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IntroDuctIon
Metabolic network reconstruction has become an indispensable 
tool for studying the systems biology of metabolism1–7. The number 
of organisms for which metabolic reconstructions have been cre-
ated is increasing at a pace similar to whole genome sequencing. 
However, the quality of metabolic reconstructions differs consider-
ably, which is partially caused by varying amounts of available data 
for the target organisms and also by a missing standard operating 
procedure that describes the reconstruction process in detail. This 
protocol details a procedure by which a quality-controlled quality- 
assured reconstruction can be built to ensure high quality and 
comparability between reconstructions. In particular, the protocol 
points out data that are necessary for the reconstruction process 
and that should accompany reconstructions. Moreover, standard 
tests are presented, which are necessary to verify functionality and 
applicability of reconstruction-derived metabolic models. Finally, 
this protocol presents strategies to debug non- or malfunctioning 
models. Although the reconstruction process has been reviewed 
conceptually by numerous groups8–11 and a good general overview 
of the necessary data and steps is available, no detailed description 
of the reconstruction, debugging and iterative validation process  
has been published. This protocol seeks to make this process explicit 
and generally available.

The presented protocol describes the procedure necessary to 
reconstruct metabolic networks intended to be used for computa-
tional modeling, including the constraint-based reconstruction and 
analysis (COBRA) approach11,12 (see Box 1 for definition). These net-
work reconstructions, and in silico models, are created in a bottom–
up manner based on genomic and bibliomic data and thus represent 
a biochemical, genetic and genomic (BiGG) knowledge base for the 
target organism9. These BiGG reconstructions can be converted into 
mathematical models and their systems and physiological properties  
can be determined. For example, they can be used to simulate 
the maximal growth of a cell in a given environmental condition 
using flux-balance analysis (FBA)13,14. In contrast, the generation of  
networks derived from top-down approaches (high-throughput 

data-based interference of component interactions) is not discussed  
here, as they do not generally result in functional, mathematical 
models.

The metabolic reconstruction process described herein is  
usually very labor and time intensive, spanning from 6 months for 
well-studied, medium-sized bacterial genomes, to 2 years (and six 
people) for the metabolic reconstruction of human metabolism15. 
Often, the reconstruction process is iterative, as demonstrated by 
the metabolic network of Escherichia coli, whose reconstruction has 
been expanded and refined over the last 19 years7. As the number of 
reconstructed organisms increases, the need to find automated, or 
at least semi-automated, ways to reconstruct metabolic networks 
straight from the genome annotation is growing. Despite the grow-
ing experience and knowledge, to date, we are still not able to com-
pletely automatically reconstruct high-quality metabolic networks 
that can be used as predictive models. Recent reviews highlight 
current problems with genome annotations and databases, which 
make automated reconstructions challenging and thus they require 
manual evaluation8,9. Organism-specific features, such as substrate 
and cofactor utilization of enzymes, intracellular pH and reac-
tion directionality remain problematic and thus require manual  
evaluation. However, some organism-specific databases and 
approaches exist, which can be used for automation. We describe 
here the manual reconstruction process in detail.

A limited number of software tools and packages are available 
(freely and commercially), which aim at assisting and facilitating 
the reconstruction process (Table 1). This protocol can, in princi-
ple, be combined with those reconstruction tools. For generality, 
we present the entire procedure using a spreadsheet, namely Excel 
workbook (Microsoft), and a numeric computation and visualiza-
tion software package, namely Matlab (Mathwork, Natwick, MA, 
USA). Free spreadsheets (e.g., OpenOffice and Google Docs) could 
be used instead of the listed spreadsheet. Alternatively, MySQL 
databases may be used, as they are very helpful in structuring and 
tracking data. Matlab was also used to encode the COBRA Toolbox, 
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taBle 1 | Data sources frequently used for metabolic reconstructions.

name link comment

Genome databases

  Comprehensive Microbial 
Resource (CMR)

http://cmr.jcvi.org/cgi-bin/CMR/CmrHomePage.cgi

  Genomes OnLine 
Database (GOLD)

http://www.genomesonline.org/

 TIGR http://www.tigr.org/db.shtml

 NCBI Entrez Gene http://www.ncbi.nlm.nih.gov/sites/entrez

 SEED database32 http://theseed.uchicago.edu/FIG/index.cgi Comparative genomics tool

Biochemical databases

 KEGG41 http://www.genome.jp/kegg/

 BRENDA42 http://www.brenda-enzymes.info/

 Transport DB89 http://www.membranetransport.org/

 PubChem86 http://pubchem.ncbi.nlm.nih.gov/

  Transport Classification  
Database (TCDB)

http://www.tcdb.org/ TCDB is a curated database of factual information 
from over 10,000 published references

 pKa Plugin http://www.chemaxon.com/product/pka.html Free for academic users

 pKa DB http://www.acdlabs.com/products/phys_chem_lab/ 
pka/

Commercial software package to determine  
acid–base ionization/dissociation constant, pKa

Organism-specific databases

 Ecocyc43 http://ecocyc.org/ Escherichia coli database

 PyloriGene37 http://genolist.pasteur.fr/PyloriGene Helicobacter pylori database

 Gene Cards http://www.genecards.org/ Human gene database

Protein localization databases

 PSORT47 http://www.psort.org/psortb/ Support vector machine (SVM) based

 PA-SUB48 http://www.cs.ualberta.ca/~bioinfo/PA/Sub/ Proteome Analyst Specialized Subcellular 
Localization Server (SVM based)

Bio-numbers

  CyberCell Database 
(CCDB)88

http://redpoll.pharmacy.ualberta.ca/CCDB/cgi-bin/ 
STAT_NEW.cgi

 B10NUMB3R5 http://bionumbers.hms.harvard.edu/

Available reconstruction software packages

 Simpheny http://www.genomatica.com/technology/ 
technologySuite.html

Commercial software

COBRA simulation environments

  CellNetAnalyzer90/
FluxAnalyzer91

http://www.mpi-magdeburg.mpg.de/projects/cna/ 
cna.html

Matlab is required

 COBRA Toolbox16 http://systemsbiology.ucsd.edu/Downloads/Cobra_ 
Toolbox

Matlab is required

 FluxExplorer92

 MetaFluxNet93,94 http://mbel.kaist.ac.kr/lab/mfn/ Standalone package
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which is a suite of COBRA functions com-
monly used for simulations16. This Toolbox 
was extended to facilitate the reconstruc-
tion, debugging and manual curation proc-
ess described herein.

This protocol describes in detail the  
process to generate metabolic reconstruc-
tions applicable for representatives of all 
domains of life. The process of reconstruc-
ting prokaryotic and eukaryotic metabolic 
networks is, in principle, identical, although 
eukaryote reconstructions are more challen-
ging because of the size of genomes, cover-
age of knowledge and the multitude of 
cellular compartments. Specific properties 
and pitfalls are highlighted.

The described reconstruction and debug-
ging process requires organism-specific 
information. The minimum information 
includes the genome sequence, from which 
key metabolic functions can be obtained, 
and physiological data, such as growth con-
ditions, which allow the comparison of model prediction to refine 
the network’s content. In general, the more information about 
physiology, biochemistry and genetics is available for the target 
organism, the better the predictive capacity of the models. This 
property becomes obvious considering that the network evaluation 
and validation process relies on comparing predicted phenotypes 
(e.g., growth rate) with experimental observations. Additional  
cellular objectives (other than maximal growth rate) may be  
compared with experimental data but they are not detailed in this 
protocol15,17–20.

Although this protocol presents the reconstruction process in 
terms of metabolic networks, the same approach can, and has 
been, applied for reconstructing signaling21,22 and transcription/
translation networks23. Regulatory networks have not yet been 
constructed in a fully stoichiometric manner, although a pseudo-
stoichiometric approach has been proposed24,25. The reconstruction 
process for these networks is not as well established as for metabolic 
networks and is thus still subject to active research.

A myriad of data sources are used during the reconstruction 
process rendering metabolic network reconstructions as knowl-
edge bases, which summarize and structure the available BiGG 
knowledge about the target organism. Frequently used organism- 
unspecific, and some of the organism-specific, resources are 
listed in Table 1. It should be noted that the quality and wealth 
of organism-specific information will directly affect the quality 
and coverage of the metabolic reconstruction. Great resources 
are organism-specific books that have been published for a grow-
ing number of organisms26–29. In cases where organism-specific  
information is scarce, data from phylogenic neighbors may be of 
great help. It is important to ensure that, in cases where the recon-
struction relies extensively on relative information, the overall 
behavior of the model matches the target organism. This assur-
ance can be achieved by carefully comparing the predictions with 
experimental and physiological data, such as growth conditions, 
secretion products and knockout phenotypes.

The resulting knowledge bases can be queried, used for mapping  
experimental data (e.g., gene expression, proteomic, fluxomic 

and metabolomic data) and converted into a mathematical  
format to investigate metabolic capabilities and generate new  
biological hypotheses. The multitude of possible applications 
of BiGG knowledge bases distinguishes them from automated  
efforts. By introducing standards in content and format with this 
protocol it will soon be possible to compare metabolic reconstruc-
tions between different organisms, which will further enhance  
our understanding of the evolutionary processes and may provide 
a complementary approach to comparative genomics.

Experimental design
The metabolic network reconstruction process described herein 
consists of four major stages followed by its prospective use in  
Stage 5 (Fig. 1). The order of steps in the different stages is a 
recommendation and may be altered within each stage, and with  
some limitations between stages, as long as they are completed. 
The quality of the reconstruction is generally ensured by carrying 
out all the steps.

Stage 1: Creating a draft reconstruction. It is to be noted that  
the creation of a draft reconstruction and the manual reconstruc-
tion refinement (next stage) may be combined for bacterial recons-
tructions with the main emphasis on reconstruction refinement.

The first stage consists of the generation of a draft reconstruc-
tion based on the genome annotation of the target organism and 
biochemical databases. This draft reconstruction, or automated 
reconstruction, is thus a collection of genome-encoded metabolic 
functions, some of which may be falsely included even though  
others are missing (e.g., because of missing, wrong or incom-
plete annotations). Software tools such as Pathway tools30 or 
metaSHARK31 can be used for the generation of draft reconstruc-
tion, but they do not replace the manual curation.

Genome annotation (Step 1): Genomic information is impor-
tant to unambiguously define the gene properties with respect  
to the organism’s genome, as well as to allow data mapping (e.g., 
gene expression) in subsequent studies. As the draft reconstruc-
tion, and to some extent the curated reconstruction, relies mainly  

1. Draft reconstruction 

1| Obtain genome annotation. 
2| Identify candidate metabolic functions. 
3| Obtain candidate metabolic reactions.
4| Assemble draft reconstruction. 
5| Collect experimental data.

2. Refinement of reconstruction
6| Determine and verify substrate and cofactor usage.
7| Obtain neutral formula for each metabolite.
8| Determine the charged formula.
9| Calculate reaction stoichiometry.
10| Determine reaction directionality.
11| Add information for gene and reaction localization.
12| Add subsystems information.
13| Verify gene−protein-reaction association.
14| Add metabolite identifier.
15| Determine and add confidence score.
16| Add references and notes.
17| Flag information from other organisms.
18| Repeat Steps 6 to 17 for all genes.
19| Add spontaneous reactions to the reconstruction.
20| Add extracellular and periplasmic transport reactions.
21| Add exchange reactions.
22| Add intracellular transport reactions.
23| Draw metabolic map (optional).
24−32| Determine biomass composition.
33| Add biomass reaction.
34| Add ATP-maintenance reaction (ATPM).
35| Add demand reactions.
36| Add sink reactions.
37| Determine growth medium requirements.

3. Conversion of reconstruction 
into computable format

38| Initialize the COBRA toolbox.
39| Load reconstruction into Matlab.
40| Verify S matrix.
41| Set objective function. 
42| Set simulation constraints.

4. Network evaluation 
43−44| Test if network is mass-and charge balanced.
45| Identify metabolic dead-ends.
46−48| Perform gap analysis.
49| Add missing exchange reactions to model. 
50| Set exchange constraints for a simulation condition.
51−58| Test for stoichiometrically balanced cycles.
59| Re-compute gap list.
60−65| Test if biomass precursors can be produced in standard medium.
66| Test if biomass precursors can be produced in other growth media.
67−75| Test if the model can produce known secretion products.
76−78| Check for blocked reactions.
79−80| Compute single gene deletion phenotypes.
81−82| Test for known incapabilites of the organism.
83| Compare predicted physiological properties with known properties.
84−87| Test if the model can grow fast enough.
88−94| Test if the model grows too fast.

Data assembly and dissemination
95| Print Matlab model content. 
96| Add gap information to the reconstruction output.

Figure 1 | Overview of the procedure to iteratively reconstruct metabolic networks. In particular, Stages 
2–4 are continuously iterated until model predictions are similar to the phenotypic characteristics of the 
target organism and/or all experimental data for comparison are exhausted.
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on the genome annotation, it is important to download the  
most recent version available to ensure that updates and corrections 
since the genome’s original publication are accounted for. Thus,  
the quality and reliability of the genome annotation is crucial  
to the quality of reconstruction. It should be noted that the  
manual reconstruction refinement tries to identify low-confidence 
gene annotations by retrieving further, experimental evidence 
for the presence of a gene product and its metabolic function. 
The reconstruction assembly and refinement may also require  
re-annotation of genes, but the procedure is not further discussed 
in this protocol. Please refer to the available work and reviews32–36. 
Furthermore, in some cases, the genome-sequencing group created 
an organism-specific database (e.g., for Helicobacter pylori37 and  
E. coli38), which is very valuable during the reconstruction  
process. Table 1 lists some of the commonly used databases for 
genome annotations.

Candidate metabolic functions (Step 2): To obtain the draft 
reconstruction, one can automatically retrieve metabolic genes 
from the genome annotation by using, e.g., key words or gene onto-
logy (GO) catergories39 (see Supplementary Fig. 1). Metabolic reac-
tions catalyzed by the identified gene products can be connected 
with the draft reconstruction by using enzyme commission (E.C.) 
numbers40 and biochemical reaction databases, e.g., KEGG41 and 
BRENDA42. It is to be noted that this first stage aims to obtain  
a list of candidates that will not necessarily be complete or  
comprehensive. Many false positives may be present in the list. For 
example, proteins involved in DNA methylation or rRNA modi-
fication also have E.C. numbers, but their functions are normally  
not considered in metabolic reconstructions. Another example 
involves kinases that may be involved in signal transfer reactions 
or annotated as ‘histidine kinase-like’, and thus, no specific func-
tion can be derived from this annotation. A more targeted query 

for metabolic annotations could be designed to reduce the number  
of false positives but it does not replace manual curation.

Stage 2: Manual reconstruction refinement. In this stage, the 
entire draft reconstruction will be re-evaluated and refined.  
For each gene and reaction entry, two questions will be asked:  
(1) Should this entry be here? (2) Is there an entry missing to  
connect the entry with the remainder of the network?

The second stage of the reconstruction process concentrates on 
curation and refinement of the network content. We highlight in 
this protocol parts that need special attention. In particular, the 
metabolic functions and reactions collected in the draft reconstruc-
tion are individually evaluated against organism-specific literature 
(and expert opinion). This manual evaluation is important since 
(1) not all annotations have a high confidence score (e.g., low  
e-value) and (2) biochemical databases are mostly organism unspe-
cific, listing enzyme activities found in various organisms, not all 
of which may be present in the target organism (Fig. 2). Including 
organism-unspecific reactions may affect the predictive behavior 
of the resulting models. Furthermore, information about biomass 
composition, maintenance parameters and growth conditions are 
collected in this stage, which will provide a basis for the simulations 
in Stages 3 and 4.

Reconstruction assembly: It is generally recommended to refine 
and assemble the curated reconstruction in a pathway-by-pathway 
manner, starting from the canonical pathways. Peripheral pathways 
and reactions/gene products without clear pathway assignment are 
added in a later step. This approach has the advantage that reac-
tions are evaluated within their metabolic context and missing gene 
annotations can readily be identified, thus facilitating gap analysis 
and debugging in Stage 4. However, this approach will also result  
in the identification of additional reactions that are not in the  
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Figure 2 | Refinement of reconstruction content. The draft reconstruction is converted into a curated reconstruction by re-evaluation of the content.  
In particular, the metabolic reactions, obtained from biochemical databases or the literature, need to be tested for mass and charge balancing. Many 
resources omit protons and water. Furthermore, adjusting metabolites to a particular pH may change their charged formulae and thus may require correction 
of the network reaction. For instance, the reaction catalyzed by the glucokinase, which was obtained from KEGG86, is not mass and charge balanced when 
charged metabolite formula at pH 7.2 is considered. The right-hand side (RHS) is missing an H +  and the charge is unbalanced. Adding a proton to the RHS 
balances both sides of the equation in terms of protons and electrons/charge. Glc, D-glucose; G6P, D-glucose-6-phosphate; ATP, adenosine triphosphate; 
ADP, adenosine diphosphate; H + , proton; CS, confidence score.
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pathway, which is presently under investigation. One can choose 
to only include the main reaction(s) associated with the con-
sidered pathway. The remaining reactions should be noted  
so that, if necessary, they can be retrieved readily.

Verification of metabolic functions (Step 6): The draft recons-
truction identified a set of metabolic genes and functions that  
are thought to be present in the target organism. Owing to  
potential errors or incomplete genome annotation, the presence  
of the annotated gene and its function should be supported  
using experimental data or literature.

Use of phylogenetically close organisms (Step 6): If no  
organism-specific information can be found in the literature, 
information from phylogenetically close organisms can be used 
but should be marked as such. If enzyme-associated reactions  
are included purely based on gene annotation, they should receive 
the lowest confidence score (Table 2). In the case of problems 
during subsequent simulations, these low confidence reactions  
can easily be identified.

Generic reaction terms (Step 6): In some cases, it is appropriate 
to exclude certain reactions from being added to in the reconstruc-
tion. Reactions containing generic terms, such as protein, DNA,  
electron acceptor, and so on, should not be included, as they are  
not specific enough and normally serve in databases as space  
holders until more knowledge and biochemical evidence become 
available.

Substrate and cofactor usage (Step 6): Substrate and cofactor 
specificity of enzymes may differ between organisms. Organism-
unspecific databases, such as KEGG41 and BRENDA42, list all  
possible transformations of an enzyme that have been identi-
fied in any organism. In addition, BRENDA lists organism-
specific information along with relevant references and kinetic 
parameters. As a rule of thumb, one can assume that enzymes, 
which have only one reaction associated in, e.g., KEGG41, do not 
require organism refinement for substrate and cofactor usage. 
However, enzymes that are associated with multiple reactions, 
with varying substrates and/or cofactors, require manual refine-
ment. Information about substrate and cofactor utilization can 
be obtained from organism-specific biochemical studies and may 
also be listed in organism-specific databases (e.g., Ecocyc43). This 
part of the curation process can be very time consuming and 
laborious, as it may be difficult to find the necessary information. 

Often, this part requires intensive literature search. It is important 
to pay great attention as false inclusion of substrates or cofactors 
can greatly change the in silico behavior (i.e., predictive potential) 
of the reconstruction.

Charged formula for each metabolite (Steps 7 and 8): In  
databases, metabolites are generally listed with their uncharged  
formula. In contrast, in medium and in cells, many metabolites are 
protonated or deprotonated. The protonation state, and thus, the 
charged formula, depends on the pH of interest. Often metabolic 
networks are reconstructed assuming an intracellular pH of 7.2. 
However, the intracellular pH of bacterial cells may vary depend-
ing on, e.g., environmental conditions. Also, the pH of organelles  
may be different, e.g., peroxisome and lysosome. The protonated 
formula is calculated based on the pK

a
 value of the functional 

groups (Fig. 3). Software packages, such as Pipeline Pilot and pK
a
 

DB, can predict the pK
a
 values for a given compound (Table 1). 

Figure 3 shows some examples of charged molecules and their  
pK

a
 values.

Reaction stoichiometry (Step 9): Once the charged formula 
is obtained for each metabolite, the reaction stoichiometry can 
be determined by counting different elements on the left- and 
right-hand side of the reaction (Fig. 2). Addition of protons and 
water may be required in this step, as some databases and many  
biochemical textbooks omit these molecules from the reactions.  
It is therefore necessary to balance every element and charge  
on both sides of the reaction. This step is easy for many central 
metabolic reactions but may become challenging for more complex 
reactions. It should be noted that unbalanced reactions may lead to 
the synthesis of protons or energy (ATP) out of nothing (see also  
Fig. 4 for examples).

Reaction directionality (Step 10): Biochemical data for the 
target organism are very important for determination of reaction 
directionality but may not be available. New approaches such as 
the estimation of standard Gibbs free energy of formation (∆

f
G′°) 

and of reaction (∆
r
G′°) in a biochemical system are available44,45. 

The ∆
f
G′° and ∆

r
G′° can be obtained for most KEGG41 reactions 

from Web GCM44. Another approach combines thermodynamic 
information with network topology and heuristic rules to assign 
reaction directionality46. Biochemical textbooks may also report 
reaction directionalities. In addition, one can use the following 
rules of thumb: (1) reactions involving transfer of phosphate 

taBle 2 | Confidence scoring system currently employed for metabolic reconstructions.

evidence type confidence score examples

Biochemical data 4 Direct evidence for gene product function and biochemical reaction: protein purification,  
biochemical assays, experimentally solved protein structures and comparative gene-expression 
studies (e.g., Chhabra et al.95)

Genetic data 3 Direct and indirect evidence for gene function: knockout characterization, knock-in  
characterization and overexpression

Physiological data 2 Indirect evidence for biochemical reactions based on physiological data: secretion products or 
defined medium components serve as evidence for transport and metabolic reactions

Sequence data 2 Evidence for gene function: genome annotation and SEED annotation32

Modeling data 1 No evidence is available, but reaction is required for modeling. The included function is a 
hypothesis and needs experimental verification. The reaction mechanism may be different from 
the included reaction(s)

Not evaluated 0
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from ATP to an acceptor molecule should be irreversible (with 
the exception of the ATP synthetase, which is known to occur  
in reverse direction); and (2) reactions involving quinones are  
generally irreversible.

It is to be noted that assigning the wrong direction to a reac-
tion may have significant impact on the model’s performance. In 
general, one should leave a reaction reversible if no information 
is available and the aforementioned rules of thumb do not apply. 
However, models with too many reversible reactions (too loose 
constraints) may have the so-called futile cycle that can overcome 
the proton gradient by freely exchanging metabolites and protons 
across compartments. Therefore, assigning the correct reversibility 
to transport reactions is especially important (see below).

Information for gene and reaction localization (Step 11): 
This information may also be difficult to obtain. The compart-
ments that have been considered in various metabolic reconstruc-
tions are listed in Supplementary Table 1. Algorithms such as  
PSORT47 and PASUB48 can be used to predict the cellular locali-
zation of proteins based on nucleotide or amino acid sequences. 
A recently published protocol describes the use of internet-acces-
sible tools to predict the subcellular location of eukaryotic and  
prokaryotic proteins49. High-throughput experimental approaches 
are available to locate individual proteins, including immuno-
fluorescence50 and GFP tagging of individual proteins51. In the 
absence of appropriate data, proteins should be assumed to reside 
in the cytosol. Incorrect assignment of the reaction location  
can lead to additional gaps in the metabolic network and  
misrepresentation of the network properties, especially if intra-
cellular transport reactions need to be added without further  
evidence.

Gene–protein-reaction (GPR) associations (Step 13): The 
genome annotation often provides information about the GPR 
association, i.e., it indicates which gene has what function (Fig. 5).  
The verification and refinement necessary in this step includes 
determining: (i) if the functional protein is a heteromeric enzyme 
complex; (ii) if the enzyme (complex) can carry out more than  
one reaction and (iii) if more than one protein can carry out the 
same function (i.e., isozymes exist). For the first case (i), the genome 
annotation often has refined information, 
e.g., ‘protein X, catalytic subunit’—which 
indicates that there is at least one more  

subunit needed for the function of the protein complex. Furthermore, 
KEGG41 lists subunits in some cases. Often, a more comprehensive 
database and/or literature search is required. Also, the protein- 
complex composition may differ between organisms. The second  
case (ii) can also be identified from biochemical databases and/
or literature. Multitasking of enzymes may also differ between  

Exchange reactions required to define extracellular media environment
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Figure 4 | Examples of network evaluation.  
The network evaluation and debugging stage 
(Stage 4) includes various quality-controlled 
quality-assured (QC/QA) tests, some of which  
are illustrated in this figure. For instance,  
mass and charge balancing of network  
reactions is crucial to ensure similar properties  
of the model and the cell or organism. A standard 
test for most metabolic reconstructions is to 
verify that each biomass precursor, which makes 
up a new cell, can be produced by the model 
in different growth conditions (e.g., minimal 
medium, different carbon sources and so on). 
Other QC/QA tests may include the capability to 
secrete certain metabolites given a particular 
growth condition. At its end, the models will 
have similar properties as the cell and error cases 
can be used to systematically refine the models 
and thus the reconstruction content.
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organisms. It is to be noted that mistakes or misassignments in 
the GPR associations will change results of in silico gene deletion 
studies. However, discrepancies between in silico and in vivo results 
can be used to refine knowledge and reconstructions (see Steps 79 
and 80).

Linear pathways, such as fatty acid oxidation, have often been 
combined into few lumped reactions. The genes associated with 
these reactions are all required, with the exception of isozymes. 
Subsequently, the GPR association should reflect the requirement 
for all genes within the lumped reaction by using the Boolean rule 
AND.

Metabolite identifiers (Step 14): Metabolite identifiers are  
necessary to enable the use of reconstructions for high-through-
put data mapping (e.g., metabolomic or fluxomic data) and for  
comparison of network content with other metabolic recons-
tructions. Therefore, metabolites and reactions need to be recog-
nizable by other scientists and by software tools. Each metabolite 
should be associated with at least one of the following identifiers: 
ChEBI52, KEGG41 and PubChem53. In many cases, having one of 
the identifiers is sufficient to automatically obtain the other two 
identifiers. Furthermore, database-independent representations  
of metabolites such as SMILES54 and InCHI strings55,56 are also 
helpful when associated with each metabolite. These represen-
tations represent the exact chemical structure of compounds. In 
addition, collecting Molfiles (MDL file format, http://www.symyx.
com/), which hold information about the atoms, bonds, connec-
tivity and coordinates of a molecule, will be very useful, e.g., if the 
online software for pK

a
 determination is being used (see Step 10 

for details).
Confidence scoring system (Step 15): The confidence score 

provides a fast way of assessing the amount of information  
available for a metabolic function, pathway or the entire recon-
struction15,57. Every network reaction is associated with a confidence 
score reflecting the information and evidence currently available. 
The confidence score ranges from 0 to 4, where 0 is the lowest and 
4 is the highest evidence score (Table 2). It should be noted that 
multiple information types result in a cumulative confidence score. 
For example, a confidence score of 4 may represent physiological 
and sequence evidence.

Spontaneous reactions (Step 19): An excerpt of typical spon-
taneous reactions included in metabolic reconstructions is listed  
in Supplementary Table 2. Note that only those spontaneous  

reactions should be added that have at least one metabolite  
connecting them to the rest of the reconstruction. This is to avoid 
too many dead-end metabolites caused by spontaneous reactions. 
In more recent reconstructions, spontaneous reactions have been 
associated with an artificial gene (s0001) and protein (S0001).  
By doing so, reaction and gene essentiality studies are easier to  
analyze. Furthermore, this artificial GPR association makes it  
easy to distinguish between spontaneous and orphan reactions,  
i.e., reactions without known gene.

Intracellular transport reactions (Step 22): When multi- 
compartment networks are constructed, intracellular transport 
reactions need to be added for all the metabolites that are sup-
posed to ‘move’ between compartments. Intracellular transport sys-
tems are not very well studied and many of these are not annotated  
in the genome. Finding experimental data is often not easy. A  
general approach should be to minimize the number of intracellular 
transport reactions to the ones that really need to be there. If too 
many transport reactions are added in a reconstruction, they can 
cause cycles (futile cycles or Type III pathways). This is a com-
mon problem in reconstructions with multiple compartments. 
For the directionality of intracellular transport reactions, one 
should consider the nature of the pathway in the compartment. 
For instance, if the pathway is biosynthetic, it is very likely that  
(i) the precursor(s) is only imported, (ii) the product(s) of the path-
way is only exported from the compartment and (iii) intermediates 
are not transported at all. Another issue is the transport mecha-
nism. Many transport reactions are in symport or antiport with  
protons, cations or other metabolites. However, not much infor-
mation is available for intracellular transporters, but the used 
mechanism may affect the predictive potential of the model. To  
minimize the error and increase consistency, one can adopt the 
intracellular transport mechanism from a corresponding trans-
port reaction from extracellular/periplasmic space to cytoplasm 
if it is known (and it is not an ABC transport reaction); otherwise 
(facilitated) diffusion reaction may be assumed as the mechanism. 
In any case, these reactions should receive a low confidence score  
(1 for modeling purpose) to enable easy identification (Table 2), 
as well as a note and references describing where the mechanism 
was taken from.

Identification of missing functions: The refinement stage of 
the reconstruction process is also an ideal point to identify missing 
functions in the draft reconstruction. Using KEGG41 maps, e.g., 
one can analyze the metabolic ‘environment’ of the reaction(s) 
under inspection. If the genome annotation of the target orga-
nism is present in KEGG41, one can highlight the genes on the 
map. This gives an estimate of the ‘connectivity’ of the reaction 
with its metabolic surrounding (Supplementary Fig. 2). Missing 
reactions/functions may become apparent for which experimental/
annotation evidence should be collected (see also gap analysis). 
Creating organism-specific maps, using specific drawing software,  
is of great use for identifying missing functions as well as for  
network evaluation and debugging.

Biomass composition (Steps 24–33): The biomass reaction 
accounts for all known biomass constituents and their frac-
tional contributions to the overall cellular biomass (Table 3). A 
detailed biomass composition of the target organism needs to 
be determined experimentally for cells growing in log phase58–60. 
However, it may not be possible to obtain a detailed biomass compo-
sition for the target organism. In this case, one can estimate the  
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Figure 5 | Gene–protein-reaction (GPR) associations. Examples of GPR 
associations and their representation in Boolean format are shown for 
Escherichia coli.
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relative fraction of each precursor from the genome (e.g., by  
using the Comprehensive Microbial Resource (CMR) database,  
Table 1). Note that we do not suggest taking the RNA compo-
sition from E. coli rather than estimating it using organism- 
specific genome data. One reason is that the number of rRNA  
operons, which contain rRNA and tRNA molecules, can differ  
significantly between organisms. For instance, E. coli has seven 
rRNA operons per genome61, whereas Mycoplasma capricolum 
has two62 and Halobacterium cutirubrum has only one rRNA 
operon63.

In comparison to other biomass precursors, it is slightly  
more difficult to determine the lipid composition of the cell.  
The contribution of fatty acids and phospholipids needs to be 
determined from experiments. Note that compounds, such as 
phospholipids, can consist of many different fatty acids (different 
chain length, saturated and unsaturated). Available experimental 
data often report the average composition of these compounds, 
listing the measured fraction of fatty acids with different chain 
length and saturation status. Thus, the model compounds will  
not represent all possible combinations but only average  
compounds that are consistent with the experimental data  
individual.

The composition of the biomass reaction has an important role 
for in silico gene deletion experiments. If a biomass precursor is 
not accounted for in the biomass reactions, the synthesis reactions 
may not be required for growth (i.e., it is nonessential). Therefore, 
associated genes may not be essential. Subsequently, the presence 
or absence of a metabolite in the biomass reaction may affect the 
in silico essentiality of reactions and their associated gene(s). In 
contrast, the fractional contribution of each precursor has a minor 
role for gene and reaction essentiality studies. When one wishes 
to predict the optimal growth rate accurately, the fractional dis-
tribution of each compound has an important role. The unit of 
the biomass reaction is h − 1, as all biomass precursor fractions are 
converted to mmol g

DW
 − 1. Therefore, the biomass reaction sums 

the mole fraction of each precursor necessary to produce 1 g dry 
weight of cells.

Growth-associated ATP maintenance reaction (GAM) (Step 32):  
The GAM reaction accounts for the energy (in the form of ATP) 
necessary to replicate a cell, e.g., for macromolecular synthesis 

(e.g., proteins, DNA and RNA). The GAM is best determined in 
chemostat growth experiments (see also Fig. 6). Alternatively, if 
experimental data is not available, the GAM can be estimated by 
determining the energy required for macromolecular synthesis. 
Therefore, the total amount of macromolecule (protein, DNA and 
RNA) is determined from databases or other resources. Neidhardt 
et al.64 list the amount of phosphate bonds necessary to synthesize 
a macromolecule, which is then multiplied with the total amount 
of the macromolecule. These phosphate bonds are accounted 
for by adding ATP hydrolysis to the biomass reaction (x ATP  +   
x H

2
O → x ADP  +  x P

i
  +  x H + , where x is the number of required 

phosphate bonds). Note that this estimate will be too low, as other 
growth-associated cellular processes also require ATP.

Non-GAM reactions (NGAM) (Step 34): More recent recon-
structions include an ATP hydrolysis reaction (1 ATP  +  1 H

2
O → 

1 ADP  +  1 P
i
  +  1 H + ), which represents NGAM requirements  

of the cell to maintain, e.g., turgor pressure65. The value for the  
reaction rate can be estimated from growth experiments. For  
example, based on such measurements, the reaction flux rate  
was constrained to 8.39 mmol g

DW
 − 1 h − 1 in the E. coli metabolic 

model65 (Fig. 6).
Demand reactions (Step 35): Demand reactions are unbalanced 

network reactions that allow the accumulation of a compound, 
which otherwise is not allowed in steady-state models because  
of mass-balancing requirements (i.e., in steady state the sum of 
influx equals the sum of efflux for each metabolite) (Fig. 7). Most  
of the demand reactions will be added in the gap-filling process  
(Steps 46–48). At this stage, demand functions should only be 
added for compounds that are known to be produced by the  
organism, e.g., certain cofactors, lipopolysaccharide and antigens, 
but (i) for which no information is available about their fractional 
distribution to the biomass or (ii) which may only be produced  
in some environmental conditions. By including a demand reac-
tion for a particular metabolite one can turn otherwise blocked  
reactions (cannot carry flux) into active reactions (can carry flux). 
In general, metabolic reconstructions contain only few demand 
reactions. However, during the debugging- and network-evaluation 
process (Stage 4), demand reactions may temporarily be added to 
the model to test or verify certain metabolic functions. They will 
be removed from the model before versioning.

Sink reactions (Step 36): Sink reactions are similar to demand 
reactions but are defined to be reversible and thus provide the 

taBle 3 | Chemical composition of cells.

cellular component cellular content %(wt/wt)

Protein 55

RNA 20.5

DNA 3.1

Lipids 9.1

Lipopolysaccharides 3.4

Peptidoglycan 2.5

Glycogen 2.5

Polyamines 0.4

Other 3.5

Total 100.00
Listed here is the cellular content of E. coli taken from Neidhardt et al.64.
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Figure 6 | Growth-associated maintentance (GAM) and non-GAM (NGAM). 
The best way to obtain accurate information regarding GAM and NGAM  
is by plotting growth data obtained from chemostat growth experiments. 
GAM and NGAM can be directly read from the plot.
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network with metabolites (see Fig. 7 for examples). These sink  
reactions are of great use for compounds that are produced by  
nonmetabolic cellular processes but that need to be metabolized. 
Adding too many sink reactions may enable the model to grow 
without any resources in the medium. Therefore, sink reactions 
have to be added with care. As for demand reactions, sink reac-
tions are mostly used during the debugging process. They help  
in identifying the origin of a problem (e.g., why a metabolite  
cannot be produced). These sink reactions are functionally replaced 
by filling the identified gap.

Growth medium requirements (Step 37): Information about 
growth-enabling media is of great help in the following two stages. 
Thus, if possible, it should be collected before the conversion and 
debugging stage. The following information should be collected: 
(1) Which metabolites are present? (2) Are there any auxotrophies?  
(3) The definition of a base medium composition, e.g., water, protons, 
ions and so on. (4) Information about rich medium composition. 
This data will be crucial for simulations and network evaluation. 
If uptake or secretion rates are available, they should also be docu-
mented and collected. Although this step is easy for the experi-
mentalist, researchers who cannot grow the target organism have  

to identify growth requirements from the literature (or genome 
annotation). In some cases, research studies describe mini-
mal, defined or rich medium composition. In other cases, the  
culturing conditions reported in some experimental study must 
be sufficient.

Stage 3: Conversion from reconstruction to mathematical 
model. In the third stage, the reconstruction is converted into  
a mathematical format and condition-specific models are  
defined. This stage can mostly be automated. Moreover, systems 
boundaries are defined, converting the general reconstruction into 
a condition-specific model. It is to be noted that the initial model 
may differ in scope and boundaries to the final model, which is 
obtained after multiple iterations of validation and refinement  
and is used to simulate phenotypic behavior in a prospective  
manner. Figure 7 illustrates the conversion of a reconstruction  
into mathematical format.

Simulation constraints (Step 42): Using the functions in the 
COBRA Toolbox, it is very easy to change reaction constraints, but 
sometimes it is difficult to keep track of all the changes. In fact, 
one of the most common reasons for errors in simulation is that 
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Figure 7 | Conversion of reconstruction into a condition-specific model. This conversion requires three main steps. (1) The first step involves the 
mathematical representation by a stoichiometric matrix, S, of the network reaction list. The columns of S correspond to the network reactions, whereas the 
rows represent the network metabolites. The substrates in a reaction are defined to have a negative coefficient, whereas the products have a positive value. 
The metabolites participating in a reaction have a nonzero entry in the S matrix. (2) Now that the reconstruction is in a computer-readable format, the 
systems boundaries need to be defined. In particular, this means that for all metabolites that can be consumed or secreted by the target organism, a so-called 
exchange reaction needs to be added to the reconstruction. The exchange reactions can be employed in later simulation to define environmental conditions 
(e.g., carbon source). (3) As a last step, constraints will be added to the reconstruction, thus rendering it to a condition-specific model. Mass conservation  
is a basic physical law. All steady states can be thus described by S.v  =  0, where v is a vector of reaction fluxes. Adding further constraints such as 
thermodynamics (reaction directionality), enzyme capacity or regulation (i.e., presence or absence of an enzyme) to the model will lead to a smaller,  
more confined set of feasible steady-states flux solutions.
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reaction constraints are not set correctly (Table 4). Therefore, it 
is important to have an expectation of the results before running 
a simulation to avoid erroneous conclusions. It is recommended 
that the constraints are checked by copying the model reaction 
abbreviations as well as lower and upper bounds into a spreadsheet. 
For most models, this is the easiest way to see where problems  
are with the constraints. Similarly, copying calculated solution(s) 
into a spreadsheet is very helpful.

Stage 4: Network evaluation  =  ‘Debugging mode’. The fourth 
stage in the reconstruction process consists of network verifica-
tion, evaluation and validation. Common error modes in meta-
bolic reconstructions are listed in Table 4. The metabolic model 
created in the third step is tested, among other things, for its 
ability to synthesize biomass precursors (such as amino acids, 
nucleotides triphosphates and lipids). This evaluation gener-
ally leads to the identification of missing metabolic functions in 
the reconstruction, so-called network gaps, which are added by  
partially repeating Stages 2 and 3. Thus, the reconstruction process 
is an iterative procedure. An important issue is to decide when to 
stop the iterative process and call a reconstruction ‘finished’. This 
decision is normally based on the definition of the scope and pur-
pose of the reconstruction.

Metabolic dead end (Step 45): At this point, the first iteration 
of the manual curated reconstruction is finished. It is expected 
that the network contain a significant number of gaps, i.e., missing 
reactions and functions. We recommend carrying out a first gap  
analysis at this stage of the reconstruction process, as it will 
ease subsequent computation and reduce the number of ‘bugs’  
in the model. Comparing dead-end metabolites identified in this 
step with the curated reaction list generated in Stage 2 will accele-
rate the debugging process.

Candidate reactions for gap filling (Steps 46 and 47): This  
step will require an intensive literature search and may include  
re-annotation of a genome to find candidate genes and reactions 
to fill the gap (see Table 1 and Supplementary Table 3 for some  
example tools). KEGG41 maps, biochemical textbooks or other  
available biochemical maps can be used to identify the metabolic  
‘environment’ of the dead-end metabolite. If the genome anno-
tation of the target organism is present in KEGG41, one can high-
light the dead-end metabolite on the map (Supplementary Fig. 2).  
This context analysis may give an indication of which enzyme(s) 
may be able to produce or synthesize the dead-end metabolite and 
thus provide a good starting point for literature and/or genome 
search.

Gap filling is a tricky business. In some cases, a gap should be 
filled to ensure that the model is functional, i.e., biomass precur-
sor synthesis or a certain physiological function can be simulated. 
In other cases, filling a gap may enable the model to carry out 
a function that the target organism is not able to do (see Fig. 8  
for some examples). In general, if no information supports  
the existence of a particular gap reaction, the gap should only be 
filled if it is required for the model’s functionality. In such cases, 
the confidence score should be set to 1, which corresponds to  
‘modeling purpose’ only, and allows retrieving these low- 
confidence reactions readily, if desired. Earlier, we highlighted  
that enzymes, which are listed in biochemical databases to  
catalyze multiple reactions, should be included in the recon-
struction with care and that it should be noted whether evidence  
for all the reactions could be found. Some of the identified  
dead-end metabolites will originate from such secondary reac-
tions of these ‘multitasking’ enzymes. Closing these gaps may 
affect the predictive potential of the reconstruction; therefore, 
the only gaps that should be filled are those that are required 
for network functionality (e.g., biomass precursor synthesis) 
or which have supporting data. It should be kept in mind that  
adding new reactions to the network may cause new gaps. 
Therefore, when adding reactions make sure that all the meta-
bolites are connected to the network.

Stoichiometrically balanced cycles (SBCs) (Steps 51–59): 
SBC, or Type III-extreme pathways66, are formed by internal 
network reactions and can carry fluxes despite closed exchange 
reactions (closed system). Examples for simple or more com-
plex Type III pathways in metabolic networks can be found else-
where67,68. These SBCs are artifacts of metabolic reconstructions 
due to insufficient constraints (e.g., thermodynamic constraints 
and regulatory constraints). Recent efforts have concentrated 
on dealing with these SBCs67. It should be noted that SBCs are 
not futile cycles. This protocol shows how to identify SBCs and  
even highlights some possible approaches to eliminate them.  
However, no systematic, universally valid approach has yet been 
developed to eliminate SBCs. For practical purposes, in simulation 
one can use the ‘min norm’ option for the linear programming 
(LP) solver, which will minimize the sum of the squares of fluxes  
and thus will return an optimal solution without the net flux 
around SBCs.

The following steps will test if the model can or cannot grow. 
This means that we will test for qualitative behavior but not focus 
on the correctness of predicted growth rates.

Biomass precursor production (Steps 60–66): The composition 
of the biomass reaction was determined in Stage 2. It is recom-
mended to test for the model’s ability to produce each individual 
biomass component in standard medium condition (e.g., minimal 
medium M9 supplemented with D-glucose) (Fig. 4). This sequential 
approach will facilitate the debugging process and will make it easier 
to find causes of error. It is very likely that these tests will lead to the 
addition of further reactions by repeating steps listed in the second 
stage. Furthermore, this step may lead to the addition of reactions  
for which no experimental evidence and candidate genes can be 
identified. These reactions should be marked with the tag ‘modeling 
purposes’ only (confidence score of 1). Care must be taken with  
such reactions, as too many of them may change the overall  
properties of the network (in this or other simulation conditions). 
Moreover, the overall performance of the model in standard 

taBle 4 | General error modes in metabolic networks.

error mode action

Wrong reaction constraints Check reaction constraints if 
they are applied correctly

Missing transport reactions Add transport reactions

Missing exchange reactions Add exchange reactions

Cofactor cannot be consumed  
or produced

Follow Figure 13

Shuttling of compounds across 
compartment

Adjust reversibility of transport 
reactions
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medium condition is determined and, in some cases, corrected. 
This step needs great care, as there may be many possible ways of 
filling a gap.

Subsequently, the capability to produce biomass precursors  
needs to be tested in other growth media. Therefore, the cor-
rectness of the network content is evaluated with respect to 
all the known growth conditions of the target organism. This 
includes all the known carbon, nitrogen, sulfur and phosphorus  
sources. Physiological information is of great value to determine  
all growth conditions. For example, Gutnick et al.69 have tested 
about 600 compounds and have found that 100 can serve as carbon 
or nitrogen sources for Salmonella typhimurium. The model should 
be able to produce biomass in the majority of these instances. 
However, not all the known conditions may be reproduced by 
the model—this is not a problem, as it represents a starting point 
for experimental studies to identify missing metabolic functions. 
Nevertheless, great attention should be given to collecting and 
documenting those cases and thus enabling other researchers to 
pursue them.

By-product secretion (Step 70): If such information is avail-
able, it can be used to further refine the model. The first question  
is whether the model can produce the secretion product(s) from 
a given substrate, whereas a subsequent question could be if  
a specific ratio of by-product secretion is correct. Classical bio-
chemical studies often reported measured secretion products given 

in a certain carbon source (e.g., Schroeder et al.70). This information 
is very helpful to compare the phenotypic traits of the model with 
those of the target organism.

Blocked reactions (Steps 76–78): Reactions that cannot carry 
any flux in any simulation conditions are called blocked reactions. 
These reactions are directly or indirectly associated with dead-end 
metabolites, which cannot be balanced and give rise to the so-called 
blocked compounds71. It is good to be aware of those reactions, 
especially, if one expects different results in a simulation (e.g.,  
false-negative analysis of single-gene deletion). In the early phase  
of the debugging stage, the reconstruction can contain many 
blocked reactions that one might decide to fill if the support-
ing information is available or if they are required for the overall  
function of the network. Targeted use of sink and demand reac-
tions around a pathway of blocked reactions will facilitate the 
identification of the source problem. Other blocked reactions  
may remain if the terminal dead-end metabolite is beyond the  
scope of the metabolic reconstruction or no information and  
evidence for filling the gap is available. The easiest way to  
determine blocked reactions is by carrying out flux variability 
analysis72,73.

Single-gene-deletion phenotypes (Steps 79 and 80): Analysis 
of false-positive and false-negative predictions will help to further 
refine the network content if the information is available or pro-
vides a basis for experimental studies otherwise (Fig. 9). Numerous 

Classification of dead ends

Careful evaluation of dead-ends and their 
classification will facilitate the debugging 
procedure

Dead end

Fill gap by adding a
new reaction

Keep gap

Knowledge
gap

Scope gap

Experiments

Two approaches to identify gaps

Connectivity based (topology): Functionality based (computation)

- Reactions v3 and b3 cannot carry any flux in this network as the metabolite 
‘E’ is unbalanced.
-These reactions are also called ‘blocked reactions’.
-Topological analysis would not have identified ‘E’ as a dead-end metabolite,
as reaction v3 is producing the metabolite.
-Flux variability analysis can be used to identify block reaction in the 
network.

Dead end

a

b

Missing 

knowledge

Non-metabolic 

function

v1 v2 v3 b1 b2

A
B
C
D

1
0
0
0

–1
1
0
0

0
–1
1
0

–1
0
1
1

0
0

–1
0

A

B

C

D

b1
b2

v1
v2

v3

A B C

D

b1 b2

v1

E E

b3

E

v2
v3

v1 v2 v3 b1 b2

A
B
C
D

1
0
0
0

–1
1
0
0

0
–1
1
0

–1
0
0
1

0
0

–1
0

b3

0
0
0

–1
E 0–1 1 –1 0 0

Case 2: No - based on physiological data
Ile and Val synthesis in H. pylori: 

2ahbut

2obut

NADP

alac-S

val-L

akg
akg

H2O

H

NADPH

23DHMP

3mob

pyr

CO2

NADPH

glu-L

23DHMB

glu-L

CO2

H

ile-L

H

H2O

NADP

H

3mop

DHAD1

KARA1i

DHAD2

ACLSACHBS

ILETAi

KARA2i

VALTAi

ilvC

HP0330

IlvC

KARA2iKARA1i

 ilvE

HP1468

IlvE

VALTAiILETAi

?

?

- 4 Enzymes are required to produce Ile and Val
- 2 Enzymes are annotated in H. pylori
- Auxtotrophy was reported for Ile and Val
--> H. pylori cannot produce Ile and Val

AA In vivo In silico
Ala – –
Arg – –
Asn + +
Asp + +
Cys + +
Gln + +
Glu + +
Gly + +
His – –
Ile – –
Leu – –
Lys + +
Met – –
Phe – –
Pro + +
Ser + +
Thr + +
Trp + +
Tyr + +
Val – –

Amino acid requirements

Should I fill the gap?

Case 1: Yes - based on physiological data
Lysine Synthesis in organism X

? ?

?dapA

ORF00277

DapA

DHDPS

dapB

ORF00278

DapB

DHDPRy
dapF

ORF00190

DapF

DAPE

lysA

ORF00274

LysA

   DAPDC

- 9 Enzymes belong to this pathway
- 6 Enzymes annotated in organism X
- No auxotrophy was reported for lysine 
--> Organism X must be able to produce lysine
- Only one path known: from L-Aspartate to L-lysine
- Fill gap with missing reactions
- These reactions represent a HYPOTHESIS

c

--> Network gap will 
NOT be filled

Figure 8 | Gap analysis. The gap analysis includes 
the identification and the tentative filling of 
network gaps. (a) Although many dead-end 
metabolites that create network gaps can be 
connected to the network by re-evaluating 
genomic and experimental data, some dead-end 
metabolites will remain in the refined, curated 
reconstruction. These dead-end metabolites  
can be categorized into two groups, depending  
on the type of reactions that could connect  
them to the remaining network: knowledge  
gaps and scope gaps. The knowledge gaps 
represent the missing biochemical knowledge  
for the target organism. In contrast, the scope 
gaps include reactions and cellular processes, 
which are currently not accounted for in the 
metabolic reconstruction (e.g., DNA methylation). 
(b) There are at least two approaches to  
identify gaps in the reconstruction. In the 
connectivity-based approach, one can count  
the nonzero entries in each row of the 
stoichiometric (S) matrix and identify those 
metabolites, which are only produced  
or consumed. In the example, metabolite D is 
only produced by reaction v3 and the S matrix 
contains only one entry in the row corresponding 
to metabolite D. A second approach is based  
on model functionality; in this approach the 
model capability to carry flux through every 
network reaction is tested. This approach 
identifies blocked reactions, which are  
directly or indirectly associated with one or  
more dead-end metabolites. In the shown 
example, one would not identify metabolite E  
as a dead-end metabolite with the connectivity-
based approach, as it is produced and consumed in the network. However, testing for flux through reactions containing E will show that reaction v3 and b3 
cannot carry any flux in this model. (c) Two sample cases are shown that address the question of filling a gap or not.
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reconstructions relied on phenotyping data (e.g., biolog data), or 
gene essentiality data, to improve the network content and thus  
the predictive potential74,75.

Known incapabilities (Steps 81 and 82): So far we compared 
whether the model can reproduce growth on a certain substrate, 
secrete a particular by-product and so on. In this step, it should 
be tested if known incapabilities of the organism can also be 
reproduced by the model. For example, H. pylori is known to be 
an auxotroph for certain amino acids, subsequently, their lack in 
the medium should abolish in silico growth76. It is important to 
use those ‘negative’ data (incapabilities) and to correct for errors. 
Error cases can be removed by analyzing the confidence score 
associated with the reactions along the pathway. In the example 
of H. pylori, this would be the biosynthetic reactions leading  
to amino acid synthesis76 (Fig. 8). In a more algorithmic 
approach, a single-reaction deletion study can be carried out and 
the results can be analyzed in terms of which deletions disable 
growth. This smaller subset of reactions needs to be evaluated  
manually. Note that the deletion of a single function may not  
be sufficient when alternate pathways exist in the network. 
Missing incapabilities may not only be caused by falsely added 
reactions in the metabolic network but may be a consequence 
of missing regulatory information. Literature may provide the 
necessary data.

Comparison of predicted physiological properties with 
known properties (Step 83): The model should also be tested 
for known capabilities, besides the aforementioned growth  
performance and secretion capability. For instance, this test 
can include known carbon splits in central metabolic pathways,  
as observed with a recently published Pseudomonas putida  
network57. The P/O ratio was investigated for Methanosarcina 
barkeri77, Saccharomyces cerevisiae78 and compared with the 
known growth data. Many more examples exist and the suite 
of necessary tests depends on the available data as well as  
the properties of the network.

Quantitative evaluation of growth rate (Steps 84–94): Too 
slow growth means that at least one precursor of the biomass 
function cannot be synthesized sufficiently. This implies that  
the model’s biomass production is carbon, nitrogen, oxygen, 
sulfur or phosphate limited. As there are generally less active 

uptake reactions for a particular element than biomass precur-
sors, it is faster to test if any of the medium components are 
growth limiting. If the biomass reaction value increases when the 
uptake of reaction flux is increased, it means that this compound 
is limiting. This gives you a hint as to where in the network 
something must be missing or constraining. Further analysis 
of shadow prices and reduced costs, which are associated with 
the LP solution, can be of great help to identify metabolites 
or reactions that limit the rate of biomass. For example, the  
P. putida network57 was not able to grow as fast as reported experi-
mentally in silico when toluene was used as a carbon source.  
In silico analysis suggested that oxygen is rate limiting and that 
more oxygen-efficient reactions are missing in the network. 
Whether this discrepancy can be resolved by iterative network 
refinement depends on the specific case, and thus, no general 
solution can be proposed. As in the case of P. putida’s oxygen 
restriction, such error cases can lead to further experimental 
investigation that will ultimately increase our biological insight 
and the reconstruction’s quality.

When the predicted growth rate is higher than expected, many 
explanations are possible. (1) The optimization for growth 
assumes that microbial cells maximize their growth. However, 
many other objective functions are possible and may be more 
appropriate depending on the experimental setup and growth 
conditions of the target organism6,18–20,79–82. (2) The GAM, which 
is a part of the biomass reaction, may be estimated wrongly and 
needs adjustment. (3) It can indicate that constraints are miss-
ing or incorrect (e.g., NGAM, missing regulation). (4) Falsely 
included reactions increase growth rate. Knowledge about the 
model and the expected flux map is crucial for identifying these 
errors. Proton shuttling reactions may be present that circum-
vent the ATP synthetase (e.g., because of a futile cycle). Note that 
this is only the case in aerobic growth conditions. Such shuttling 
reactions may be enabled by many reversible transport reactions. 
Reactions associated with such loops can be readily identified 
(see Steps 51–59). Also, looking at the flux through the reactions 
of oxidative phosphorylation may indicate if they are used under  
aerobic condition or not. Alternatively, one can investigate if 
there is one reaction that enables the model to grow too fast.  
In this case, a single-reaction deletion study will push one 
toward the right solution. Another approach could be to inves-
tigate the directionality of network reactions. As indicated  
earlier, reaction directionality may have a role in the fast growth  
rates. Therefore, improving reaction directionality assignments 
may be helpful. Make sure that only those reactions that are 
known to produce ATP are allowed for ATP synthesis, whereas all 
other reactions are set irreversible (ATP utilization). Similarly, 
reactions using quinones as electron acceptors should not  
run reversibly. This might cause problems and may allow 
circumventing the electron transport chain. These examples are  
very specific to a model and problem, and no general rule for 
corrections can be proposed.

Stage 5: Prospective use. Once the necessary content and desired 
in silico capability is reached, one can start to use the reconstruc-
tion in a prospective manner, which represents a fifth step in the 
reconstruction process that is not addressed here.

False positives (FP)
Possible explanation:
-Missing regulatory rule
-Falsely included reaction
-Incomplete biomass reaction

False negatives (FN)
Possible explanation:
-Missing metabolic transport reaction
-Missing enzyme reaction

Growth Essential

In
 s

ili
co

Experimental data

G
ro

w
th

E
ss

en
tia

l

FN

FP

Figure 9 | In silico gene essentiality study as network evaluation tool. 
Although agreement of gene essentiality between experimental and  
in silico data is very helpful to validate the reconstruction content and  
model setup, analysis of inconsistencies will enable the discovery of  
new biological knowledge.
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MaterIals
EQUIPMENT

A standard personal computer that can run Matlab.
Matlab, version 6.0 or above (Mathwork), a numerical computation and 
visualization software.
COBRA Toolbox (version 1.3.4 or above) is provided at http://systemsbiology.
ucsd.edu/downloads/COBRAToolbox
The SBML Toolbox for Matlab, which allows reading models in SBML 
format http://sbml.org/Software/SBMLToolbox
An LP solver. Multiple solvers are currently supported by the COBRA  
Toolbox:
(i) glpk (freeware): http://www.gnu.org/software/glpk/
(ii) LINDO (LINDO Systems) Matlab API (commercial)
(iii) CPLEX (ILOG) through the Tomlab (Tomlab Optimization) optimi-

zation environment (commercial, but best LP solver available)
(iv) Mosek (MOSEK ApS) (commercial)
Extreme pathway software package, X3, provided at http://systemsbiology.
ucsd.edu/downloads/Extreme_Pathway_Analysis
Excel (Microsoft, http://office.microsoft.com/en-us/excel/default.aspx) 
or similar database programs can be used for collecting reconstruction 
information.

EQUIPMENT SETUP
COBRA Toolbox The COBRA Toolbox16 should be downloaded and  
copied in a local folder on the user’s computer. Extract the .zip file.  
After opening Matlab, a path should be set to the local folder, containing  
the COBRA Toolbox (Matlab → File → Set Path → Add with Subfolder, 
choose the corresponding folder and save). All working files (SBML and  
xls files) should also be stored in the local folder to allow access to recons-
truction and models. A full documentation of the COBRA Toolbox can  
be found in the ‘doc’ subfolder within the main Toolbox folder, which has  
all help files as html files. Furthermore, help for Matlab and COBRA  
Toolbox functions can be accessed through Matlab’s ‘help’ facility by  
typing ‘help function_name’ on Matlab command line. See also  
Becker et al.16.
SBML Toolbox Comprehensive documentation on SBML, the file format, 
and model setup, can be found at the official SBML website (http://sbml.
org/documents/, level 2 version 1). The SBML file describing the model has 
to include at least the following information: stoichiometry of each reaction, 
upper/lower bounds of each reaction, and objective function coefficients for 
each reaction. In addition, gene-reaction associations can be added to the 
‘Notes’ section.
Spreadsheet The first two reconstruction steps are illustrated in this  
protocol using spreadsheets. It is important that the order of the  

•
•

•

•

•

•

•

columns in the spreadsheet match the example given in Supplementary 
Methods 2.
Variables The imported model from the spreadsheets is contained in a 
model structure (see Fig. 10 for details on this structure). All functions in  
the COBRA Toolbox access the information stored in the model structure.  
The values computed by the COBRA Toolbox are fluxes, which represent  
reaction rates for all model reactions. The units for fluxes used throughout 
this protocol are mmol g

DW
 − 1 h − 1, where g

DW
 is the dry weight of the cell  

in grams.
Installation The Matlab software, SBML Toolbox and one or more of the 
suggested LP solvers should be installed following the instructions of the 
software providers. Note that the SBML Toolbox and the LP solver also  
need to be accessible in the Matlab path (see above). Sample installation 
instructions for the lp_solve LP solver on Windows can be found in Becker 
et al.16. The SBML Toolbox is downloaded and installed. The installation 
instructions are to be followed. Choose ‘libsbml’ in the dialog field. Once 
installed, open Matlab and type ‘install’. If you get an error with ‘libsbml’ 
(when opening Matlab again), go to ‘setpath’ and add the folder ‘libsbml’ 
with subfolders.

The COBRA Toolbox is initiated by typing in the Matlab command window:
(1) changeCobraSolver(solverName); where ‘solverName’ is, e.g., ‘lp_solve’
(2) initCobraToolbox;

 crItIcal step SBML Toolbox and the LP solver should be tested for 
functionality following the software provider’s instructions before attempting 
to use the COBRA Toolbox.
X3 X3 is the software package used to determine stoichiometrically  
unbalanced cycles or Type III pathways. X3.exe needs to be placed and 
extracted in the local folder. Help can be accessed by opening the DOS 
command line, changing to the local folder and typing X3 –h. The extreme 
pathway tool will be called from Matlab by the COBRA Toolbox.
KEGG Many steps of the protocol have been illustrated using KEGG41 
because it is freely accessible and very helpful for the illustrated pathway-
by-pathway reconstruction process. However, one has to keep in mind three 
properties of KEGG41: (1) It is NOT organism-specific data; hence, not all 
reactions associated with an enzyme may be catalyzed by the enzyme of the 
target organism, and (2) KEGG41 may not update the genome annotation 
of the target organism on a regular basis; hence, the information may be 
outdated and need a ‘second opinion’ from another more recent resource. 
(3) Not all reactions in the KEGG41 database are mass and charge balanced, 
as they omit protons and water molecules, although the KEGG database is 
continuously updated and improved83,84.

Reaction abbreviation list

Metabolite abbreviation list

S matrix (sparse format), rows => metabolite, 
columns=> reactions, same order as rxn and met lists 
Reversibility of network reactions: 
0 irreversible, 1 reversible
Lower bound

Upper bound

List of genes in model

Boolean GPR rules (AND/OR)

Vector that defines objective reaction for LP solver: 
all zeros but 1 reaction

Figure 10 | Components of the model structure 
in Matlab. The reconstruction is imported into 
Matlab (Step 39). The entire reconstruction 
content is stored in a structure array. The screen 
shot illustrates the main fields contained in the 
model structure. The information is stored in 
subarrays in these fields. Note that the order of 
the reactions and metabolites corresponds to the 
order of columns and rows in the stoichiometric 
(S) matrix, respectively.

proceDure
stage 1: creating a draft reconstruction ● tIMInG Days to 1 week
1| Obtain genome annotation. The genome annotation can be obtained from various sources, including sequencing centers 
(e.g., TIGR) and the National Center for Biotechnology Information (NCBI) depository. The following information should be 
retrieved for each gene: genome position, coding region, strand, locus name, alias, gene function (i.e., current annotation) 
and protein classification (e.g., E.C. number40).
 crItIcal step In eukaryotic organisms, information regarding alternate transcripts must also be collected, as different 
splice forms may have distinct function or cellular localization.
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2| Identify candidate metabolic functions. This step is straightforward once the genome annotation has been obtained.  
Different approaches can be applied to collect candidate metabolic functions including searching for E.C. numbers (complete 
and partial)40 and for metabolic terms (e.g., dehydrogenase, kinase and so on) (supplementary Fig. 1). If GO39 or cluster 
of orthologous groups of proteins85 information is obtained with the genome annotation, they can be used as well to find 
metabolic enzymes.

3| Obtain candidate metabolic reactions for these functions (e.g., from KEGG41). Use comprehensive reaction databases such as 
KEGG41, BRENDA42 and publically available reconstructions, as a resource to combine the gene functions with metabolic reactions.

4| Assemble draft reconstruction. Collect all candidate metabolic genes and their potential reactions in a spreadsheet.  
This spreadsheet will serve as a starting point for the manual curation process (see Fig. 2 and supplementary Data 1,  
for an example).

5| Collect experimental data. ● tIMInG ongoing throughout the reconstruction process.  
The manual curation process relies heavily on experimental, organism-specific information. All possible information needs 
to be retrieved. The following steps will include reviewing of scientific literature to collect information listed in table 5. 
Alternatively, additional experimental data can be generated by growing and measuring various metabolic capabilities and 
properties of the target organism.

stage 2: Manual reconstruction refinement ● tIMInG Months to 1 year
6| Determine and verify substrate and cofactor usage. Use primary literature, and to a lesser extend KEGG41 and BRENDA42, 
to determine and verify substrate and cofactor specificity of the enzyme in the target organism. As a rule of thumb, one can 
assume that enzymes, which have only one reaction associated, e.g., in KEGG41 do not require organism refinement.
! cautIon Often only biochemical data can reveal the correct cofactor and substrate, as binding sites may not be  
distinguishable in gene sequence from related metabolites.

7| Obtain a neutral formula for each metabolite in the reaction. The neutral formula can be readily obtained from various 
resources, including KEGG41, BRENDA42 and PubChem86. Although PubChem86 is more comprehensive, KEGG41 is certainly the 
most accessible resource, especially when KEGG41 is used for obtaining the reactions.
! cautIon Check that the formula is correct (i.e., verify with other databases and textbooks).

8| Determine the charged formula for each metabolite in the reaction. Retrieve the molecular structure for each metabolite 
if it has not been done in Step 7. Determine the charged formula (e.g., for pH 7.2) based on the pKa value of the functional 
groups (Fig. 3). This can also be done using software packages such as Pipeline Pilot, and pKa DB can predict pKa values for  
a given compound (table 1).

9| Calculate reaction stoichiometry. Count every element and the charge on each side of the equation. On each side, the 
same number of elements and charge must be present. It may be necessary to add protons and water to the reaction.  
This step is easy for many central metabolic reactions but may become challenging for more complex reactions.

10| Determine reaction directionality. Use biochemical data and literature if available. Alternatively, the standard ∆fG′°  
and of ∆rG′° can be calculated based on group contribution theory for most KEGG41 reactions from Web GCM44,45. If data  
on reaction of interest are not available, the following rule of thumb may be applied: (1) reactions involving transfer of 
phosphate from ATP to an acceptor molecule should be irreversible (with the exception of the ATP synthetase, which is 
known to occur in reverse); and (2) reactions involving quinones are generally irreversible.

11| Add information for gene and reaction localization. This information may be difficult to obtain from primary literature. 
The use of algorithms such as PSORT47 and PASUB48 can be considered if no experimental data are available.
 crItIcal step In the absence of appropriate data, proteins should be assumed to reside in the cytosol.

12| Add subsystem information to the reaction. This information will be of great help for the debugging and network  
evaluation work. The subsystem assignment can be done based on, e.g., biochemical textbooks or KEGG41 maps. Note that  
a reaction or an enzyme can appear in multiple KEGG41 maps; therefore, the subsystem should reflect its primary function.

13| Verify GPR association. Determine if the functional protein is a heteromeric enzyme complex, if the enzyme (complex) 
can carry out more than one reaction and if more than one protein can carry out the same functions (i.e., isozymes exist).
Organism-specific databases and primary literature can be used to obtain this information.
 crItIcal step Mistakes or misassignments in the GPR associations will change the results of in silico gene-deletion studies.
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14| Add metabolite identifier. Associate each metabolite with at least one of the following identifiers: ChEBI52, KEGG41 
and PubChem53. In addition, associate database-independent representations of metabolites such as SMILES54 and InCHI 
strings55,56 with each metabolite.

15| Determine and add the confidence score. The proposed confidence score system listed in table 2 should be used.

16| Flag those reactions for which information from other organisms was used.

17| Add references and notes based on experimental information. In Steps 6–13 many organism-specific experimental data  
are collected that must be associated with the reconstruction in the form of references and notes. This allows other users  
of the reconstruction to easily retrace the evidence and supporting material for reaction and gene inclusion.

18| Repeat Steps 6–17 for all those genes that were identified in the draft reconstruction. These steps are to be repeated for 
metabolic functions identified from bibliomic sources during the reconstruction process.

19| Add spontaneous reactions to the reconstruction. The biochemical literature and databases (e.g., KEGG41 and BRENDA42) 
are to be used to identify candidate spontaneous reactions that are to be included. Only include those reactions, which have  
at least one metabolite present in the reconstruction to minimize the number of dead ends. Associate the spontaneous  
reactions with an artificial gene (s0001) and protein (S0001).

20| Add extracellular and periplasmic transport reactions to the reconstruction. This addition is done based on experimental 
data. The rule here is that for every metabolite that is known to be taken up from the medium or that is known to be  
secreted into the medium, a transport reaction should exist (from extracellular space to periplasm and from periplasm to 
cytoplasm). The transport reactions for metabolites that can diffuse through the membranes must be included. Small,  
hydrophilic compounds can diffuse through the outer membrane87.

21| Add exchange reactions to the reconstruction. Exchange reactions need to be added for all extracellular metabolites.  
The exchange reactions represent the systems boundaries (Fig. 7).

22| Add intracellular transport reactions to the reconstruction (for multicompartment reconstructions only). Use biochemical 
and physiological information; however, finding experimental data is often not easy. Only include intracellular transport  
reactions that really need to be there to avoid futile cycles, or Type III pathways.

23| Draw metabolic map (optional). If appropriate drawing software is available, the creation of organism-specific maps is 
very useful for gap analysis, network evaluation and data mapping.

Determine biomass composition ● tIMInG Days to weeks
24| Determine the chemical composition of the cell, i.e., protein, RNA, DNA, lipids, and cofactor content (see also table 3 and  
supplementary Fig. 3a). This information can be retrieved from experimental data or primary literature.

25| Determine the amino acid content either experimentally (option A) or by estimation (option B).
(a) experimental determination of amino acid content
 (i) Obtain data for each amino acid.
(B) estimation of amino acid composition from genome information (e.g., use CMR database (table 1))
 (i)  The amino acid content can be determined by selecting the Genome Tools tab, followed by Analysis Tools and finally 

Codon Usage.

26| The molar percentage and molecular weight of each amino acid must be used to calculate the weight per mol protein. 
Add the individual amino acid values to give a total molecular weight of the protein content. Subsequently, calculate the 
weight percent per amino acid. Then multiply the calculated weight percent by the cellular content percentage of the  
macromolecule and divide by the molecular weight of the individual monomer (Fig. 11 and supplementary Fig. 3b).

27| Determine the nucleotide content either experimentally (option A) or by estimation (option B).
(a) experimental determination of the nucleotide content
 (i)  Obtain data for each deoxynucleotide triphosphate (dATP, dCTP, dGTP and dTTP) and each nucleotide triphosphate  

(ATP, CTP, GTP and UTP).
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(B) estimation of nucleotide composition from genome information
 (i)  For example, use CMR database (table 1). From the Genome Tools tab, select Summary Information, followed by DNA 

Molecule Info. The number of each dNTP (i.e., dATP, dCTP, dGTP and dTTP) present in the genome is listed on the  
summary page.

 (ii)  To determine the RNA composition of the cell, the codon usage that was accessed for the amino acid content in  
Step 25 can be used. It must be remembered that RNA incorporates U instead of T; therefore, the codon usage needs 
to be read with every T replaced by a U.

 (iii) Tabulate the frequency of each nucleotide.

28| Calculate the fractional distribution of each nucleotide to the biomass composition by repeating Step 26.

29| Determine the lipid content. Determine the contributions from fatty acids and phospholipids. Therefore, (i) determine the 
average molecular weight of a fatty acid in the cell by incorporating the average fatty acid composition of the cell (requires 
experimental data, e.g., from literature). (ii) The average molecular weight of each fatty acid must be used and (iii) add 
the weight contributions of each fatty acid to determine the average molecular weight for the fatty acid chain. (iv) Use this 
weight to calculate the average molecular weight of various lipids within the cell. Carry out such a computation by adding 
the molecular weight of the core structure of the molecule and the molecular weight of the fatty acids attached to the core 
structure based on the average molecular weight of one fatty acid that was determined above. (v) The molar percentages  
of the three major phospholipids, phosphatidylethanolamine, phosphatidylglycerol and cardiolipin, may be found in the 
literature. (vi) Then determine the phospholipid contributions to the biomass function (supplementary Fig. 3c).

30| Determine the content of the soluble pool (polyamines and vitamins and cofactors). The soluble pool contains, e.g.,  
spermidine, coenzyme A and folic acid (see supplementary table 4 for a more comprehensive list). Use Figure 12 as a  
template to determine the composition of the soluble pool for the target organism and to calculate the fractional  
distribution to the biomass reaction.

31| Determine the ion content. The calculation of the molar fraction of the ions is illustrated in supplementary table 5. 
It assumes that concentration data are available or can be estimated for each ion. Information about the ion content can 
be obtained from different resources, including primary literature and databases (e.g., CyberCell Database88). Convert the 
reported concentration (ci) for each ion species i into mM. Add all the ion species (total ion concentration, ctotal). Calculate 
the molar fraction (fi) of each ion species i by dividing ci with ctotal: 

  f
c

c
c ci

i
i= = ∑

total
totalwhere

32| Determine GAM. Experimental data should be used to determine the GAM. Alternatively, part of GAM can be estimated  
by the energy required for macromolecular synthesis, e.g., proteins. Figure 13 illustrates how to calculate the GAM using  
the total amount (mmol) of macromolecule (protein, DNA and RNA) and known amount of phosphate bonds necessary to  
synthesize the macromolecules. Note that this estimate will be too low, as other growth-associated cellular processes also 
require ATP.

g monomer / mol macromolecule

e.g., Ala: 0.1118 (mol mol–1) × (71 g mol–1) = 7.9378 (gAla mol–1
        )

g monomer /g macromolecule

e.g., Ala: 9.9502 (gAla mol–1
         ) / 127.45 (gProtein mol–1

        ) = 0.0623
(gAla g–1

        ) 

mmol monomer /g dry weight

e.g., Ala: (0.0623 (gAla g–1
         ) × 0.55 (gProtein g–1

   ) × 1000 (mmolAla mol–1
 ))/ 

71 (gAla mol–1
 ) = 0.482 (mmolAla g–1

     )

Experimental
data % of monomer per genome

e.g., Ala: 0.1118 (mol mol–1) 

* Molecular weight of monomer

:gmacromolecule/molmacromolecule = ∑gmonomer mol–1

*% macromolecule/cell
: molecular weight

* 1000

a
b

c

d

Protein

Protein

Protein

Protein

Protein

macromolecule 

DW Ala

Ala DW

Figure 11 | Flow chart to calculate the fractional contribution of a  
precursor to the biomass reaction. This approach can be used for  
amino acids, nucleotide triphosphates (ATP, GTP, CTP and UTP) and  
deoxynucleotide triphosphates (dATP, dGTP, dCTP and dTTP). The  
steps are illustrated for L-alanine (Ala). (a) The fractional contribution  
of alanine to the proteome is obtained from experimental data or 
estimated from genome sequence. (b) To convert the molar percentage 
into weight of alanine per mole protein, the molar percentage 
is multiplied by the molecular weight of alanine. Note that the 
polymerization of amino acid leads to the loss of a water molecule,  
which needs to be considered when calculating the molecular weight. 
Once the weight of amino acid per mole protein is obtained for all amino 
acids, they are summed to obtain the weight of protein per mole protein. 
(c) The weight of alanine per mole protein is converted into weight 
alanine per weight protein by multiplying with the sum of all amino  
acids’ weight. (d) Finally, the weight of alanine is multiplied by the 
cellular content of protein (see Fig. 13a) and divided by its molecular 
weight to obtain the mole alanine per cell dry weight. Multiplying this 
molar contribution by a factor of 1,000 will result in a final unit of  
mmol alanine per gram of dry weight.
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33| Compile and add biomass reaction 
to the reconstruction. In this step,  
all precursors are assembled in one 
single reaction, the biomass reaction, 
which is then added to the reaction  
list of the reconstruction. Add GAM  
to biomass reaction as follows: x ATP  +  
x H2O → x ADP  +  x Pi  +  x H + , where 
x is the number of required phosphate 
bonds.
 crItIcal step It is to be noted 
that some metabolites might be 
produced. For instance, in the E. coli 
biomass reaction, proton (H + ), ortho-
phosphate (Pi) and some other metabo-
lites are produced65. These metabolites 
originate mainly from the growth- 
associated ATP hydrolysis (Step 32).

34| Add NGAM. Add the following reaction to the reconstruction reaction list: 1 ATP  +  1 H2O → 1 ADP  +  1 Pi  +  1 H + .

35| Add demand reactions to the reconstruction. Add demand functions for compounds that are known to be produced  
by the organism, e.g., certain cofactors, lipopolysaccharide and antigens, but (i) for which no information is available about 
their fractional distributions to the biomass or (ii) which may only be produced in some environmental conditions.

36| Add sink reactions to the reconstruction. Sink reactions are of great use for compounds that are produced by  
nonmetabolic cellular processes but need to be metabolized.
 crItIcal step Adding too many sink reactions may enable the model to grow without any resources in the medium. 
Therefore, sink reactions have to be added with care.

37| Determine growth medium requirements. Use experimental data and primary literature to retrieve essential nutrients and 
defined medium composition. Compile a list of growth requirements.

stage 3: conversion from reconstruction to mathematical model ● tIMInG Days to 1 week
38| Initialize the COBRA Toolbox. Install Matlab, the required Toolboxes (SBML Toolbox and COBRA Toolbox) and an LP  
solver16. Start Matlab as described in the installation instruction. Within Matlab, change to the main working directory.  

Initiate the COBRA Toolbox by entering 
the command initCobraToolbox  
in the Matlab command line. Note  
that the default LP solver can  
be changed by editing the  
initCobraToolbox script or at any  
time during a Matlab session by  
using the changeCobraSolver function 
included in the Toolbox.

Cofactor

X mmol liter–1 

(X × VDW) mmol gDW
–1

×VDW

Molecular weight:
MW (in g mol–1) 

Chemical formula

(X × VDW × MW × 10–3)g gDW
–1

X molecules
/cell 

Conversion factorsa: 

Average cell aqueous volume: Vc = 6.7 × 10–16 liter cell–1 Average dry mass: MDW = 3 × 10–13 gDW cell–1

VDW = Vc / MDW = 2.23 × 10–13 liter gDW
–1 Avogadro's number: NA = 6.02 × 1023 molecules mol–1

(X×10–3/(NA × MDW)) mmol gDW
–1

:NA

:MDW

((X × MW)/(NA × MDW)) g gDW
–1

×MW×MW

X mg gDW
–1

X × 103 g gDW
–1

X/MW mmol gDW
–1

/MW

Figure 12 | Determination of the content of soluble pool. Depending on the available information  
from literature, measurements or database entries the conversion into mmol gDW

 − 1 and g gDW
 − 1 is shown. 

The value in the purple box corresponds to the stoichiometric coefficient in the biomass reactions for 
the precursor. aInformation was obtained from Cybercell Database (CCDB; see table 1 for the link)75.

Total ~P required/gDW:

wt % Total mmol mmol ~P/mmol Total
Protein 0.563 5.197 CP = 4.324 22.472
DNA 0.031 0.101 CD = 1.365 0.138
RNA 0.21 0.649 CR = 0.406 0.264

Total 22.873

Protein % of dry weight mmol Protein/ gDW = ∑mmol amino acids/ gDW mmol ~P/ mmol

Biosynthetic cost: required energy ( in ~P) per cellular content of macromolecules:

mmol ~P/ gdw

*

DNA % of dry weight mmol DNA/ gDW = ∑mmol dNTP/ gDW mmol ~P/ mmol mmol ~P/ gdw

*CD

*CR

*CP

*

RNA % of dry weight mmol RNA/ gDW = ∑mmol NTP/ gDW mmol ~P/ mmol mmol ~P/ gdw

*

∑mmol ~P/ gdw

a

b Growth-associated maintenance:

Hydrolysis of 22.873 mmol ATP gDW
–1

Added to biomass reaction:

x ATP + x H2O → x ADP + x P i + x H, 
where x is 22.873

Figure 13 | Determination of growth-associated 
maintenance (GAM) cost. (a) Calculation  
of GAM cost. (b) Sample calculation for 
Escherichia coli65. The energy necessary for 
the synthesis of the macromolecules from the 
building blocks were obtained from tables 5  
and 6 of Chapter 3 in Neidhardt et al.64. 
The coefficient cP , cD and cR were obtained 
calculating the total energy necessary for the 
macromolecules divided by the total number  
of building blocks (see Neidhardt et al.64).
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A list of frequently used COBRA Toolbox functions is given in supplementary table 6. See also the Nature Protocol on the 
COBRA Toolbox for details on initializing, testing and using the Toolbox16.
? trouBlesHootInG

39| Load reconstruction into Matlab. Save the reaction list in a spreadsheet with the same order of columns as shown in  
supplementary Methods 2 (‘RxnFileName’). A second file containing metabolite information needs to be saved as well 
(‘MetFileName’). The following COBRA Toolbox function should be used to read the reconstruction into Matlab: 

 model xls model RxnFileName MetFileName= 2 ( , );

The loaded metabolic model is stored in a structure named ‘model’ in Matlab. This structure contains all the information about 
the reconstruction in different fields of the structure. Figure 10 provides a description of the individual fields and their content.
? trouBlesHootInG

40| Verify S matrix. Use spy(matrix) to verify the structure of the imported S matrix. This visualization should be repeated 
when reactions are added to the reconstruction to ensure that they are connected to the network.

41| Set objective function. Use the following COBRA Toolbox function to set the objective function of the model: 

 
model changeObjective model rxnNameList objectiveCoeff= ( , , )

The reaction(s) that should be set as the objective function is given by ‘rxnNameList’. It will receive a corresponding  
coefficient ‘objectiveCoeff’. This means that a single reaction or a linear combination of multiple reactions can be chosen  
as the objective function.
 crItIcal step The COBRA Toolbox is set up in a way that the coefficient(s) for the objective function has to be a  
positive number. When minimizing, the input option to the COBRA Toolbox function optimizeCBmodel.m can be set to ‘min’.  
The default option of the ‘optimizeCBmodel’ function is maximizing (‘max’) (see supplementary table 6).

42| Set simulation constraints. Use the following function to set the constraints of the model: 

 model changeRxnBounds model rxnNameList value boundType= ( , , , )

The list of reactions for which the bounds should be changed is given by ‘rxnNameList’, whereas an array contains the new 
boundary reaction rates (‘value’). This type of bound can be set to lower bound (‘l’) or upper bound (‘u’). Alternatively, both 
bounds can be changed (‘b’). Use the following command to list all constrained reactions that are greater than a minimal 
value (‘MinInf’) and smaller than a maximal value (‘MaxInf’):

 PrintConstraints model MinInf MaxInf( , , )

In addition, there is a function available that lists all reactions and their flux values in a solution (‘fluxData’): 

printFluxVector model fluxData( , )

 stage 4: network evaluation  =  ‘Debugging mode’ ● tIMInG Weeks to months
43| Test if the network is mass and charge balanced. Check for stoichiometrically unbalanced reactions. All, or a subset, of the 
network reactions can be given as input (‘RxnList’) along with the model structure (‘model’): 
 

[ ] ( , )UnbalancedRxns CheckMassChargeBalance model RxnList=

In case of unbalanced reactions, the function returns a structure containing the name of the unbalanced reaction and which 
elements are unbalanced (‘UnbalancedRxns’).

44| Evaluate stoichiometrically unbalanced reactions. Looking at the reaction equations and the charged formula for each 
metabolite will help to identify ways to balance the reactions. Normally, there are two common errors causing unbalanced 
reactions: Missing proton and/or water or the stoichiometric coefficient of at least one metabolite is wrong. If it is the  
latter error, repeat Step 9. If a proton as substrate is missing, then a proton donor may be necessary (e.g., NADH, NADPH). 
This will require a literature search to identify a candidate proton donor. If a water molecule is missing, it should be kept  
in mind that after adding water to the equation the proton and oxygen will need to be balanced again.
! cautIon A few network reactions are always unbalanced. These reactions include the biomass reaction, demand, sink and 
exchange reactions.



112 | VOL.5 NO.1 | 2010 | nature protocols

  
p

u
or

G  
g

n i
h si l

b
u

P er
u ta

N 010 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc. e r

ut a
n .

w
w

w / /:
pt t

h

protocol

45| Identify metabolic dead ends. Use

[Gaps]  =  AnalyzeGaps(model)

to identify the gaps. The function will return a list of all metabolites (‘Gaps’) that are only produced (‘Product’) or consumed 
(‘Substrate’) in the network. Dead-end metabolites that are caused by reversible reactions will be listed as ‘Substrate_Product’ 
in the ‘Gaps’ list. Copy this gap list into an excel sheet, where information and references can be easily added for each  
dead-end metabolite.

46| Identify candidate reactions to fill gaps. Use primary literature and genome annotation tools to find candidate genes and reac-
tions to fill the gap (see table 1 for some example tools). Also, use KEGG41 maps, biochemical textbooks or other available biochemi-
cal maps to identify the metabolic ‘environment’ of the dead-end metabolite. If the genome annotation of the target organism is 
present in KEGG41, one can highlight the dead-end metabolite on the map. This may give an indication of which enzyme(s) may be 
able to produce or synthesize the dead-end metabolite and thus provide a good starting point for literature and/or genome search.

47| Add gap reactions to the reconstruction. If experimental and/or annotation data support gap reactions or they are needed 
for modeling purposes, the reaction(s) should be added to the reconstruction by repeating Steps 6–17.
 crItIcal step Keep in mind that adding new reactions to the network may cause new gaps. Therefore, when adding  
reactions one should make sure that all the metabolites are connected to the network. Repeat Step 45, if necessary.

48| Add notes and references to dead-end metabolites. Each dead-end metabolite should be documented. The note for the 
remaining dead-end metabolites should distinguish between knowledge and scope gap for future reference (Fig. 8a).
 crItIcal step The more detailed and carefully the gap-filling steps are done (Steps 46–48) the easier and faster the 
debugging process will be.

49| Add missing exchange reactions to model. The gap-filling process may have resulted in the inclusion of further transport 
reactions. Thus, exchange reactions need to be added to the reconstruction. Repeat Step 21.

50| Set exchange constraints for a simulation condition. Determine an environmental condition, in which most network  
evaluation tests should be carried out initially (‘standard condition’). Use 

 model changeRxnBounds model rxnNameList value boundType= ( , , , )

to set the constraints. Reactions whose bounds should be changed are listed in ‘rxnNameList’. The new value for each reac-
tion is contained in the array ‘value’. Finally, the type of constraint has to be defined in the list ‘boundType’. The possible 
types are: ‘l’ for lower bound, ‘u’ for upper bound and ‘b’ if both reaction bounds should be set to the specified value.

test for stoichiometrically balanced cycles or type III pathways (optional)
51| Test for Type III pathways. Therefore, use the following function: 
 

TestForTypeIIIPathways model ListExch( , );

A list of indices of the exchange reactions in the S matrix (‘ListExch’) has to be provided to the function. These exchange 
reactions will be set to zero and then the flux variability of the closed model is calculated. This function requires that  
X3.exe is in the working directory. The function will return files if there are Type III pathways in the model.
? trouBlesHootInG

52| Analyze the output if Type III pathways are found. If Type III pathways have been identified, there are two output files: 
one file (‘ModelTestTypeIII_myT3.txt’) has all Type III pathways as a matrix, wherein the rows are the different pathways and 
the columns correspond to the network reaction (in the same order as given in ‘ModelTestTypeIII_myRxnMet.txt’). Note that 
the extreme pathway package converts network reactions into elementary reactions (i.e., irreversible reactions). A second file 
(‘ModelTestTypeIII_myT3_Sprs.txt’) contains the Type III pathways in a sparse format, which is easier to analyze by hand.

53| Identify Type III pathways. Note that reversible reactions form Type III pathways as well. In general, one is looking  
for Type III pathways that contain three or more reactions. It is possible that multiple complicated Type III pathways  
may exist in the model. Listing the corresponding reaction formulas or even drawing a map might be helpful to understand 
how the reactions form the loop(s).

54| Analyze directionality of each reaction participating in a Type III pathway. Re-investigate the thermodynamic  
information if available (Step 10).
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55| Analyze if any reaction participating in a Type III pathway may be falsely included in the reconstruction by reviewing 
the supporting evidence.

56| If none of the reactions or reaction directions can be corrected based on experimental or thermodynamic information, you 
can try to iteratively limit the directionality of the loop reactions. A more elaborate procedure has been described elsewhere67.

57| Adjust the directionality for all those reactions identified in Steps 54–56, note the change and reasons.

58| After eliminating a reaction direction or a deletion of a reaction, repeat the Type III pathway analysis. Also, make sure 
that the removal of directionality or reaction does not affect the model‘s growth capabilities.
 crItIcal step Keep in mind that such a change to the network is a hypothesis and may cause problems under different 
simulation conditions (e.g., environmental conditions).

59| Recompute gap list.

[Gaps]  =  AnalyzeGaps(model).

Again, the list ‘Gaps’ contains remaining gaps in the network. It will be helpful to have an overview of the remaining  
dead-end metabolites.

test if biomass precursors can be produced in standard medium (set in step 42) 
60| Obtain the list of biomass components: 
 

[ , ] ( ,BiomassComponent BiomassFraction PrintBiomass model Biom= aassNumber)

where the biomass reaction index is provided with ‘BiomassNumber’. The function returns all the biomass components  
(‘BiomassComponent’) and their corresponding fractions in the array ‘BiomassFraction’. It also prints the results in the  
command window.

61| Add demand function for each biomass precursor (‘metaboliteNameList’): 

 [ , ] ( ,modelNew rxnNames addDemandReaction model metaboliteName= LList);

Note that ‘metaboliteNameList’ should be identical to ‘BiomassComponent’, obtained in Step 60. A new model is returned 
(‘modelNew’), which has additional demand reactions for every precursor whose reaction abbreviations are listed in ‘rxnNames’.

62| For each biomass component, perform the following test: Change objective function to the demand function (‘rxnName’): 
 

modelNew changeObjective function modelNew rxnName= ( , );

63| Maximize (‘max’) for new objective function (Demand function) 
 

FBAsolution optimizeCbModel modelNew= ( , ’max’);

The structure ‘FBAsolution’ contains the optimal solution vector (‘FBAsolution.x’) and also the value for the objective reaction 
(‘FBAsolution.obj’). If it is Case 1, the model can produce biomass component (FBAsolution.obj >0), proceed with the next bio-
mass component. If it is Case 2, the model cannot produce biomass component (FBAsolution.obj  =  0). Follow Steps 64 and 65.

64| Identify reactions that are mainly responsible for synthesizing the biomass component.

65| For each of these reactions, follow the wire diagram given in Figure 14.

66| Test if biomass precursors can be produced in other growth media. Repeat Steps 60–65.

test if the model can produce known secretion products 
67| Collect a list of known secretion products and medium conditions.

68| Set the constraints to the desired medium condition (e.g., minimal medium  +  carbon source). For changing the  
constraints, use the following function: 

 
model changeRxnBounds model rxnNameList value boundType= ( , , , )
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Reactions whose bounds should be changed are listed in 
‘rxnNameList’. The new value for each reaction is contained 
in the array ‘value’. Finally, define the type of constraint 
in the list ‘boundType’. The possible types are: ‘l’ for lower 
bound, ‘u’ for upper bound and ‘b’ if both reaction bounds 
should be set to the specified value. If the model shall be 
required to grow in addition to producing the by-product, 
set the lower bound (boundType  =  ‘l’) of the biomass reac-
tion (‘rxnNameList’) to the corresponding value (‘value’). 

model changeRxnBounds model rxnNameList value boundType= ( , , , );

69| Change the objective function to the exchange reaction 
of your secretion product: 

 
model changeObjective model rxnNameList objectiveCoeff= ( , , )

The reaction(s) that should be set as the objective function 
is given by ‘rxnNameList’. They will receive a corresponding 
coefficient ‘objectiveCoeff’.

70| Maximize (‘max’) for the new objective function  
(as a secretion is expected to have a positive flux value,  
see Fig. 7): 

 FBAsolution optimizeCBModel model= ( , ’max’);

If the product can be produced (FBAsolution.obj >0), proceed with the next by-product. If the product cannot be produced 
(FBAsolution.obj  =  0), the corresponding pathway is missing or incomplete, and thus, gap analysis must be performed  
(Steps 45–49).

test if the model can produce a certain ratio of two secretion products 
71| Set the constraints to the desired medium condition (e.g., minimal medium  +  carbon source). For changing the  
constraints, use the following function: 
 model changeRxnBounds model rxnNameList value boundType= ( , , , )

72| Verify that both by-products can be produced independently. Repeat Steps 69 and 70.

73| Add a row to the S matrix (see Fig. 8b for an example of an S matrix) to couple the by-product secretion reactions: 

 
modelNew AddRatioReaction model ListOfRxns RatioCoeff= ( , , )

The two reactions that should be set to a certain ratio are listed in ‘ListOfRxns’. Their ratio is given in ‘RatioCoeff’ by listing 
the corresponding coefficients in this array. For example, 1:2 is given as [1 2]. If the model is required to grow while  
producing the by-product, then set the lower bound of the biomass reaction to a corresponding value. 

 
model changeRxnBounds model rxnNameList value boundType= ( , , , );

74| Change the objective function to the exchange reaction of one of your secretion products: 

 

model changeObjective model rxnNameList objectiveCoeff= ( , , )

75| Maximize for the new objective function (as a secretion is expected to have a positive flux value, see Fig. 7): 
 

FBAsolution optimizeCBModel model= ( , ’max’);

If the product can be produced (FBAsolution.obj >0), the second by-product can be produced in the defined ratio. If the 
product cannot be produced (FBAsolution.obj  =  0, or problem is infeasible), i.e., the ratio cannot be matched. The debug-
ging is less straightforward in this case as multiple reasons may apply. One very likely reason is that the organism (or cell) in 
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Figure 14 | Flow chart on debugging network reactions that cannot carry 
flux. ‘rxn’ stands for reaction; ‘conf’ stands for confidence score; and ‘met’ 
stands for metabolite.
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the experimental condition under which the ratio was determined did not grow optimally. If in Step 73 a lower bound is  
set on the growth rate it may cause the discrepancy (because of competition for, e.g., carbons in by-products and biomass 
reaction). The bound could be set lower. Alternatively, some more elaborate tools that are currently not in the COBRA  
Toolbox can be used to identify missing genes/reactions (supplementary table 3).

check for blocked reactions 
76| Change simulation conditions to rich medium or open all exchange reactions: 
 model changeRxnBounds model rxnNameList value boundType= ( , , , )

Note that the value of the exchange reactions (‘rxnNameList’) does not matter, as this step is testing a qualitative not a 
quantitative property. Therefore, one can set the value to  − infinity (e.g.,  − 1,000) and  + infinity (e.g.,  + 1,000). As we are 
changing upper and lower bound the boundType is ‘b’.

77| Run analysis for blocked reactions. The function returns a list of blocked reactions (‘BlockedReactions’). 

 BlockedReactions FindBlockedReaction model= ( )

78| Connect reaction to remaining network (optional). This depends on the function of the blocked reaction. Follow the  
diagram in Figure 14.

compute single-gene deletion phenotypes 
79| Compute single-gene deletion phenotypes. Use the following function in the COBRA Toolbox: 
 

[ , , ] ( ,grRatio grRateKO grRateWT singleGeneDeletion model metho= dd geneList, )

This function allows the use of different methods (‘method’) for optimization, e.g., FBA, minimization of metabolic adjust-
ment (MOMA)6 or linear MOMA16. The list of genes that shall be deleted is given by ‘geneList’. If no gene list is given or the 
string is empty, all genes in the reconstruction will be deleted and tested for growth capabilities of the knockout mutant. 
The function calculates the growth rate of the wild-type strain (‘grRateWT’) of each deletion strain (‘grRateKO’), as well as 
the relative growth rate ratios (‘grRatio’).

80| Compare with experimental data. The evaluation of inconsistencies will lead to further reconstruction refinement (Fig. 9). 
Repeat the gap analysis as necessary (Steps 45–49).

test for known incapabilities of the organism 
81| Set simulation condition. Change objective function. Test for incapability by maximizing for objective function.  
If incapable, no solution or zero flux should be returned.

82| Use single-reaction deletion to identify candidate reactions that enable the model’s capability despite known incapability: 

 [ , , , , , ]grRatio grRateKO grRateWT hasEffect delRxns fluxSolution == singleGeneDeletion model( );

This smaller subset of reactions needs to be manually evaluated. Note that the deletion of a single function may not be  
sufficient when alternate pathways exist in the network.
 crItIcal step Missing incapabilities may not only be caused by falsely added reactions in the metabolic network but  
may be a consequence of missing regulatory information. Literature may provide the necessary data.

test if the model can predict the correct growth rate or other quantitative properties 
83| Compare the predicted physiological properties with the known properties. Use the suite of functions in the COBRA  
Toolbox along with experimental data (e.g., phenotypic, physiological and genetic data).

test if the model can grow fast enough 
84| Optimize for biomass reaction in different medium conditions and compare with experimental data. If the model does 
not grow at all, follow option A. If the model does not grow fast enough, follow option B.
(a) If the model does not grow at all
 (i)  Check your boundary constraints. If these are correct, it is possible that the simulated condition does not support 

growth (compare with experimental data) or the network is incomplete. In the latter case, return to Steps 45–49 to 
identify the missing links in the network.
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(B) If the model does not grow fast enough
 (i)  Check your boundary constraints. If these are correct, the possibilities of error modes are quite numerous. It is advised 

to verify the constraints applied to the model (e.g., reaction directionality). Use the function that lists all constrained 
reactions that are greater than a minimal value (‘MinInf’) and smaller than a maximal value (‘MaxInf’): 

PrintConstraints model MinInf MaxInf( , , );

85| Test if any of the medium components are growth limiting. If so, increase the uptake rate (‘value’) of one substrate  
(‘rxnNameList’) at a time by using: 

model changeRxnBounds model rxnNameList value boundType= ( , , , )  

and setting the bound type to lower bound ‘l‘ (‘boundType‘)

86| Maximize for biomass. If the biomass reaction value increases, it means that this compound is limiting. This gives you a 
hint as to where in the network something must be missing.

87| Determine the reduced cost associated with network reactions when optimizing for objective function. Use 

 FBAsolution optimizeCbModel model osenseStr primalOnlyFlag= ( , , )) 

Set primalOnlyFlag to ‘false’ to get the reduced cost returned with the optimal solution (FBAsolution.w). When maximizing  
the objective function ‘osenseStr’ will be ‘max’, whereas minimization is defined by ‘min’. Find the reactions with the lowest 
reduced cost values. Increase flux through those reactions, if possible, by removing upper bounds. This will lead to increased 
flux through the objective reaction.

test if the model grows too fast 
88| Optimize for biomass reaction in different medium conditions and compare with experimental data.

89| Verify that the model constraints are set as intended. Use the function that lists all the constrained reactions that are 
greater than a minimal value (‘MinInf’) and smaller than a maximal value (‘MaxInf’): 

 PrintConstraints model MinInf MaxInf( , , );

carry out one or more of the following tests to identify possible errors in the network 
90| Verify that all fractions and precursors in the biomass reaction are consistent with the present knowledge. This may 
include that the GAM in the biomass reaction is not correct.

91| Identify shuttling reactions, e.g., proton shuttling, by repeating Steps 51–58. Thereby, one is looking for reactions  
associated with loops.

92| Re-investigate the thermodynamic information associated with the network reaction, i.e., reaction directionality,  
supporting evidence and uncertainty associated with thermodynamic data.

93| Use single-reaction deletion to identify single reactions that may enable the model to grow too fast. Use the following  
function by setting the ‘method’ to ‘FBA’, and the ‘rxnList’ should contain one or more reactions that are to be deleted.  
If all network reactions are to be tested, then ‘rxnList’ does not need to be defined: 

 [ , , ] ( ,grRatio grRateKO grRateWT singleRxnDeletion model method= ,, )rxnList

The function will return the wild-type growth rate (‘grRateW’), the growth rate of the reaction-deleted network (‘grRateKO’) 
and the relative growth rate ratio (‘grRatio’). However, it is most likely that multiple reactions contribute to this observa-
tion, and thus, they are not identified by this method.

94| Reduced cost. The reduced cost analysis can be used to identify those reactions that can reduce the growth rate  
(positive cost value). Use: 

 
FBAsolution optimizeCbModel model osenseStr primalOnlyFlag= ( , , ))

Set primalOnlyFlag to ‘false’ to get the reduced cost returned with the optimal solution (FBAsolution.w). When maximizing 
the objective function ‘osenseStr’ will be ‘max’, whereas minimization is defined by ‘min’.
 crItIcal step Changes to the model may be condition specific and should be well documented.
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 crItIcal step An unconstrained NGAM reaction can change the model prediction in some cases. For example, if the  
computed growth rate of the model is too high, check the flux value through the NGAM reaction in the optimal solution.

Data assembly and dissemination ● tIMInG Days to weeks
95| Print Matlab model content. Make the final reconstruction available to the research community in at least two formats: 
(1) as a spreadsheet containing all information collected during the reconstruction process (as shown in supplementary 
Methods 2); and (2) in SBML format, which is a transportable format of the models and can be used with other modeling 
tools. To export the reconstruction from Matlab into Excel format, use: 

writeCBmodel model format FileName where format is xls( , , ) ’ ’ ’ ’

To export a model in SBML format, use the same function but change the format to ‘sbml’. The output file name is defined by 
‘FileName’.
 crItIcal step It should be noted that the SBML format will not contain all identifiers, references and notes. It is 
therefore crucial to distribute the reconstruction in a different format. Ideally, the reconstruction content is made available 
through a web page, such as BiGG (http://bigg.ucsd.edu), which facilitates queries.

96| Add gap information to the reconstruction output. In Steps 45–48 information regarding the remaining and resolved  
network gaps was collected. These should be associated with the output of the final reconstruction (e.g., in Excel format).

● tIMInG
The timing of the entire reconstruction process depends on the properties of the target organism (prokaryote versus  
eukaryote, genome size), the quality of the genome annotation and the availability of experimental data. The timing listed 
below represents an average and can be used to plan the different stages. All COBRA Toolbox functions described in this  
protocol finish with a couple of seconds to a few hours on a newer personal computer (Intel Core 2 Duo 6600 2.4 GHz  
with 4 Gb of memory running Windows Vista).
Steps 1–4 (Stage 1), Draft reconstruction: days to a week
Step 5 (Stage 1), Collect experimental data: ongoing throughout the reconstruction process
Steps 6–23 (Stage 2), Manual reconstruction refinement: months to a year (if debugging and gap filling is done along  
the way)
Steps 24–36 (Stage 2), Determine biomass composition: days to weeks, depending on data availability
Step 37 (Stage 2), Determine growth medium requirements: days to weeks, depending on data availability
Steps 38–42 (Stage 3), Conversion from reconstruction to mathematical model: days to a week
Steps 43–94 (Stage 4), Network evaluation  =  ‘Debugging mode’: week to months
Steps 95–96, Data assembly and dissemination: days to weeks, depending on how much and in which format data were  
collected.

taBle 6 | Extract of reconstructions and their key properties that were constructed in accordance with this protocol.

organism strain Genes Version Gr Mets rxns comp ref

Bacillus subtilis 4,225 model_v3 844 988 1,020 2 (c,e) 75

Escherichia coli K12 MG1655 4,405 iAF1260 1,260 1,039 2,077 3 (c,e,p) 65

Helicobacter pylori 26695 1,632 iIT341 341 485 476 2 (c,e) 76

Pseudomonas putida KT2440 5,350 iNJ746 746 911 950 3 (c,p,e) 57

Pseudomonas putida KT2440 5,350 iJP815 815 886 877 2 (c,e) 96

Pseudomonas aeruginosa PA01 5,640 iMO1056 1,056 760 883 2 (c,e) 97

Mycoplasma genitalium G-37 521 iPS189 189 274 262 2 (c,e) 98

Lactobacillus plantarum WCFS1 3,009 721 531 643 2 (c,e) 73

Streptomyces coelicolor A3(2) 8,042 700 500 700 2 (c,e) 99

Leishmania major Friedlin 8,370 iAC560 560 1,101 1,112 8 (a,f,y,c,e,m,r,n) 100

Saccharomyces cerevisiae Sc288 6,183 iMM904 904 713 1,412 8 (c,e,m,x,n,r,v,g) 101

Homo sapiens 28,783 Recon 1 1,496 2,766 3,311 8 (c,e,m,x,n,r,v,g) 15

Abbreviations: Comp, compartments; GR, genes in reconstruction; Mets, metabolites; Ref, reference; Rnxs, reactions. Please refer to supplementary table 1 for compartment abbreviations.
A complete list of reconstructions, constructed in part or in full in accordance with this protocol, can be found at http://gcrg.ucsd.edu/In_Silico_Organisms/Other_Organisms. This website is continuously 
updated.
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? trouBlesHootInG
Step 38: See installation instructions of the COBRA Toolbox16 for details on how to install and set Matlab, SBML and COBRA 
Toolbox.
Step 39: The script may fail during the loading of the model from the xls files. Check:
whether the headers are correct (supplementary Methods 2).
that all necessary information is available.
the metabolic reaction is written correctly → example; if there are multiple spaces in the reaction, the script does not work. 
Separator for left-hand side and right-hand side can be -->, ->,  <  =  = >,  <  = >
Mixing numbers and strings can cause problems as well. See Ecoli_core.xls as an example on how the input file should look.
Step 51: It should be made sure that the directory in which one is working is the same wherein the X3.exe script was  
copied to. The .expa file produced by the function must be in the same directory as X3.exe.

antIcIpateD results
This protocol will result in a reconstruction that covers most of the known metabolic information of the target organism and 
represents a knowledge database. This reconstruction can be used as a resource for information (query tool), high-through-
put data mapping (context for content) and a starting point for mathematical models. table 6 lists a subset of published 
reconstructions that were constructed based on the presented protocol.

To facilitate the use of the presented COBRA Toolbox commands (Steps 43–95), we listed examples of their use in  
supplementary Methods 1.

 Box 1 | GlossAry
Bibliome: A bibliome is a collection of primary and review literature as well as textbooks.
Biochemical, Genetic and Genomic (BiGG) knowledge base: A BiGG knowledge base is a genome-scale reconstruction, which incor-
porates in a structured manner genomic, proteomic, biochemical and physiological information of a particular organism or cell.
Biomass reaction: The biomass reaction lumps all known biomass precursors and their fractional distribution to a cell into one network 
reaction.
Blocked reactions: Network reactions that cannot carry any flux in any simulation condition are called blocked reactions. Generally, 
these blocked reactions are caused by missing links in the network.
constraint-based reconstruction and analysis (coBra): COBRA is a modeling approach in which manually curated, stoichiometric 
network reconstructions are constructed. Subsequently, models can be obtained and analyzed by applying equality and inequality con-
straints and by computing functional states. Constraints include mass conservation and thermodynamics (for directionality), as well as 
constraints reflecting experimental conditions and regulatory constraints.
Dead-end metabolite: A dead-end metabolite is only produced or consumed in the network.
Demand reaction: When the consumption reaction(s) of a metabolite is not known or outside the scope of the reconstruction it can be 
represented by this unbalanced, intracellular reaction (e.g., 1 A -->).
exchange reactions: These reactions are unbalanced, extra-organism reactions that represent the supply to or removal of metabolites 
from the extra-organism “space”. (See Fig. 7.)
extreme pathways (expa’s): ExPa’s are a unique and minimal set of flux vectors, which lie at the edges of the bounded null space. 
Biochemically meaningful steady-state solutions can be obtained by non-negative linear combinations of ExPa’s.
Flux-balance analysis (FBa): FBA is a formalism that defines the metabolic network as a linear programming optimization problem. 
The main constraints in FBA are imposed by the steady-state mass conservation of metabolites.
Futile cycles: Stoichiometrically unbalanced cycles, which are associated with energy consumption.
Gene–protein-reaction (Gpr) association: A GPR association connects genes, proteins and reactions in a logical relationship (AND, OR).
Genome-scale model (GeM): A GEM is derived from a GENRE by converting it into a mathematical form (i.e., an in silico model) and by 
assessing its phenotypic properties computationally.
Genome-scale network reconstruction (Genre): A GENRE is formed based on an organism-specific BiGG knowledge base. A GENRE 
is a collection of biochemical transformation derived from the genome annotation and the bibliome of the target organism. A network 
GENRE is unique to an organism, as is its genome.
Flux variability analysis (FVa): FVA is a frequently used computational tool for investigating more global capabilities under a given 
simulation condition (e.g., network redundancy). Therefore, every network reaction will be chosen as an objective function, and the 
minimal and maximal possible flux value through the reaction is determined by minimizing and maximizing the objective function.
linear programming (lp): LP is an optimization technique, in which a linear objective function is optimized (i.e., minimized or  
maximized) subject to linear equality and inequality constraints.
network gap: A network gap is a missing reaction or function in the network that can connect one or more dead-end metabolites with 
the remainder of the network.

(continued)
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Note: Supplementary information is available via the HTML version of this article.
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