
The Maude 2.0 System

M. Clavel F. Durán S. Eker P. Lincoln

N. Mart́ı-Oliet J. Meseguer C. Talcott

1

Sort System

• Kinds replace the Error Sorts of Maude 1 and can be used in

operator and variable declarations.

op f : [Nat] -> Nat . *** error recovery.

• Operators can be declared at the kind level to indicate partiality.

op gamma : [Real] -> [Real] .

op gamma : Real ~> Real .

• Rewriting can occur at kind level for error recovery.

• Canonical name for a kind is its maximal sort(s), separated by

commas and enclosed in brackets.

• Union sorts abolished.

2

Variables

• Each sort or kind t is considered to have a countable set of

variables v : t for any Maude identifier v, which do not have to be

declared.

• A variable declaration var v : t . is now considered to declare

v as an alias for the variable v : t.

parse in BOOL : X:Bool .

red in BOOL : X:Bool == X:[Bool] . *** false

3

Conditions

• Rather than a single equality, conditions now allow a list of

condition fragments, separated by /\.

• 4 types of fragments; last type is for rule conditions only:

〈term〉 = 〈term〉 equality test

〈term〉 : 〈sort〉 sort test

〈pattern〉 := 〈term〉 assignment by matching

〈term〉 => 〈pattern〉 rewrite proof search

• Patterns may have unbound variables that are bound by matching;

regular terms are reduced upto strategy.

• Failure of a fragment causes backtracking.

4

Statement Attributes

• Statements can now take a list of attributes.

• Label attribute can be given to any statement, not just rules.

• Can be used with trace select feature to select statements for

tracing.

• Metadata attribute can attach arbitrary string of meta-data to a

statement for meta-processing.

eq X * X - Y * Y = (X + Y) * (X - Y)

[label diff-sqrs metadata "lemma"] .

5

Ctor and Ditto Attributes

• Ctor attribute allows operators to be declared as constructors —

needed for ITP and used in term coloring.

• Ditto copies all attributes other than ctor from a previous subsort

overloaded declaration of the operator.

fmod CTOR-&-DITTO-TEST is

sorts NzNat Nat Int .

subsorts NzNat < Nat < Int .

op 0 : -> Nat [ctor] .

op s_ : Nat -> NzNat [ctor prec 14] .

op s_ : Int -> Int [ditto] . *** non-ctor

op -_ : NzNat -> Int [ctor prec 14] .

op -_ : Int -> Int [ditto] . *** non-ctor

endfm

6

Iter Attribute

• Allows efficient storage, i/o and sort computations for huge towers

of unary operator symbols.

• Main application is the efficient implementation of natural

numbers using the successor notation.

fmod ITER-TEST is

sorts Even Odd Nat .

subsorts Even Odd < Nat .

op 0 : -> Even .

op s_ : Even -> Odd [iter] .

op s_ : Odd -> Even [iter] .

endfm

red s_^123456789(0) .

red s_^1234567890(0) .

7

Format Attribute

• Allows control of white-space, color and style for pretty-printing

operators.

• Format words are given for each white-space position.

s space r red

t tab g green

+ increment indent counter b blue

- decrement indent counter y yellow

i indent by indent counter m magenta

n new line c cyan

d default spacing u underline

o original style ! bright

8

Format Attribute (continued)
op while _ do _ od : Bool Statement -> Statement .

^ ^ ^ ^ ^ ^

op let _ := _ : Variable Expression -> Statement .

^ ^ ^ ^ ^

op while _ do _ od : Bool Statement -> Statement

[format (nir! o r! o++ --nir! o)] .

op let _ := _ : Variable Expression -> Statement

[format (nir! o d d d)] .

9

Natural Numbers

• Nats are constructed using successor operator and the iter

attribute.

fmod NAT is

sorts Zero NzNat Nat .

subsort Zero NzNat < Nat .

op 0 : -> Zero [ctor] .

op s_ : Nat -> NzNat

[ctor iter special (...)] .

...

endfm

• Decimal i/o by default.

• Built-in operators very efficient (use GNU GMP).

• Gcd, lcm, mod exp, bitwise ops.

10

Natural Numbers (continued)
red in NAT : gcd(18, gcd(X:Nat, 12)) .

fmod COMBINATORIAL is protecting NAT .

op _! : Nat -> NzNat .

op C : Nat Nat -> Nat .

vars N M : Nat .

eq 0 ! = s 0 .

eq (s N) ! = s N * N ! .

eq C(N, M) = N ! quo (M ! * sd(N, M) !) .

endfm

red 1000 ! .

red C(1000, 100) .

11

Integers

• Ints are constructed from Nats using unary minus operator.

fmod INT is protecting NAT .

sorts NzInt Int .

subsorts NzNat < NzInt Nat < Int .

op -_ : NzNat -> NzInt

[ctor special (...)] .

op -_ : NzInt -> NzInt [ditto] .

op -_ : Int -> Int [ditto] .

...

endfm

• Adds binary minus, not and abs.

• Most Nat ops extended.

12

Rational Numbers

• Rats are constructed from Nats and Ints using division operator.

fmod RAT is protecting INT .

sorts NzRat Rat .

subsorts NzInt < NzRat Int < Rat .

op _/_ : NzInt NzNat -> NzRat

[ctor prec 31 gather (E e) special (...)] .

op _/_ : NzRat NzRat -> NzRat [ditto] .

op _/_ : Rat NzRat -> Rat [ditto] .

...

endfm

• Supports usual arithmetic, comparison, abs, ceiling, floor, frac,

trunc.

• Implemented by Maude equations rather than by built-ins.

13

Floating Point Numbers

• Floats are treated as a large set of constants - no algebraic

structure.

• Underlying representation is hardware double precision floating

point numbers; IEEE 754 on recent hardware.

• +/- Infinity supported.

• All usual floating points ops supported; known inconsistencies at

corner cases patched.

14

Character Strings

• Strings are treated as a countable set of constants - no algebraic

structure.

• Uses Nats for length, positions.

• Underlying representation is the C++ STL extension ropes.

• Heavyweight strings that support sharing and persistence

efficiently for functional languages.

• Supports concatenation, length, comparison, substrings, find/rfind.

15

Conversion Functions

• FiniteFloat to Rat is exact.

• Rat to Float is nearest available Float; may be +/- Infinity.

• Rat to and from String is exact; choice of representation base.

• String to Float is nearest available Float; may be +/- Infinity.

• Float to String has enough significant digits that converting back

finds the original Float.

• Exact decimal expansion of a Float is available for fancier i/o

processing - may be huge.

16

LTL Model Checker

• Linear Temporal Logic manipulations (simplifications and negative

normal form) are done by Maude code.

• The satisfaction of (possibly parameterized) propositions are

defined in Maude.

• On-the-fly model checking is done by a built-in operation

op _|=_ : State Formula ~> ModelCheckResult

[special (...)] .

• Implementation uses state-of-the-art Buchi automaton

construction algorithm and standard double depth first search of

the synchronous product for a counterexample.

• LTL Satisfiability solving and tautology checking also provided.

17

New Meta Level

• Simpler metaterm representation:

1.0 + X:Float

is meta-represented as

’_+_[’1.0.FiniteFloat, ’X:Float]

• Many more descent functions such as metaXapply() (with

contexts) and metaSearch().

• Descent functions return sorts of terms.

• Ascent functions to inspect modules in database.

• Much more sophisticated caching at module and operator level.

18

Search Command

• Breadth first search with cycle detection.

• All nodes in search graph reduce w.r.t. equations.

• Optional backtracking to find more solutions.

• Path to a given solution and current search graph can be printed.

search <term> <search-type> <pattern>

such that <condition> .

=> exactly one rewrite

=> ∗ zero or more rewrites

=> + one or more rewrites

=>! until no more rules apply

19

Profiling

• Keep track of how many times each eq/mb/rl is applied.

• For a condition, also keep track for each fragment of

– Initial attempts.

– Backtrack attempts.

– Successes.

– Failures.

set profile on .

...

show profile .

20

Term Coloring

• Color (possibly intermediate) results based on reduced flag and

constructor status to flag problems.

set print color on .

reduced, ctor not colored

reduced, non-ctor, colored below blue

reduced, non-ctor, no colored below red

unreduced, no reduced above green

unreduced, reduced directly above magenta

unreduced, reduced not directly above cyan

• Red and magenta denote likely origin of problem, blue and cyan

denote secondary damage.

21

Miscellaneous Features

• Frozen attribute prevents selected arguments of an operator from

being rewritten by rules.

• Position fair rewriting make bottom-up passes over the term,

applying a certain number of rule rewrites at each position. Since

rule rewriting is non-destructive, term graph is virtual unless

forced by tracing or debugging.

• Break to debugger when select operators rewrite or statements

with given labels execute.

• Integrated compiler for sublanguage — GNU g++ used as

backend. Speed up is typically a factor of 5-9.

22

Optimizations

• Rules can now use greedy matching under some circumstances.

• Left-to-right sharing allows reuse of matched subterms in rhs or

condition. Matched subterms themselves can be in earlier

condition fragments.

• New discrimination nets allow order-sorted partial subsumption

analysis.

• Substitution slot coloring used to minimize size of substitutions by

slot reuse - a win for large rhs.

23

