositions true in state.

• Product pairs (with automaton states) seen by first DFS.

• Product pairs currently on first DFS stack.

• Product pairs seen by second DFS.

Synchronous product search code manipulates abtract state indices
and is Maude-independent.

14

Performance Comparisons with SPIN (I)

Average time Average memory

Size taken (ms.) usage (MB)

Spin Maude Spin Maude

5 42 250 1.58 4.74

10 43 570 1.58 5.58

50 821 1,920 13.11 26.6

100 4,443 14,200 104.86 226.3

Leader election - property 1

15

Performance Comparisons with SPIN (II)

Average time Average memory

Size taken (ms.) usage (MB)

Spin Maude Spin Maude

5 40 250 1.58 4.73

10 49 580 1.58 5.54

50 825 1,880 13.11 26.6

100 5,928 13,800 104.86 223.7

Leader election - property 2

16

Performance Comparisons with SPIN (III)

Average time Average memory

Size taken (ms.) usage (MB)

Spin Maude Spin Maude

5 46 270 1.58 4.73

10 50 560 1.68 5.58

50 1,804 2,310 22.94 44.46

100 10,709 19,480 104.86 330.3

Leader election - property 3

17

Performance Comparisons with SPIN (IV)

Average time Average memory

Size taken (ms.) usage (MB)

Spin Maude Spin Maude

5 38 270 1.58 4.73

10 52 560 1.68 5.58

50 1,468 2,160 22.94 39.3

100 9,134 18,320 104.86 270.1

Leader election - property 4

18

Performance Comparisons with SPIN (V)

10

100

1000

10000

100000

10 100

T
im

e
ta

ke
n\

\\\
\\(

m
s.

)

Size (number of nodes in the network)

Property 1 (Maude)
Property 2 (Maude)
Property 3 (Maude)
Property 4 (Maude)
Property 1 (SPIN)
Property 2 (SPIN)
Property 3 (SPIN)
Property 4 (SPIN)

19

Performance Comparisons with SPIN (VI)

1

10

100

1000

10 100

M
em

or
y\

\c
on

su
m

ed
\\(

M
B

)

Size (number of nodes in the network)

Property 1 (Maude)
Property 2 (Maude)
Property 3 (Maude)
Property 4 (Maude)
Property 1 (SPIN)
Property 2 (SPIN)
Property 3 (SPIN)
Property 4 (SPIN)

20

Conclusions and Future Directions

The Maude model checker combines a very expressive system
specification language with reasonable cpu/memory performance.

A number of research issues should be explored in the future,
including:

• further improvements in the Büchi automata constructions;

• special treatment of fairness properties, instead of expressing
them as LTL formulae;

• model checking of properties restricting the set of computation
paths by means of suitable strategy expressions;

• development of general abstraction techniques for rewrite
theories, and theorem proving support for proving such
abstractions correct.

21

