The Maude 2.0 System

M. Clavel F. Durdan S. Eker P. Lincoln

N. Marti-Oliet J. Meseguer C. Talcott

Sort System

Kinds replace the Error Sorts of Maude 1 and can be used in

operator and variable declarations.

op £ : [Nat] -> Nat . *** error recovery.

Operators can be declared at the kind level to indicate partiality.

op gamma : [Real] -> [Reall
op gamma : Real "> Real

Rewriting can occur at kind level for error recovery.

Canonical name for a kind is its maximal sort(s), separated by

commas and enclosed in brackets.

Union sorts abolished.

VVariables

e Each sort or kind ¢ is considered to have a countable set of
variables v : ¢t for any Maude identifier v, which do not have to be

declared.

e A variable declaration var v : t . Is now considered to declare

v as an alias for the variable v : t.

parse in BOOL : X:Bool
red in BOOL : X:Bool == X:[Bool] . *%** false

Conditions

Rather than a single equality, conditions now allow a list of
condition fragments, separated by /\.

4 types of fragments; last type is for rule conditions only:

term) = (term) equality test

term) : (sort) sort test

pattern) := (term) | assignment by matching

<
<
<
<

term) => (pattern) | rewrite proof search

Patterns may have unbound variables that are bound by matching;
regular terms are reduced upto strategy.

Failure of a fragment causes backtracking.

Statement Attributes

Statements can now take a list of attributes.
Label attribute can be given to any statement, not just rules.

Can be used with trace select feature to select statements for

tracing.

Metadata attribute can attach arbitrary string of meta-data to a
statement for meta-processing.
e X * X - Y *xY=X+Y)*x X-Y)
[label diff-sqrs metadata "lemma"]

Ctor and Ditto Attributes

e Ctor attribute allows operators to be declared as constructors —
needed for ITP and used in term coloring.

e Ditto copies all attributes other than ctor from a previous subsort
overloaded declaration of the operator.

fmod CTOR-&-DITTO-TEST is
sorts NzNat Nat Int
subsorts NzNat < Nat < Int
op 0 : => Nat [ctor]
op s_ : Nat -> NzNat [ctor prec 14]
op s_ : Int -> Int [ditto] . *** non-ctor
op —_ : NzNat -> Int [ctor prec 14]
op —_ : Int -> Int [ditto] . *** non-ctor

endfm

Iter Attribute

e Allows efficient storage, i/o and sort computations for huge towers

of unary operator symbols.

e Main application is the efficient implementation of natural
numbers using the successor notation.

fmod ITER-TEST is
sorts Even 0dd Nat .
subsorts Even 0dd < Nat
op O : -> Even .
op s_ : Even -> 0dd [iter]
op s_ : 0dd -> Even [iter]

endfm

red s_"123456789(0)
red s_"1234567890(0)

Format Attribute

e Allows control of white-space, color and style for pretty-printing
operators.

e Format words are given for each white-space position.

S space red

t tab green

iIncrement indent counter blue

decrement indent counter yellow

indent by indent counter magenta

new line cyan

default spacing underline

original style ! bright

Format Attribute (continued)

op while _ do _ od : Bool Statement -> Statement

~

_ : Variable Expression -> Statement

op while _ do _ od : Bool Statement -> Statement

[format (nir! o r! o++ —--nir! o)]

op let _ := _ : Variable Expression -> Statement
[format (nir! o d d d)]

Natural Numbers

e Nats are constructed using successor operator and the iter

attribute.
fmod NAT is

sorts Zero NzNat Nat
subsort Zero NzNat < Nat
op O : -> Zero [ctor]
op s_ : Nat -> NzNat

[ctor iter special (...)]

endfm

e Decimal i/o by default.

e Built-in operators very efficient (use GNU GMP).

e Gcd, Iem, mod exp, bitwise ops.

Natural Numbers (continued)
red in NAT : gcd(18, gcd(X:Nat, 12))

fmod COMBINATORIAL is protecting NAT .
op _! : Nat -> NzNat .
op C : Nat Nat -> Nat .

vars N M : Nat .
eq O ! s 0 .
eq (s N) ! s N x N |
eq C(N, M) =N ! quo (M ! * sd(N, M) !)

endfm

red 1000 !
red C(1000, 100)

11

Integers

e Ints are constructed from Nats using unary minus operator.

fmod INT is protecting NAT .
sorts NzInt Int
subsorts NzNat < NzInt Nat < Int
op —_ : NzNat -> NzInt
[ctor special (...)]
op -_ : NzInt -> NzInt [ditto]
op -_ : Int -> Int [ditto]

endfm

e Adds binary minus, not and abs.

e Most Nat ops extended.

Rational Numbers

e Rats are constructed from Nats and Ints using division operator.

fmod RAT is protecting INT .
sorts NzRat Rat
subsorts NzInt < NzRat Int < Rat
op _/_ : NzInt NzNat -> NzRat
[ctor prec 31 gather (E e) special (...)]
op _/_ : NzRat NzRat -> NzRat [ditto]
op _/_ : Rat NzRat -> Rat [ditto]

endfm
e Supports usual arithmetic, comparison, abs, ceiling, floor, frac,

trunc.

e Implemented by Maude equations rather than by built-ins.

Floating Point Numbers

Floats are treated as a large set of constants - no algebraic

structure.

Underlying representation is hardware double precision floating
point numbers; IEEE 754 on recent hardware.

+ /- Infinity supported.

All usual floating points ops supported; known inconsistencies at

corner cases patched.

Character Strings

Strings are treated as a countable set of constants - no algebraic
structure.

Uses Nats for length, positions.
Underlying representation is the C+-+ STL extension ropes.

Heavyweight strings that support sharing and persistence
efficiently for functional languages.

Supports concatenation, length, comparison, substrings, find/rfind.

Conversion Functions

FiniteFloat to Rat is exact.

Rat to Float is nearest available Float; may be + /- Infinity.
Rat to and from String is exact; choice of representation base.
String to Float is nearest available Float; may be + /- Infinity.

Float to String has enough significant digits that converting back
finds the original Float.

Exact decimal expansion of a Float is available for fancier i/o
processing - may be huge.

LTL Model Checker

Linear Temporal Logic manipulations (simplifications and negative

normal form) are done by Maude code.

The satisfaction of (possibly parameterized) propositions are
defined in Maude.

On-the-fly model checking is done by a built-in operation
op _|=_ : State Formula "> ModelCheckResult
[special (...)]

Implementation uses state-of-the-art Buchi automaton
construction algorithm and standard double depth first search of

the synchronous product for a counterexample.

LTL Satisfiability solving and tautology checking also provided.

New Meta Level

Simpler metaterm representation:

1.0 + X:Float

IS meta-represented as

> + [’1.0.FiniteFloat, ’X:Float]

Many more descent functions such as metaXapply() (with

contexts) and metaSearch().

Descent functions return sorts of terms.
Ascent functions to inspect modules in database.

Much more sophisticated caching at module and operator level.

Search Command

e Breadth first search with cycle detection.
e All nodes in search graph reduce w.r.t. equations.
e Optional backtracking to find more solutions.

e Path to a given solution and current search graph can be printed.

search <term> <search-type> <pattern>

such that <condition>

=> exactly one rewrite

> % Zero or more rewrites

one or more rewrites

until no more rules apply

Profiling

e Keep track of how many times each eq/mb/rl is applied.

e For a condition, also keep track for each fragment of
Initial attempts.
Backtrack attempts.
Successes.

Failures.

set profile on .

show profile .

Term Coloring

e Color (possibly intermediate) results based on reduced flag and
constructor status to flag problems.

set print color on .

reduced, ctor not colored

reduced, non-ctor, colored below blue

reduced, non-ctor, no colored below red

unreduced, no reduced above

unreduced, reduced directly above magenta

unreduced, reduced not directly above | cyan

e Red and magenta denote likely origin of problem, blue and cyan
denote secondary damage.

Miscellaneous Features

Frozen attribute prevents selected arguments of an operator from
being rewritten by rules.

Position fair rewriting make bottom-up passes over the term,
applying a certain number of rule rewrites at each position. Since
rule rewriting is non-destructive, term graph is virtual unless
forced by tracing or debugging.

Break to debugger when select operators rewrite or statements
with given labels execute.

Integrated compiler for sublanguage — GNU g++ used as
backend. Speed up is typically a factor of 5-9.

Optimizations

Rules can now use greedy matching under some circumstances.

Left-to-right sharing allows reuse of matched subterms in rhs or
condition. Matched subterms themselves can be in earlier

condition fragments.

New discrimination nets allow order-sorted partial subsumption

analysis.

Substitution slot coloring used to minimize size of substitutions by

slot reuse - a win for large rhs.

