
The Pathway Logic Formal Modeling System:
Diverse views of a formal representation of signal transduction.

Carolyn Talcott
SRI International

Menlo Park, CA 94025

Abstract—The core of the Pathway Logic signal transduction
model (STM) is a theory in the rewriting logic language
Maude. This theory provides a language for representing the
signaling state of a cell and its components, and rewrite rules
representing possible signaling events. Used as a theory in
rewriting logic, statements about signal propagation can be
proved. The theory can also be viewed as a database that can
be queried, for example, to find the events in which a given
protein might participate or to retrieve all signaling events
(rules) of a given type. Given a representation of a cell state,
an executable model can be derived from the theory. This
model can be executed to observe a possible behavior, or model
checked to study properties of signal propagation pathways.
Finally, the theory can be viewed as term in the meta-theory.
Using reflection, the theory can be mapped to terms in other
formalisms, to access additional reasoning tools; to annotated
grapical representations for visualization; or to an external
representation such as JSON, SBML or BIOPAX for sharing
with other formal systems.

The talk will begin with a perspective on formal mod-
eling. We will then discuss identification and representation
of elements of a theory of signal transduction motivated by
experimental evidence. Finally we show how the views of the
resulting theory are used in practice and how the ideas gener-
alize to modeling other cellular processes such as glycosylation
and immune system.

1. Introduction

The goal of the Pathway Logic (PL) project is to develop
models and tools to help understand how cells work. Cells
respond to changes in their environment through biochemi-
cal pathways that detect, transduce, and transmit information
to effector molecules within different cellular compartments.
Signaling pathways involve the modification and/or hierar-
chical assembly in space and time of proteins and other
molecules into complexes that coordinate and regulate the
flow of information according to logical rules. Signaling
pathways are organized in networks having stimulatory (pos-
itive) and inhibitory (negative) feedback loops, and cross
talk to ensure that signals are propagated and interpreted ap-
propriately in a particular cell or tissue. Signaling networks
are robust and adaptive, in part because of combinatorial
complex formation (several building blocks for forming the

same type of complex), redundant pathways, and feedback
loops.

The PL idea is to develop formal models of biomolecular
processes that capture biologist intuitions, but unlike the
usual cartoons PL models can be executed, so the biolo-
gist/modeler can trace possible flows information. The PL
system provides tools to

• organize and analyze experimental findings
• carry out gedanken experiments
• discover/assemble novel execution pathways
• gain insights into the inner workings of a cell

A PL model can be thought of as a new kind of review
article.

In this invited paper we present a perspective on for-
mal modeling illustrated by the Pathway Logic system.
Key points include representation of concepts, semantic
anchoring of model components to biological entities and
experimental evidence, inference of specific models from
a knowledge base and formal specification of experimental
setup.

2. A Modeling Perspective

Developing formal representations and models is both an
art and a science. In the following we present a perspective
with a focus on modeling naturally occurring processes such
as those that make up biological systems. Most of the ideas
are relevant to other modeling tasks.

2.1. Modeling 101

One of the first things to do when starting to build a
model is to determine what questions you want the model
answer. In the case of biological processes, you might want
to determine causal relations in a gene regulation network,
or the kinetics of a phosphorylation process, or the events
leading from detection of a ligand to turning on a gene.

Another key issue is what data is available: what can be
observed/measured and how does it relate to the questions
of interest. Is the data sufficient to answer the questions?

How can this be explained to a computer? Using a for-
mal representation system equipped with tools for reasoning
will not only help in the model building process, but also in
using the model to answer questions (the reasoning part).

In summary, the formal modeling of a process consists of
defining concepts and their formal representations; gathering
data and curating facts; using formal reasoning to study
properties of the model, discovering gaps or inconsistencies;
repeating to improve the model.

2.2. Executable Models and Symbolic Analysis

Executable models are particularly natural for model-
ing processes. A good overview can be found in [1]. An
executable model represents system states and the possible
behaviors—how states change over time—typically by some
form of state transition rule. A model is symbolic if families
of states can be represented, for example using place hold-
ers for some state components. Associated with each such
executable formal model is a state transition graph whose
nodes are states and edges are transitions connecting states.
Formally, the state transition graph is the basis of many
analyses.

There are many formalisms supporting executable for-
mal modeling including automata based formalisms, Petri
net based formalisms, and rewriting logic (see section 3).

Symbolic analysis – answering questions. What can we do
with an executable specification? Once a model is defined,
we can define specific system configurations and explore
their behavior using a variety of symbolic analyses.

Forward simulation allows us to watch the system run
by rewriting according to different builtin or user defined
strategies to choose next steps. In this way, specific execu-
tions and their event traces can be examined.

Symbolic simulation generalizes basic forward simula-
tion allowing exploring behavior of a possibly infinite family
of states. This is only interesting is the case that transitions
are specified by patterns that can be matched to a concrete
state (by finding matching substitutions) or unified with
a symbolic state (by finding substitutions, called unifiers,
that equate the transition instance with the instance of the
symbolic state). Symbolic simulation starts with a state pat-
tern and transition patterns are applied using unification. As
execution proceeds, unification likely leads to more concrete
states, and it may turn into a search when there are multiple
unifiers. This is called narrowing in logic languages.

Forward search from a given state is a breadth first
search of the state transition graph, up to some depth. It is
a reachability analysis that (in the case of finite executions)
can be used to find all possible outcomes or to find only
outcomes satisfying a given property. It can also be used
to look for undesirable reachable state, for example states
violating a required invariant. The kinds of properties ana-
lyzable by forward search can be expanded by instrument
a model. This involves adding metadata to configurations
to collect quantitative or history information, such as time
elapsed between events, minimum or maximum values of
some parameter, and so on.

Backward search from a given state S runs the model
backwards from S, traversing transition edges in reverse
direction, to find possible initial states leading to S. This

technique can be used in protocol analysis to decide if a
proposed attack/bad state is reachable from an honest/legal
initial state.

Symbolic backward search like symbolic simulation
starts with a state pattern and uses unification rather than
matching to run the transitions in reverse. It has the potential
to reduce an infinite search space to a finite search space.

Forward collection is a form of abstraction, where ab-
stract states contain the information of the collected reach-
able states. In the simplest case states are multisets and
accumulating information is multiset union. Starting from
a given state all newly applicable rule instances are added
to the collected rule set and conclusions of the newly appli-
cable rule instances are added to the collected state. This is
repeated until there are no newly applicable rule instances.
The collected rule instances are those that are potentially
applicable in some execution starting from the original state,
dropping unreachable rule instances. The collected state
gives an upper bound on reachability.

Backward collection works for states that are multisets.
Starting by requiring some elements to be present in the
multiset, add all rule instances whose conclusions include at
least one of the required elements, and add the rule instance
premiss elements to the set of required elements. This is
repeated until there are no newly applicable rule instances
are found. The resulting set of rules forms a submodel that,
under suitable conditions contains all the executions leading
to the original set of required elements. This is used in
Pathway Logic to infer models of subprocesses [2].

Model checking refers to algorithms to determine if all
executions of a model from a given initial state satisfy a
given property. Forward search is a form of model-checking
for simple reachability properties. More complex forms treat
properties in temporal logics. Such languages can express
properties about the order in which states or actions occur, or
conditions under which changes can occur. Ideally, if a prop-
erty does not hold, a counter example is returned witnessing
the failure. An example class of property is: molecule X
is never produced before molecule Y. A counter example
would be: a execution pathway (set of rule instances) in
which Y is produced after X.

Meta analysis is reasoning about the model itself, for
example finding transitions that transform a given state ele-
ment, finding transitions representing a specific modification
such as phosphorylation, or checking that transitions satisfy
some property such as stoichiometry. Additionally, meta
analysis can be used to transform a model and property to
another logic (for access to reasoning tools for that logic),
or to transform a model to an external syntax for sharing
information.

3. Rewriting Logic and Maude

Rewriting logic [3], [4] is a logical formalism that is
based on two simple ideas: states of a system are represented
as elements of an algebraic data type, specified in an equa-
tional theory, and the behavior of a system is given by local
transitions between states described by rewrite rules. An

equational theory specifies data types by declaring constants
and constructor operations that build complex structured
data from simpler parts. Functions on the specified data
types are defined by equations that allow one to compute
the result of applying the function. A term is a variable, a
constant, or application of a constructor or function symbol
to a list of terms.

A rewrite rule has the form t ⇒ t′ if c where t and t′

are terms possibly containing variables and c is a condition
(a boolean term). Such a rule applies to a system in state
s if t can be matched to a part of s by supplying the right
values for the variables (using a matching substitution), and
if the condition c holds when supplied with those values.
In this case the rule can be applied by replacing the part of
s matching t by t′ using the matching values for the place
holders in t′. The process of application of rewrite rules
generates computations (also thought of as deductions).

As a simple example, consider a theory with two con-
stants a and b, of sort Atom, an operator p : Atom,Atom →
Atom and a rule p(x, x) ⇒ x where s is a variable of
sort Atom. Then p(p(a, a), b) can be rewritten to p(a, b) by
matching the subterm p(a, a) to the rule premiss using a
substitution mapping x to a.

Maude is a language and tool based on rewriting logic
[5], [6]. Maude provides a high performance rewriting en-
gine featuring matching modulo associativity, commutativ-
ity, and identity axioms; and search and model-checking
capabilities. Thus, given a specification S of a concurrent
system, one can execute S to find one possible behavior;
use search to see if a state meeting a given condition
can be reached; or model-check S to see if a temporal
property is satisfied, and if not to see a computation that
is a counter example. Maude also supports reflection with a
simple representation of modules and their components, and
access to key functions of the core Maude system allowing
the user to easily specify execution and search strategies and
module transformation.

Other Formalisms for Executable Modeling. In addition
to rewriting logic, there are a number of formalism sys-
tems available for developing executable models of cellular
processes: Petri nets, BioCham, Kappa, BionetGen, and
BioPepa, to mention just a few. Petri nets [7] are a general
model of concurrent processes with a number of variants
offering different expressiveness and analysis complexity.
Overviews of different Petri net formalisms and their appli-
cation to modeling biological processes can be found in [8],
[9].

BioCham [10], [11] is a rule-based language for model-
ing biochemical systems together with simulators for qual-
itative and quantitative semantics, and a temporal logic
language for specifying system properties.

Kappa [12], [13] is a rule-based language for modeling
protein interaction networks. Kappa models represent details
of protein state and binding interactions. The semantics is
given by stochastic graph rewriting. BionetGen [14] is rule
based modeling system whose language is similar to that
of Kappa, while execution semantics is given by translation

to differential equations, or using Gillespie style stochastic
simulation.

Bio-PEPA [15] is a process algebra language for the
modelling and the analysis of biochemical networks. Bio-
PEPA supports different kinds of analysis, including stochas-
tic simulation, analysis based on ordinary differential equa-
tions (ODEs) and model checking in PRISM [16].

The Cell Net Optimizer [17] is a software system for
assembling Boolean logic models from signalling interaction
networks and calibrating the models against experimental
data.

These systems all work with executable models based on
rules describing local changes in state of proteins and other
cellular components. They all provide tools for analysis
based on execution/simulation. BioCham and Bio-PEPA also
provide support for model-checking based analysis. Pathway
Logic shares with Kappa and BioNetGen a rich and con-
trolled language for describing protein states. Distinguishing
features of Pathway Logic include the focus on inference
of rules from experimental data, a formal representation of
experimental findings, mechanisms to link model elements
to external sources and rules to supporting evidence, and
symbolic representation of states and rules.

4. Pathway Logic representation system

Recall that the big question is: How do cells work?
We think of cells as actors in an organ or organism level
distributed system. As such, they function asynchronously,
make decisions based on local information and communicate
by transmitting/receiving signals (biochemicals) or by di-
rect contact. Internally, cells themselves are tiny distributed
systems, the actors are proteins, chemicals, genes acting
concurrently, and interacting to exchange and propagate
information. Here we discuss PL STM (Signal Transduction
Model) which focuses on intra cellular processes starting
with receiving signals from the environment. As we will
see, the basic ideas work for multi-cell systems such as the
immune system (see 4.5). Thus the questions we would like
a model to answer concern the pathways of signal prop-
agation: What are the possible events? What are essential
events? What alternative routes are there?

A big challenge is naming model elements. This is
important to communicate the information represented in
a model. The trouble is that different biologists use dif-
ferent names for the same entity (protein, gene, metabolite
. . .). A few examples are: Egf vs EGF for the Epidermal
Growth Factor; Erk (extracellular signal-regulated kinases)
vs MAPK (mitogen-activated protein kinases) for a member
of a family of kinases; EgfR vs ErbB1 vs HerbB1 for
Epidermal Growth Factor Receptor. The PL solution is to
choose names we like, and to link each unique entity name
to an entry in a generally accepted public database such as
UniProt [18] for proteins, HGNC [19] for genes, HMDB
[20] for metabolites, and PubChem [21] for drugs. Such
links give unambiguous meaning to the names by linking
them to sequence, structure and other properties.

Curation Inference Reasoning

Datums Rules Exploration

Executable
RuleKB

Literature

Figure 1. From data to models in PL.

Such names identify reference entities. In a signal trans-
duction model we need to represent instances / occurrences
of entities. For proteins, these are characterized by attributes
such as post translational modifications (PTMs) and loca-
tion. PTMs include binding to small molecules such as phos-
phorylation or acetylation, and cleavage. A protein may need
to be is a specific state (active) to carry out its function, and
activity may in turn rely on presence or absence of specific
PTMs or binding partners. Location can be a compartment
or organelle within a cell. It can also specify where in the
compartment or be external to the cell. Locations can also
be ephemeral, for example the evolving complex formed
by a group of proteins attracted to an activated receptor to
interact and propagate the signal.

A signal transduction pathway is a (partially ordered)
collection of signaling event, each representing a local pro-
cess. Examples include: ligand binds receptor; activation
of an enzyme to initiate another process; translocation—
between compartments, or attraction to an ephemeral loca-
tion; addition or removal of a modifier (phosphate, acetyl
group . . .), exchange of GDP for GTP; or binding to scaf-
fold. These events may be spontaneous, but more likely
require help, for example from an enzyme, or from scaffold
proteins that are bringing the reactants together.

4.1. PL from 1k feet

As shown in Figure 1, Pathway Logic models are
founded on two formal knowledge bases: a curated datum
knowledge base (DKB), and a rules knowledge base (RKB),
that share a controlled vocabulary formalized in Maude. A
datum formalizes an experimental observation of the state
or location of protein or other biomolecule (RNA, Lipids,
. . .) either in some well-defined experimental condition, or
a change in response to some signal or perturbation [22].

Signaling events are formalized as rewrite rules. They
are generally inferred from datums, although rule sets can
also be curated from review articles and text books, or
simply hypothesized. A rule contains terms representing the
change (before and after state) as well as terms representing
the biological context in which the change takes place. A
rule may be parametric, containing variables that can be
instantiated in multiple ways to give different rule instances
usable in different contexts.

The RKB can be thought of as a global model. Exe-
cutable models of specific situations are generated by spec-
ifying initial conditions and constraints, formalized using
a notion of dish (as in Petri dish). A dish can be thought
of as representing an experimental setup: cell type, growth
conditions, and treatments or other perturbations. The cell
type and growth conditions are represented by specifying
which proteins and other biomolecules are present, their
location, and their modification and/or activity state. Given
a dish and an RKB, the symbolic reasoning and abstraction
techniques of Section 2 can be used to infer a minimal set
of rule instances that cover all situations reachable from the
initial state. The resulting concrete rule set naturally forms
a network, linking rules by shared output/input elements.

The PL STM consists of rules concerning response to
over 35 different stimuli (including Egf, IL1, Ngf, Tnf, Tgfb
. . .) as well as common rules that formalize local changes
independent of a particular stimulus. The Dishes (one for
each stimulus), Controlled vocabulary, and Rules can be
exported as JSON for sharing with other tools or importing
into a Mongo DB for traditional database type searches. A
particular model (dishnet) can be exported in SBML format
or APPN (for Petri Net tools). A model together with a
reachability property can be exported to the language of
LoLA [23] for efficient model checking. The PL system
uses this to find execution pathways as counter-examples to
claims that a given state can not be reached.

The PL DKB currently contains over 42k entries, and
can be searched via a biologist friendly web form [24].
The published RKB has 1575 rule instances (generated from
dishes for each of the stimuli) connecting 1378 occurrences.
The development RKB, which grows daily, is much larger.
The DKB, PL models, tools, and tutorials are available from
the PL website [25].

4.2. Pathway Logic representation of state

In Pathway Logic, model elements and state are rep-
resented using a controlled vocabulary that is specified
as a functional module in Maude. There is a core vo-
cabulary shared by all PL knowledge bases/models and
a model specific vocabulary that declares specific model
element (proteins, chemicals, modifications, locations, . . .).
The PL controlled vocabulary has several roles: organizing
concepts via a sort/type hierarchy; determining legal/well-
formed/meaningful terms by specifying constants and typed
term constructors, and giving meaning to constants by pro-
viding metadata linking constant symbols to external refer-
ences (Uniprot, HGNC, HMDB, . . .).

Entities. The top level sorts of entities are collected in the
sort Thing which can be either a SimpleThing or a
Complex, formed from simple things by repeated appli-
cation of a commutative pairing operation. The following
specifies the partial order on subsorts of Thing.

sorts BProteint Protein Composite Gene
Chemical Complex .

sorts SimpleThing Thing .

subsort BProtein < Protein .
subsort Protein Gene Composite Chemical

< SimpleThing .
subsort Complex SimpleThing < Thing .

The sort BProtein represents gene products, while
Protein extends this to include modified or cleaved ver-
sions. Individual entities are specified by op declarations
that give the name, the least sort, and associated metadata.
An example is the declaration of the protein Hras The
sort hierarchy is refined to include a sort RasS for the Ras
family, and a sort HrasSort for the specific protein Hras

sort HrasSort .
subsort HrasSort < RasS < BProtein .

op Hras : -> HrasSort [ctor metadata (
(spnumber P01112) (hugosym HRAS)
(synonyms "GTPase HRas"

"Transforming protein p21"
"Harvey murine sarcoma virus oncogene"
"H-Ras-1" "c-H-ras"
"HRAS1" "RASH1"
"RASH_HUMAN"))] .

In Maude, metadata is a string. In PL we constraint the
string to represent a list of key value pairs. Each protein is
required to have an “spnumber” key with associated value
the UniProt accession for the named protein. “hugosym”
is the HGNC name for the gene coding for this protein.
Although not required, there is generally a “synonyms”
entry. This is useful to help model users understand the
model using familiar terms. It can also help when reading
a new paper, to disambiguate a name used in the text.

Protein families are groups of proteins that are indis-
tinguishable for some purposes, usually because antibodies
used to identify a protein bind to all members of the family.
In PL we can give a name to a generic family member, and
link this name with the names of actual family members, as
in the following declaration of the RasS family representa-
tive Rass.

op Rass : -> RasS [ctor metadata (
(category Family) (members Hras Kras Nras))] .

A group of proteins might be considered a family because
the members are believed to have similar function and thus
experimental results for one member might be assumed to
hold for other members. In PL we introduce sorts for such
group and use variables to represent members of the sort.
Thus the variable ras:RasS can also be used to represent
elements of the Ras family (RasS sort). Using a generic
name in a rule entails a higher level of abstraction, forcing
family members to be uniformly treated the same. Using a
variable in a rule allows the modeler to say that the rule
applies to any family member, but allows other rules in
the same model to make distinctions by naming specific
proteins.

The sort Composite represents a class of named
complexes. Historically these complexes were identified by
enzymatic function, and only later it was discovered the
entities were not single proteins, but complexes with several

proteins that function together. A well-known example is
Pi3k:

op Pi3k : -> Composite [ctor metadata "(
(subunits Pik3cs Pik3rs)
(comment "PI3 Kinase is a heterodimer of:"
"a p110 catalytic subunit:"

"Pik3ca, Pik3cb, Pik3cd or Pik3cg"
"a p85 regulatory subunit:"

"Pik3r1, Pik3r2, or Pik3r3"))] .

As the Pi3k example illustrates, composites have a defined
structure of subunits playing different roles, but each subunit
rule may be filled by any member of a family, not just a
single protein. Thus there are 12 possible concrete forms of
Pi3K!

Occurrences. A PL model state is multi-set of occurrences
of entities (proteins, chemicals, genes, . . .). An occurrence
specifies an entity, its modifications and/or activity state, and
its location. Modifications are specified using the elements
of the sort Modification, collected into multisets (sort
ModSet), and the syntax [entity - modset] accord-
ing to the following declarations.1

sorts Site Modification ModSet .
subsort Modification < ModSet .
op __ : AminoAcid Nat -> Site .
op [_-_] : Protein ModSet -> Protein

[right id: none] .
op [_-_] : Gene ModSet -> Gene

[right id: none] .

Modification by phosphorylation is represented at different
levels of abstraction

op phos : -> Modification .
*** phosphorylated

op phos : Site -> Modification .
*** phosphorylated on a specific site

op Yphos : -> Modification .
*** phosphorylated on Tyrosine

The reasons for having multiple levels of detail are (a) to
be able to express the level of detail provided by a given
experimental design; and (b) to find a common level of detail
in a collection of rules so they can function together. An
experiment may use an antibody for a specific phospho-
rylation site of Gab1, for example tyrosine 627 ([Gab1
- Y 627]), but we may want to abstract this to simply
phosphorylation on a tyrosine ([Gab1 - Yphos]) to fit
the general level of detail in a developing model.

Pathway Logic treats binding to GDP or GTP as a mod-
ification rather than complex formation. Although biochem-
ically less accurate, it better reflects the role in signalling.

op GDP : -> Modification .
*** bound to GDP (Guanosine diphosphate)

op GTP : -> Modification .
*** bound to GTP (Guanosine triphosphate)

The binding of Hras to GTP is represented as [Hras -
GTP] rather than as a complex Hras : GTP.

1. The underscores are argument placeholders in Maude’s mixfix syntax.

PL uses two kinds of location: the usual cellular lo-
cations (sort LocName), and ephemeral locations (subsort
CompName). The latter represent groups of proteins that
come together in the process of signal transmission. We
name the location according to the entity that initiates the
formation. For example EgfRC is the Egf receptor complex
that forms around an Egf receptor after it binds to Egf and
auto phosphorylates.

sorts LocName CompName .
subsort CompName < LocName .

op CLm : -> LocName [ctor metadata
((definition "Plasma Membrane"))] .

op CLi : -> LocName [ctor metadata
((definition "Stuck to the inside" "

of the plasma membrane"))] .
op EgfRC : -> CompName [ctor] .

*** EgfR complex

It is important to distinguish between an entity as a
reference to a class of biomolecules, and an instance of an
entity participating in a signaling or other cellular process.
We call the latter an occurrence. Formally an occurrence
consists of a Thing (a possibly modified entity) and a
LocName.

sorts Occ Occs .
subsort Occ < Occs .
op <_‘,_> : Thing LocName -> Occ .

In PL, cellular states can be represented as a multiset
of locations or as a multiset of occurrences. In the location
form entities are syntactically grouped by location, making
it easier for a curator to develop rules. The occurrence form
(obtained by distributing the location name across the things
in the location), has a direct mapping to Petri nets, which we
use for analysis, and simplifies computational processing.
We will use the only latter here to avoid confusion.

4.3. Pathway Logic representation of rules.

PL rules describe local change and specify the required
context. The rule label gives a hint as to what happens. In
addition rules must be annotated with evidence which could
be a datum page, literature citations, pubmed ids, or simply
curator notes. In the STM model we require rules to be
linked to supporting evidence in the form of datums. The
following is the STM rule for activating Hras (exchange of
GDT for GTP) in response to Egf.

rl[529.Hras.irt.Egf]:
< Egf : [EgfR - Yphos],EgfRC >
< [gab:GabS - Yphos],EgfRC >
< [gef:HrasGEF - Yphos],EgfRC >
< Pi3k,EgfRC >
< [Shp2 - Yphos],EgfRC >
< [Hras - GDP],CLi >
=>
< Egf : [EgfR - Yphos],EgfRC >
< [gab:GabS - Yphos],EgfRC >
< [gef:HrasGEF - Yphos],EgfRC >
< Pi3k,EgfRC >

xHras[tAb] GTP-association[BDPD] is increased irt Egf (5 min)

Subject Assay Change Treatment

S
Protein

H
andle

N
am

e

D
etection

M
ethod

Treatm
ent

Times

The Elements of a Datum

source: 15574420-Fig-5a

Source

PM
ID

Figure

inhibited by: xGab1(Y627F) [substitution]

Extra

Entity

M
utation

Type

M
ode

cells: VERO<xHras><xGab1> in BMLS

Environment

C
ells

M
edium

C
ell

M
utation

C
ell

M
utation

Figure 2. Datum elements.

< [Shp2 - Yphos],EgfRC >
< [Hras - GTP],CLi >
***evidence/Egf-Evidence/Hras.irt.Egf.529.txt

Symbolic rules represent a family of rule instances using
sorted variables. g:GabS is a variable standing for Gab1
or Gab2, gef:HrasGEF is a variable for any of several
HrasGEFs (enzymes to exchange GDP for GTP).

How did we arrive at the Hras rule?. As already men-
tioned, STM rules are inferred from experimental findings.
These are collected using a formal data structure call da-
tums, that capture features of an experiment (design and
outcomes) that are needed to interpret the result [22]. Da-
tums are available in text (readable) or json (computable).
The datum shown in Figure 2 below says that the amount
of GTP bound to Hras is increased after addition of Egf
(Epidermal Growth Factor) to VERO cells for 5 minutes.
The ‘first line of a datum captures the change being observed
and the treatment causing the change. Each change type and
treatment is mapped to a a rule pattern. The rule pattern for
the datum of figure 2 is

EgfTC C < [G - gmods act], Lg >
< [Hras - GDP pmods], CLi >

=>
EgfTC C < [G - gmods act], Lg >

< [Hras - GTP pmods], CLi >

Here EgfTC is the treatment complex formed when
Egf binds to the Egf Receptor, < Egf : [EgfR -
Yphos],EgfRC >. G is a variable ranging over Hras
GEFs, representing the general knowledge that exchange of
GDP for GTP requires a GEF (Guanine exchange factor).
gmods, pmods are variables indicating that we don’t know
the exact state of G or Hras. C is a variable standing for
requirements to be determined.

The rules of the STM KB are inferred by a biologist
using additional information from datums with the same
pattern to determine likely values of the variables. For
example, from the datum shown in figure 2 a requirement
for Gab1 can be hypothesized, since mutation of the Gab1
protein (xGab1(Y627F)) inhibits the reaction. In fact this
tells us that the tyrosine site 627 is important for the role
that Gab1 plays, and leads the biologist to hypothesize that
[Gab1 - Yphos] is required.

Figure 3. PL model of Hras response to Egf. Ovals represent occurrences
(the darker ones are the initial state) and rectangles represent rules. The
top rule is the binding of Egf to EgfR, the bottom occurrence is the goal,
Hras loaded with GTP. Solid arrows connect occurrences that change to
the transforming rule, dashed arrows connect occurrences that are required
context to a rule.

In [22] we report progress towards automating this
process. The idea is to formalize the rule pattern and the
constraints on the pattern variables entailed by datum ele-
ments. Given the constraints generated by a set of datums, an
answerset programming tool is used to find minimal models,
i.e. rules with the variables instantiated to include only
provable requirements. This paper also gives more detail
on the derivation of the Hras rule.

4.4. Visualization and Analysis

An important part of the PL system is the Pathway
Logic Assistant (PLA), which is a tool to visualize, browse,
and analyse PL models. Recall that specific models are
obtained by specifiying an initial state, called a Dish (as in
Petri dish), and using forward collection to collect relevant
rule instances from the RKB. The result is refered to as a
dishnet. Figure 3 shows the graphical representation of the
PL model of Hras activation in response to Egf treatment.
It was derived in PLA from the Egf dishnet (which is much
too large to put in a static figure) by making < [Hras
- GTP], CLi > a goal and using backward collection
to compute the relevant subnet. This subnet contains all
execution pathways leading to the presence of < [Hras
- GTP], CLi >. The initial state of the Hras subnet,
HrasDish, defined as follows.

sort Dish .
op PD : Occs -> Dish [ctor] .
op HrasDish : -> Dish .
eq HrasDish =
PD(< Egf,XOut > < EgfR,EgfRC >

< Gnai1,CLi > < Gnai3, CLi >
< [Hras - GDP],CLi > < Src,CLi >
< Gab1,CLc > < Gab2,CLc > < Grb2,CLc >
< Pi3k,CLc > < RasGrp3,CLc >
< Shp2,CLc > < Sos1,CLc >)

One can think of this dish as modeling an experimental setup
to study activation of Hras in response to treatment with Egf.
The dish includes two instances, Sos1 and RasGrp3, of
the gef:HrasGEF variable, and two instances, Gab1 and
Gab2, of the gab:GabS variable. The four rectangles at the

bottom of the Hras net are instances of the Hras rule given
above. They correspond to use of different combinations of
choices of th GEF and GabS variables.

Within a subnet one can ask for all the the execution
pathways leading to the goal, using an inference algorithm
described in [26]. In the Hras subnet there are six distinct
pathways. Knowing all the pathways one can compute prop-
erties such as single and double knockouts or essential rules.
For example the pair of HrasGEFs, [RasGrp3,Sos1],
forms a double knockout. This means that removing both
from the initial state makes the goal unreachable, while if
only one of the pair is removed, the goal can be reached
using the other as the required GEF.

Clicking on an occurence node gives access to the
associated metadata with live links to external databases.
Clicking on a rule node gives access to the underlying
evidence, which for STM models is a page of datums.

More impressive is the subnet for TEY phosphory-
lation of Erks (the representative for the Erk family
Erk1,Erk2), again too large for a static figure. There are
more than 1440 different execution pathways for this goal.
This is due to multiple symbolic rules with variables that
can be instantiated independently in two or more ways.

It is easy to find pathways for goals such as < [Erks
- phos(TEY)], CLc >. But, how do we represent the
fact that this phosphorylation state is transient? That is
we want to find a pathway in which Erks -> [Erks
- phos(TEY)] -> Erks. Clearly not a simple reach-
ability problem. It can be represented by a temporal logic
formula expressing that a state with Erks (not phospho-
rylated) follows a state with [Erks - phos(TEY)],
(and that the phosphorylated state is reachable). However,
model-checkers for such formulae do not return counter-
examples corresponding to pathways, if they manage to
return a counter-example at all. This is because in the
general case the notion of counter-example is not well-
defined. We can solve the problem by keeping a little history
as part of the modification of a protein (at the risk of
increasing the state space). For example a rule dephospho-
rylating [Erks - phos(TEY)] would produce [Erks
- not(phos(TEY))]. By enforcing some constraints on
when not can appear in a modification, we can capture the
transient nature of many post translational modifications.

4.5. Beyond STM

In addition to STM, the PL system has also been used
to curate models of protease signaling in bacteria, metabolic
processes in Mycobacterium tuberculosis (Mtb), glycosy-
lation pathways, and response of the immune system to
a generic pathogen. The protease and metabolic models
use basically the same kinds of entity and state as the
STM model. The difference is in the expertise needed to
understand the relevant experiments to infer signaling or
reaction rules.

Glycosylation is the process by which a carbohydrate
(glycan) is covalently attached to a target macromolecule,
typically a protein or lipid. Glycosylation plays an important

role in protein folding and stability as well as mediating
cell-cell communication. The PL glycosylation knowledge
base was curated starting with the KEGG [27] collection of
maps concerning glycan biosynthesis, and using additional
literature resources to refine the rules. Glycans are synthe-
sized by an incremental process of adding component sugar
moieties to a growing carbohydrate. Each step is formalized
as a PL rule which is linked to the corresponding KEGG
page. Rules can then be collected into executable models
by defining an initial state, to explore pathways and carry
out insilico/what-if experiments. In order to develop this
model, new sorts of protein were introduced to represent
the carriers of the different types of glycan assembly. Also
a new modification constructor

op glyc : Gcode -> Modification .

was introduced to model the attachment of a glycan as a
modification. Gcode is the sort of KEGG codes for glycans
and each Gcode is linked to the corresponding KEGG
page. For visualization each Gcode is mapped to an icon
representing the construction of the glycan from basic sugar
entities according to a standard representation system [28].

The immune system model was curated from the
Janeway Immunology text book [29] as an exercise in trying
to understand how the immune system works. In contrast to
signaling and metabolism where the occurrence of proteins
and chemicals are the elements that make up the system
state and are the subject of rules for change, in the immune
system model cells are the main players. Thus we introduce
a sort Cell as a subsort of SimpleThing and subsorts
for different types of immune system cell such as Dendritic
cells (D-cells, sort DC). In analogy to introducing constants
to name a generic member of a protein family (for example
Ras, or Erk) we introduce constants to name generic cells
of different sorts. For example

op Mac : -> Cell [ctor] .
*** Tissue Macrophage
op DC1 : -> DC [ctor] .
*** a DC that secretes IL12 and Ifng
*** when bound to TcR
op DC2 : -> DC [ctor] .
*** a DC that secretes IL4
*** when bound to TcR

Activity modifications are introduced to capture the informal
concepts used by immunologists. For example a mature
Dendritic cell is one that has recognized a pathogen and
is capable of presenting an associated antigen to a T-cell.
An active macrophage is capable of killing intracellular
pathogens. Other relevant aspects of an immune system cell
include proteins being expressed on the cell surface, and
proteins (cytokines and chemokines) being secreted. These
are formalized by injecting proteins into the appropriate
modification subsort. Thus proteins become modifiers rather
than modifiees.

Locations are now locations within the organism. Some
examples are

op BLD : -> LocName [ctor metadata
((definition "Blood stream"))] .

op PTS : -> LocName [ctor metadata

((definition "Peripheral tissue"))] .
op LN : -> LocName [ctor metadata

((definition "Lymph node"))] .

Finally, here is an example rule for macrophage response to
meeting a pathogen.

rl[014.Mac.exposed.to.Path]:
< [Mac - macmods resting], PTS >
< Path, PTS >
=>
< [Mac - macmods presenting

sTnf xMhcI* xMhcII* xB7], PTS >
< Path, PTS >

***(The expression of MhcII and B7 is

induced by ingestion of Pathogen [p340].
The secretion of Tnf is induced by
Lps-bearing pathogens [p83].)

Even with the partial text book model of the immune system
we can find different execution pathways in response to
detection of a pathogen: the pathogen is engulfed by a
macrophage and killed; the macrophage fails to activate and
dies; or neutrophils are activated and kill the pathogen.

The takeaway is that the basic structure of occurrence
being a located modifiable entity can be instantiated to
model a wide variety of biological processes. All one needs
is data and a biologist that understands the data!

Except for the immune system model, these models are
available from the PL website. The immune system model,
still in its infancy, is not published on the website, but can
be made available upon request.

5. Conclusion

We presented a perspective on the process of build-
ing models, and on formal representation using executable
symbolic models. We then described the Pathway Logic
(PL) modeling approach and its formal representation sys-
tem based on rewriting logic. Distinguishing features of
PL include formal representation of experimental evidence,
formal links from symbols representing biomolecules to ex-
ternal reference resources, and links from rules to supporting
evidence. The PL approach focuses on curation of symbolic
rules representing local signaling events and the conditions
under which they occur. Specific executable models are
derived from a rule knowledge base by specifying the initial
state, for example a representation of an experiment setup.

Ongoing challenges include increased automation of the
process of collecting datums and inferring rules, and then
finding methods to scale symbolic analysis to larger models
and more complex questions.

Acknowledgments

The author would like to thank the workshop organizers
for inviting this paper. Also, thanks to the Pathway Logic
team and especially Merrill Knapp for all their contributions
to the Pathway Logic system. The work has been partially
supported by funding from NIH, NSF, and DARPA.

References

[1] J. Fisher and T. A. Henzinger, “Executable cell biology,” Nature
Biotechnology, vol. 25, no. 11, 2007.

[2] C. Talcott and D. L. Dill, “Multiple representations of biological
processes,” Transactions on Computational Systems Biology, 2006.

[3] J. Meseguer, “Conditional Rewriting Logic as a Unified Model of
Concurrency,” Theoretical Computer Science, vol. 96, no. 1, pp. 73–
155, 1992.

[4] ——, “Twenty years of rewriting logic,” J. Logic Algebraic Program,
vol. 81, no. 7-8, pp. 721–781, 2012.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott, All About Maude: A High-Performance Logical
Framework. Springer, 2007.

[6] Maude-Team, “The Maude System,” 2016, accessed: 2016-11-10.
[Online]. Available: http://maude.cs.uiuc.edu

[7] C. A. Petri, “Introduction to general net theory.” in Net Theory
and Applications, Proceedings of the Advanced Course on General
Net Theory of Processes and Systems, Hamburg, 1979, ser. LNCS,
W. Brauer, Ed., vol. 84. Berlin, Heidelberg, New York: Springer-
Verlag, 1980, pp. 1–19.

[8] D. Gilbert, M. Heiner, and S. Lehrack, “A Unifying Framework for
Modelling and Analysing Biochemical Pathways Using Petri Nets,” in
Proc. CMSB 2007. LNCS/LNBI 4695, Springer, 2007, pp. 200–216.

[9] C. Chaouiya, “Petri net modelling of biological networks,” Briefings
in Bioinformatics, vol. 8, pp. 210–219, 2007.

[10] F. Fages and S. Soliman, “Formal cell biology in BIOCHAM,” in 8th
Int. School on Formal Methods for the Design of Computer, Com-
munication and Software Systems: Computational Systems Biology
SFM08, ser. LNCS, M. Bernardo, P. Degano, and G. Zavattaro, Eds.
Springer, 2008, vol. 5016, pp. 54–80.

[11] B. team, “The biochemical abstract machine BIOCHAM,” 2016,
accessed: 2016-11-08. [Online]. Available: https://lifeware.inria.fr/
biocham/

[12] V. Danos, J. Feret, W. Fontanta, R. Harmer, and J. Krivine, “Rule
based modeling of biological signaling,” in Proceedings of CON-
CUR, ser. LNCS, L. Caires and V. T. Vasconcelos, Eds., vol. 4703.
Springer, 2007, pp. 17–41.

[13] K. Team, “KaSim development homepage,” 2016, accessed: 2016-
11-10. [Online]. Available: http://dev.executableknowledge.org

[14] J. R. Faeder, M. L. Blinov, and W. S. Hlavacek, “Rule-based modeling
of biochemical systems with BioNetGen,” Methods in Molecular
Biology, vol. 500, pp. 113–167, 2009.

[15] F. Ciocchetta and J. Hillston, “Bio-PEPA: a framework for the mod-
elling and analysis of biochemical networks,” Theoretical Computer
Science, vol. 410, no. 33-34, pp. 3065–3084, 2009.

[16] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifica-
tion of probabilistic real-time systems,” in Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), ser. LNCS,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011,
pp. 585–591.

[17] J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A.
Lauffenburger, S. Klamt, and P. K. Sorger, “Discrete logic modelling
as a means to link protein signalling networks with functional analysis
of mammalian signal transduction,” Molecular systems biology, vol. 5,
no. 1, 2009.

[18] “UniProt consortium,” 2016, accessed: 2016-11-14. [Online].
Available: http://www.uniprot.org

[19] “Hugo gene nomenclature committee,” 2016, accessed: 2016-11-14.
[Online]. Available: http://www.genenames.org

[20] “The human metabolome database,” 2016, accessed: 2016-11-14.
[Online]. Available: http://www.hmdb.ca

[21] “Pubchem resource for information on biological activites of
small molecules,” 2016, accessed: 2016-11-16. [Online]. Available:
http://pubchem.ncbi.nlm.nih.gov

[22] V. Nigam, R. Donaldson, M. Knapp, T. McCarthy, and C. L. Tal-
cott, “Inferring executable models from formalized experimental ev-
idence,” in 13th Computational Methods in Systems Biology, ser.
Lecture Notes in Computer Science, O. F. Roux and J. Bourdon,
Eds., vol. 9308. Springer, 2015, pp. 90–103.

[23] K. Schmidt, “LoLA: A Low Level Analyser,” in Application and
Theory of Petri Nets, 21st International Conference (ICATPN 2000),
ser. LNCS, M. Nielsen and D. Simpson, Eds., vol. 1825. Springer-
Verlag, 2000, pp. 465–474.

[24] “PLA Datums,” 2016, accessed: 2016-11-10. [Online]. Available:
http://pl.csl.sri.com/datumkb.html

[25] “Pathway Logic,” 2016, accessed: 2016-11-10. [Online]. Available:
http://pl.csl.sri.com

[26] R. Donaldson, C. Talcott, M. Knapp, and M. Calder, “Understanding
signalling networks as collections of signal transduction pathways,”
in Computational Methods in Systems Biology, 2010.

[27] “KEGG: Kyoto Encyclopedia of Genes and Genomes,” 2016,
accessed: 2016-11-14. [Online]. Available: http://www.genome.jp/
kegg/

[28] “Symbol and text nomenclature for representation of
glycan structure nomenclature,” 2016, accessed: 2016-11-
15. [Online]. Available: http://www.functionalglycomics.org/static/
consortium/Nomenclature.shtml

[29] K. Murphy and C. Weaver, Janeway’s Immunobiology, 9th Edition.
Garland Science, 2016.

