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• Solutions to frequently occurring problems in distributed systems can be made generic and reusable as formal patterns.
• Such formal patterns can greatly reduce the complexities of designing, verifying, and implementing a system.
• Formal patterns can be made executable in rewriting logic and come with semantic applicability conditions and formal guarantees.
• The paper defines the semantics of formal patterns and illustrates their usefulness in various cyber-physical, medical, and security applications.
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Many distributed systems are real-time, safety-critical systems with strong qualitative and
quantitative formal requirements. They often need to be reflective and adaptive, and may
be probabilistic in their algorithms and/or their operating environments. All this makes
these systems quite complex and therefore hard to design, build and verify. To tame such
system complexity, this paper proposes formal patterns, that is, formally specified solutions
to frequently occurring distributed system problems that are generic, executable, and come
with strong formal guarantees. The semantics of such patterns as theory transformations in
rewriting logic is explained; and a representative collection of useful patterns is presented
to ground all the key concepts and show their effectiveness.

© 2013 Published by Elsevier B.V.

1. Introduction

Many distributed systems are: (i) real-time; (ii) safety-critical, with strong qualitative and quantitative formal require-
ments; (iii) reflective and adaptive, to be able to operate in changing and potentially hostile environments; and (iv) possibly
probabilistic in their algorithms and/or their operating environments.

Their distributed features, their adaptation needs, and their real-time and probabilistic aspects make such systems quite
complex and therefore hard to design, build and verify. One important source of complexity, causing many unforeseen design
errors, arises from ill-understood and hard-to-test interactions between their different distributed components. For real-time
distributed systems this complexity is even higher, because such interactions must take place within specific time windows.
All this system complexity makes system verification quite hard, yet unavoidable, since the safety-critical nature of many of
these systems makes their verification essential.

All this means that methods to tame and greatly reduce system complexity are badly needed. System complexity has many
aspects, including the complexity and associated cost of: (i) designing; (ii) verifying; (iii) implementing; and (iv) maintaining
and evolving such systems.
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The main goal of this paper is to propose the use of formal patterns to drastically reduce all system complexity aspects.
By a “formal pattern”1 I mean a solution to a commonly occurring software problem that is:

1. As generic2 as possible;
2. Formally specified, with precise applicability requirements;
3. Executable; and
4. Comes with strong formal guarantees.

A formal pattern can be applied to a potentially infinite set of concrete instances, where each such instance application is
correct by construction and enjoys the formal guarantees of the pattern.

A key idea, also outlined in [51] for cyber-physical systems, is that distributed systems should be designed, verified, and
built by composing formal patterns that are highly generic and reusable and come with strong formal guarantees. In this way,
a large part of the verification effort can be done in an up-front, fully generic manner, so that it can be amortized across a
potentially infinite number of instances.

As I will show through concrete examples, drastic reductions in all aspects of system complexity, including the formal ver-
ification aspect, can be achieved this way. The resulting system simplicity and component reusability should enable the
design and implementation of high-quality, highly reliable distributed systems at a fraction of the cost required not using
such patterns.

1.1. The need for a semantic framework

To develop formal patterns for distributed systems with features such as those mentioned above an appropriate semantic
framework is needed, one supporting:

1. Concurrency and distributed objects;
2. Logical reflection;
3. Distributed object reflection and adaptation;
4. Executability;
5. Real time and probabilities; and
6. Formal verification methods and tools.

Supporting features (1)–(6) is a tall order. Yet, as the examples I will present show, all these features are necessary to give
a formal semantics to patterns for distributed systems. I will use rewriting logic as a semantic framework supporting features
(1)–(6), and will show through a substantial collection of examples its adequacy to specify and verify formal patterns of this
nature.

1.2. Rewriting logic in a nutshell

Rewriting logic [36] is a flexible logical framework to specify concurrent systems, where a concurrent system is specified
as a rewrite theory R= (Σ, E, R) with:

• Σ a signature defining the syntax and types of the system;
• E a set of equations defining system’s states as an algebraic data type; and
• R a set of rewrite rules of the form t → t′ , specifying the system’s local concurrent transitions.

Rewriting logic deduction consists in applying rewriting rules R concurrently, modulo the equations E , so that in a system
specified by a rewrite theory R, concurrent computation coincides with logical deduction in R.

The above remarks, plus the fact that it can naturally specify distributed object systems [37], show that rewriting logic
supports feature (1) in the list of framework requirements of Section 1.1. Feature (2), logical reflection [20], is also key, as I
further explain in Section 2, where I also show how various forms of distributed object reflection (feature (3)) are naturally
supported. Under simple conditions, rewrite theories are executable (feature (4)) in rewrite engines such as Maude [19],
CafeOBJ [29] and Elan [14]. Furthermore, the Real-Time Maude [48] and the PMaude [4] language extensions respectively

1 Throughout this paper, “formal patterns” will be the formal counterpart of what are called design patterns in the informal descriptions of patterns,
e.g., [30]. Therefore, they are computational solutions with a clear algorithmic meaning. In their informal descriptions this is exemplified by sample code
in a conventional language such as, say, C++. All this is captured at the formal level by requirement (4) below, insisting that the formal specification of a
(design) pattern should be executable.

2 Throughout this paper I will always assume that a formal pattern is a generic component. For informal patterns this was not part of the original concept.
However, the work of Meyer and Arnout [43] has shown a general way in which patterns can be turned into generic components.



J. Meseguer / Science of Computer Programming 83 (2014) 3–34 5
support the specification of real-time and probabilistic distributed systems (feature (5)). Also, for verification purposes,
Maude additionally provides several model checkers and theorem proving tools [19]. Likewise, Real-Time Maude provides a
model checker [48]; and properties of probabilistic rewrite theories in PMaude can be model checked using the PVeStA
tool [8], which allows parallelization of the statistical model checking process for better performance and scalability (fea-
ture (6)).

1.3. Paper organization

Since the word “pattern” can be used rather vaguely, the expression “formal pattern” may be infected by such vagueness,
which would make all formal specification and verification claims highly questionable. This of course would be unaccept-
able. So the first order of business is for me to explain precisely what I mean by a “formal pattern” within the semantic
framework of rewriting logic. This I do in Section 2.

But how useful is this notion in practice? The main goal of this paper is to try to convince you, my reader, that it
is very useful to drastically simplify the design and verification of distributed systems. This means that I should provide
some hard evidence showing that this is not a pie-in-the-sky idea. Fortunately, I have hard evidence in hand, based on a
variety of formal patterns developed with other colleagues, which will help ground the ideas that I am proposing, includ-
ing:

1. The Command Shaper Pattern for safe interoperation of medical devices proposed in [54], which is discussed in Section 3.
2. The PALS pattern for achieving virtual synchrony in a distributed real-time system originally proposed in [45], and

formalized and proved correct in [39,40], which is explained in Section 4.
3. The Cookies pattern for protection against Denial of Service (DoS) attacks was proposed in [17] and is summarized in

Section 5.1.
4. The Adaptive Selective Verification (ASV) DoS protection protocol was originally proposed in [34]. It was formalized and

analyzed as a probabilistic rewrite theory in [9], and, as explained in Section 5.2, was specified in a modular way as a
formal pattern in [6,27].

5. The Server Replicator (SR) pattern proposed in [27] can provision additional servers to decrease server load as explained
in Section 5.3.

6. The Composition of the ASV and SR into the ASV + SR pattern proposed in [27] to maintain a uniform level of service in
spite of an increasingly harsh DoS attack, which is explained in Section 6.1.

7. The Multirate PALS pattern proposed in [11], which achieves virtual synchrony in a multirate distributed real-time system
by composing the PALS pattern described in Section 4 with two simpler patterns: the k-Step Machine pattern, and the
Input Adaptor pattern, is explained in Section 6.2.

Since details can be found in the already published papers [54,40,34,9,27], I will not describe all these patterns in full
detail. What I will instead do in Sections 3–6 is to convey the main ideas about each pattern in a somewhat impressionistic
way, referring to the corresponding publications for additional details.

Indeed, the main goal of this paper is not to describe the above patterns in full detail, but to explain what formal patterns
are, giving a precise semantics for them. A related goal is to explain why the formal guarantees associated to each pattern,
together with their generic nature, can greatly simplify the design and verification of high-confidence distributed systems.
The example patterns help ground the overall discussion.

I discuss related work and present some concluding remarks in Section 7.

2. Formal patterns as theory transformations

As already mentioned, what I intuitively mean by a “formal pattern” is a solution to a commonly occurring software
problem that is: (i) as generic as possible; (ii) formally specified, with precise semantic requirements for its applicability;
(iii) executable; and (iv) comes with strong formal guarantees. This, however, does not explain what a formal pattern is
mathematically: this requires using a formal framework in which the semantics of such patterns can be made precise. This
is exactly what I do in this section, using rewriting logic as the framework. I begin by proposing a taxonomy of formal
patterns, and then proceed to make precise their associated semantics.

2.1. A taxonomy of formal patterns

Without claiming that the kinds of formal patterns below form an exhaustive taxonomy, they have been used extensively,
have proved to solve many problems, and are general enough to cover many examples, including all the examples I will
discuss:
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1. Parameterized Theories. Example: The Command Shaper pattern, ensuring stress–relax safety of medical devices.
2. Theory Transformations with Performance Parameters. Example: The PALS pattern, ensuring virtual synchrony in real-

time distributed systems.
3. Reflective Meta-Object Patterns, which can be:

• Onion-Skin Meta-Objects: Examples: The Cookies and ASV meta-objects, ensuring different forms of DoS protection.
• Russian Dolls Meta-Objects: Examples: The Server Replicator (SR) pattern for Cloud Computing, ensuring uniform per-

formance under increasing client requests, and the ASV + SR pattern, composing ASV and SR.

An important point to make is that the just-listed kinds of patterns are not mutually exclusive. For example, the parameter-
ized theories used in distributed system specifications often involve meta-objects, as it is indeed the case for the Command
Shaper pattern. Conversely, meta-object patterns are often also parameterized by an input theory. That is, a given pattern
may simultaneously fall under several of the above-mentioned categories. I describe each example pattern under the cate-
gory that seems most salient given the pattern’s characteristics, without implying that it is the only possible category under
which it could be classified.

A second important point to make is that the above-listed kinds of patters are not an ad-hoc menagerie of pattern kinds.
Instead, they are time-tested, systematic methods to provide general solutions to distributed system problems. Parameterized
theories have a long history as a method to make formal specifications generic [15,32,31], and have for long been applied to
programming languages in the form of parameterized modules [32], sometimes described as generic modules, polymorphic
types, or templates. They have in particular been applied to rewriting-based distributed system specifications since [37,
25,19]. Likewise, meta-objects have a long history as a modular method to mediate and adapt the interactions between
distributed objects within the Actor framework [3,56], and have long been applied to many rewriting-based distributed
system specifications since [21,41].

2.2. The semantics of formal patterns

Mathematically, what the patterns in the above taxonomy have in common is that they all are theory transformations.
That is, a pattern, lets us call it B[_, _], is instantiated by applying it to an input theory T in a class of theories satisfying
precise semantic requirements, possibly with some additional parameters Γ . If T is an acceptable3 input theory4 and Γ the
acceptable parameters, then B[_, _] is a theory transformation:

(T ,Γ ) �→ B[T ,Γ ].
The fact that many input theories T can be used to instantiate the pattern B[_, _] makes the pattern generic. Of course,
B[_, _] should preserve executability: if T is an executable rewrite theory, then B[T ,Γ ] should also be executable. The idea
that the instances B[T ,Γ ] of the pattern B[_, _] come with strong formal guarantees has a specific meaning for each pattern
B[_, _]: each B[_, _] is solving a different problem by meeting the specific formal requirements of that problem. This will
become clear in examples.

Several aspects of an (informal) pattern discussed by the Gang of Four in [30] become now formalized by the theory
transformation B[_, _] that specifies the pattern. The so-called context and applicability of the pattern is now formalized
by the semantic requirements that an input (T ,Γ ) to the pattern must satisfy. Likewise, the intent and consequences of
the pattern come now with strong assume/guarantee formal properties: if the input (T ,Γ ) satisfies the pattern’s semantic
requirements, then B[T ,Γ ] will satisfy specific formal properties associated to the pattern. Likewise, the implementation and
sample code aspects are formalized by the executable formal specification of B[_, _].

I explain below in more detail what such theory transformations look like for patterns of types (1)–(3) in the above
taxonomy.

2.2.1. Parameterized theories and their pushout semantics
Parameterized theories are well known from parameterized algebraic data types, parameterized formal specifications, and

parametric polymorphism. Parameterization has been studied as a very general mechanism available in many logics in the
theory of institutions [31]. In particular, it is available in rewriting logic and supported by Maude [19], where parameterized
rewrite theories define parameterized concurrent systems, so they are extremely useful.

Formally, a parameterized theory B[P ] with parameter P is a theory inclusion P
J

↪→ B , where P is called the parameter
theory and B the body. A simple example in the case of equational specifications (equational logic is a sublogic of rewriting
logic) is the parameterized theory Sorting[Toset] specifying the algebraic data type of lists with a sorting function associated

3 Acceptability means that the domain of the theory transformation B[_, _], that is, the set of pairs (T ,Γ ) to which B[_, _] can be applied producing a
correct result must be explicitly specified, so that T and Γ satisfy specific semantic requirements which are part of the formal specification of the pattern.
The strong formal guarantees associated with the pattern are conditional on (T ,Γ ) satisfying such semantic requirements and therefore can be viewed as
an “assume/guarantee contract” honored by the pattern.

4 In general, an n-ary transformation accepts a tuple (T1, . . . , Tn) of input theories. For example, a coproduct of n theories is a transformation
(T1, . . . , Tn) �→ T1 ⊕ · · · ⊕ Tn . Alternatively, if we have a tuple of theories, we can absorb the remaining T2, . . . , Tn as part of the additional parameters Γ .
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to a totally ordered set of list elements; that is, to a set with a total order relation � satisfying the total order axioms
specified in the theory Toset. Examples of parameterized theories defining parameterized concurrent systems will be given
in subsequent sections.

The way such a parameterized theory B[P ] is used is by instantiating its formal parameter P with an acceptable instance.
For the case of Sorting[Toset] an acceptable instance is precisely a set with a total order relation on it. If the semantic re-
quirement of � being a total order is satisfied for a concrete instance (an actual parameter), then the instantiation of
Sorting[Toset] will work correctly. If, instead, the contract is violated, so that � is not a total order for the given con-
crete instance, the instantiation is incorrect and no guarantees can be given about it due to the violation of the semantic
requirements imposed by the theory Toset.

How can we describe a parameterized theory B[P ] as a theory transformation (T ,Γ ) �→ B[T ,Γ ]? Very naturally: the
domain of such a theory transformation is the set of pairs (T ,Γ ) of the form (T , H) such that: (i) T is a theory in the given
logic (in our case, rewriting logic), and (ii) H is a theory interpretation5 H : P −→ T , that is, a mapping H of types in P to
types in T , and of symbols in P to symbols (or, more generally, expressions) in T such that the axioms of P , say, AxP , when
translated by the mapping H are logical consequences of T , that is, T |� H(AxP ). For any admissible argument (T , H), the
transformation (T , H) �→ B[T , H] associated to B[P ] is abbreviated to (T , H) �→ B[H] (note that T can be retrieved as the
co-domain of H : P −→ T ), where B[H] is defined by the pushout diagram:

B[P ] H ′
B[H]

P

J

H
T

J ′

in the category Th whose objects are theories in the given logic (in our case rewrite theories), and whose morphisms are
theory interpretations between such theories. The category Th of theories may include theories with initiality and freeness
constraints (the “data theories” of [31]), and may furthermore support theory hierarchies, as done for the Maude language
in [19], and explained for logics in general in [24].

Intuitively, we can think of the instantiation B[H] as a way of “gluing together” the body B and the instance theory T ,
using the “gluing information” provided by H . Note that B[P ] may be instantiated in several different ways to a theory T ,
depending on the choice of H . For example, we can instantiate Sorting[Toset] to the theory Nat defining the natural numbers
in two different ways: (i) using the theory interpretation up : Toset −→ Nat, which maps � in Toset to � in Nat, we get the
instantiation Sorting[up], which sorts lists of natural numbers in ascending order; and (ii) using the theory interpretation
down : Toset −→ Nat, which maps x � y in Toset to x � y in Nat, we get the instantiation Sorting[down], which sorts lists of
natural numbers in descending order.

The formal guarantees associated to the pattern Sorting[Toset] include the assurance that the sorting function will per-
form correctly: given any list of elements, it will return a list involving the same elements, but now sorted according to the
given total order. Such guarantees can only be ensured to hold if the semantic requirement that the theory interpretation
H : P −→ T is correct is met. They hold, for example, for Sorting[up] and Sorting[down]; but we could have instead defined
a map, say div, mapping � in Toset to the divisibility relation _ | _ in Nat where, by definition, x | y ⇔ (∃z)x · z = y. However,
the mapping div is incorrect, because the total order axiom (∀x, y)x � y ∨ y � x is not satisfied by Nat when translated by
this mapping as (∀x, y)(x | y) ∨ (y | x). That is, div does not define a theory interpretation div : Toset −→ Nat, although it
does define a theory interpretation div : Poset −→ Nat for Poset the theory of partially ordered sets. Therefore, no guarantees
can be given about the incorrect instantiation Sorting[div], which would sort numbers based on divisibility. In particular,
there is no guarantee anymore that we would always get the same results for the function sort (so that sort is actually
a function, and not just a relation, on lists). For example, depending on how the equations defining the sort function are
applied, we could get sort(6;3;2) = 2;3;6, or we could get sort(6;3;2) = 3;2;6.

2.2.2. Theory transformations with performance parameters
For real-time systems, certain timing and performance requirements are essential for system correctness. This means that

some formal patterns for distributed real-time systems, such as, for example, the PALS pattern that I discuss in Section 4, can
be defined as theory transformations

(T ,Γ ) �→ B[T ,Γ ]
where T is the input theory, Γ are suitable performance parameters, and the domain of correct inputs (T ,Γ ) is precisely
specified. The formal guarantees of B[T ,Γ ] can be seen as a contract, where if the pair (T ,Γ ) is a correct input for B[_, _],
then B[T ,Γ ] satisfies the contract and comes with specific formal guarantees. For example, as I will further explain in
Section 4, in the case of the PALS pattern, (T ,Γ ) being a correct input means that T specifies a synchronous composition
of abstract machines; and that the performance parameters Γ can be guaranteed to hold for a distributed, asynchronous

5 Also called a view in [32,19], since H gives us a sound way of viewing the theory T as an instance of P .



8 J. Meseguer / Science of Computer Programming 83 (2014) 3–34
Fig. 1. Object system with messages in an idealized environment.

Fig. 2. Onion-skin wrapped system with messages in an hostile environment.

implementation of such a composition. If these requirements are met, the formal guarantee associated to the PALS pattern is
that the synchronous composition of the input machines T and their asynchronous realization as the transformed B[T ,Γ ]
are bisimilar. For other real-time system patterns, the input theories T , the performance parameters Γ , and the formal
guarantees ensured by the given pattern may of course be different.

2.2.3. Reflective meta-object patterns
Distributed systems need to adapt to changing, often hostile environments to ensure various safety, security, fault toler-

ance, real-time, and Quality of Service (QoS) requirements. This can be accomplished by meta-object patterns. Meta-objects
are distributed objects that control/mediate/adapt the behavior of the underlying objects they encapsulate without changing
the behavior of such underlying objects in any way. That is, a meta-object is a very modular, distributed component that can be
composed with some existing distributed objects without changing their basic functionality and mediates inter-object com-
munication in useful ways to achieve important system-level goals. In this way meta-objects allow a modular separation of
concerns and can achieve high levels of reusability and adaptation.

Distributed meta-objects can be classified as:

• Onion-Skin meta-objects, which wrap a single object. Examples: Cookies and ASV.
• Russian Dolls meta-objects, which wrap a configuration, that is, a collection of (possibly nested) objects. Example: SR.

Onion-skin meta-objects were proposed in [3], and were subsequently formalized in rewriting logic in [21]. As illustrated
in Figs. 1–2, their purpose is to “wrap” existing objects, to avoid communication difficulties due to an hostile environment
or to meet other system requirements. For example, meta-objects for encryption, resp. for fault-tolerant communication,
may allow objects to communicate in an insecure environment, resp. a faulty one, as if no such problems existed.

The description of such meta-objects as “onion skin” emphasizes the fact that a wrapped object behaves just as any other
object, in the sense that it continues to send and receive messages in the usual manner. This means that it is possible
to layer several such wrappers on top of each other, like the layers of an onion. For example, a system may be protected
against certain security threats and against communication faults by first wrapping it with a fault-tolerant meta-object, and
then wrapping it again with a suitable encryption meta-object.

These ideas were later generalized to the so-called “Russian dolls” model [41], also formalized in rewriting logic, where
a meta-object can mediate/coordinate/control not just a single object, but a potentially nested collection of objects; and
where object-based reflection can be combined with logical reflection (see Section 2.4) for greater adaptability. The name
“Russian dolls” refers to the famous Russian folk art dolls, which contain smaller dolls inside, and so on. But unlike the
usual Russian dolls, a meta-object may contain not one but several immediate subobjects inside, each possibly containing
several others in a nested way. The Russians dolls model contains the onion-skin model [3], the TLAM model [56], and the
Mobile Maude language [23] as special cases.

For example, the figure below describes a nested configuration of objects and meta-objects in Mobile Maude, where
objects can reside and execute inside rectangular meta-objects called “environments,” each associated with a particular
location, and can: (i) communicate with other objects in the same or in different environments; and (ii) move from one
environment to another.
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What is common to Russian doll meta-objects and to the simpler onion-skin meta-objects is that their semantics is
characterized at the rewriting logic level by so-called boundary-crossing rewrite rules. For example, in the above figure, the
fact that messages and objects are going in and out of given environments is governed by meta-object rewrite rules at
the environment level that move objects and messages in and out of an environment. Likewise, since in Mobile Maude
individual objects are also wrapped by an onion-skin wrapper, messages addressed to the inner object have to go inside
the wrapper, and messages addressed to other objects have to go outside the wrapper, which is again accomplished by the
wrapper’s rewrite rules.

All this is in sharp contrast with an idealized system of objects and messages such as that in Fig. 1, where the dis-
tributed state is a flat configuration, that is, a non-hierarchical multiset or “soup,” of objects and messages. In rewriting logic
this is modeled by declaring a sort Configuration with a binary multiset union operator, usually denoted with empty infix
syntax (juxtaposition), and having the sorts Object, of objects, and Msg, of messages, as subsorts [37,19]. For example, a flat
configuration consisting of objects O 1, O 2, O 3, two copies of message M , and one copy of message M ′ is modeled as the
flat multiset expression

O 1 O 2 O 3 M M M ′

where the order of objects and messages in the “soup” is of course immaterial. Objects themselves are modeled as records
of the form:

[Id,a1 : v1, . . . ,an : vn]
where Id is the object’s name or identity, the a1, . . . ,an are the object’s attributes, and the v1, . . . , vn are the values that
those attributes have in the current state of the object. In a distributed system whose states are flat configuration, rewrite
rules describe communication events that can concurrently change some part of the soup. For example, an asynchronous
reception of a message (Id ← P ) addressed to Id with payload P by object Id in state atts and changing to state atts′ can be
specified by a rewrite rule of the general form:

(Id ← P )[Id,atts] −→ [
Id,atts′

]
.

How can we pass from flat configurations to the nested configurations exhibited by meta-objects? That is, how can
meta-objects be modeled? Very easily: as objects having an internal configuration as one of their attributes. For example,
a meta-object named, say, Id may contain the above configuration objects O 1, O 2, O 3, two copies of message M , and one
copy of message M ′ as part of its state in an attribute called conf, and possibly other attributes atts, as follows:

[
Id, conf : O 1 O 2 O 3 M M M ′,atts

]
.

Meta-object-specific boundary crossing rules then govern how messages, and possibly objects, move in and out of their
enclosing meta-objects. For example, we may have a conditional rule to move messages out of a meta-object under certain
conditions (for example, that the message is addressed to an object outside the inner configuration) having the general
form:

[Id, conf : C M,atts] −→ [
Id, conf : C,atts′

]
M if cond

where C is a variable of sort Configuration, which stands for the remaining messages and (possibly nested) objects in the
meta-object’s inner configuration. Note that, once we allow nested configurations, there is nothing to prevent an inner
configuration from containing other objects with inner configurations, and so on; which is the whole idea of the Russian
dolls model. Of course, in specific instances such nesting of objects will have specific limits.

We are now ready to describe reflective meta-object patterns as theory transformations. They are transformations of the
form
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(T ,Γ ) �→ B[T ,Γ ],
where the rewrite theory T specifies the original distributed system as a collection of object classes satisfying specific
semantic requirements6 and having associated rewrite rules, and B[T ,Γ ] extends T with appropriate meta-objects of the
form:

• (Onion-Skin) [Id, conf : O MC,atts], with Id a name, O the inner object being wrapped (often also having the same
name Id), MC a variable of sort MsgConfiguration, specifying configurations whose only members are messages (that
is, no other objects except for O are allowed, but extra messages to and from the object can reside in MC), and atts
wrapper-specific attributes.

• (Russian Dolls) [Id, conf : C,atts], with Id a name, C the (possibly nested) object configuration being wrapped, and atts
wrapper-specific attributes.

Therefore, a meta-object is an object that encapsulates within its state either a single object O and messages to and
from it (onion-skin), or, more generally, an entire configuration C of objects and messages (Russian dolls).

The meta-object rewrite rules typically describe boundary-crossing events and are completely generic, so as to apply to
the widest possible variety of underlying objects under minimal assumptions. This makes meta-objects completely modular:
their wrapped objects are, so to speak, blissfully ignorant of their being wrapped and behave exactly as before, so that their
code does not have to be changed in any way.

For example, we can add onion-skin meta-objects for clients and servers in a client–server system, to provide some
useful functionality such as, say, encryption, fault tolerance, or cookies for DoS protection; but such meta-objects do not
depend on any particular details of the client–server system they are applied to, except for the general requirement that the
system has a client–server architecture.

2.3. Composed patterns

Given the modular nature of formal patterns, composing them by nested application and by other theory operations is
easy and entirely natural. It can be a very useful way to design and build modular, high-quality distributed systems that are
much easier to understand and reason about than complex, monolithic systems.

For example, if the semantic requirements for each individual pattern application are met, we may: (i) first build dis-
tributed systems B1[T1,Γ1] and B2[T2,Γ2] out of smaller components T1 and T2 by respectively applying formal patterns
B1 and B2; (ii) put the resulting systems together as a theory coproduct B1[T1,Γ1] ⊕ B2[T2,Γ2] (roughly a disjoint union,
but for hierarchical theories as described in [24], they can still share subcomponents); and (iii) apply a third pattern B3 to
B1[T1,Γ1] ⊕ B2[T2,Γ2] to get the richer composed system

B3
[

B1[T1,Γ1] ⊕ B2[T2,Γ2],Γ3
]
.

That is, we can view patterns, and other theory constructions such as theory unions or theory coproducts, as theory opera-
tions, and can then combine them by means of theory expressions to obtain a powerful module algebra the same way that we
combine simpler expressions in an algebraic calculus.

The number of such theory composition expressions using a given repertory of basic patterns and other theory-building
operations is typically infinite, and not all such theory compositions may be equally useful in practice. There may however
be specific theory expressions that solve some commonly occurring problem in a generic way and are very useful in practice.
I call such theory expressions composed patterns. They play a role analogous to that of derived operations in algebra. For
example, we can define exponentiation to the power n as the derived operation defined in terms of the basic multiplication
operation _ × _ by the equation

yn = y× n· · · ×y.

In like manner, if the theory composition just described above is useful not just for very specific T1 and T2 but much more
generally, we can abstract it as a composed pattern of the form:

B3
[

B1[_, _] ⊕ B2[_, _], _
]
.

I illustrate this idea in Section 6 with two useful examples of composed patterns:

• The ASV + SR pattern, which achieves stable availability under DoS attacks by combining the ASV and SR patterns, and
• The Multirate PALS pattern, that achieves virtual synchrony in a Distributed Real-Time System (DRTS) with components

running at different rates by combining the PALS pattern with the two simpler k-Step Machine and Input Adaptor patterns.

6 For example, we will see later some meta-object patterns that require the theory T to describe a distributed object system having a client–server
architecture.
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As the discussion of these two patterns will show, composed patterns can often be more than the sum of their parts, in the
sense that the behavior emerging from the composition may meet system goals and come with guarantees that none of the
more basic patterns used in the composition could achieve by itself.

2.4. The importance of logical reflection

A theory T in a logic is a meta-level entity. We can think inside T at the so-called object level, for example by proving
theorems about T . But how can we reason across different theories inside the logic, for example to manipulate or transform
T itself? In particular, how can we formalize a theory transformation (T ,Γ ) �→ B[T ,Γ ] by axioms inside the logic? Such
axioms should belong to a theory, but which theory, when even T itself is not fixed but is a parameter ranging over a
typically infinite class of theories?

Logical reflection is a very important property of rewriting logic [20] which answers all these questions in a fully satis-
factory manner. The key idea is that rewriting logic can faithfully represent its own theories and their deductions, because
it has a finitely presented rewrite theory U that is universal, in the sense that for any finitely presented rewrite theory R
(including U itself) we have the following equivalence:

R � t → t′ ⇔ U � 〈R, t〉 → 〈
R, t′〉,

where R and t are terms representing R and t as data elements of U , and 〈_ , _〉 is a pairing operator also in U . Since U is
representable in itself, we can achieve a “reflective tower” with an arbitrary number of levels of reflection, since we have:

R � t → t′ ⇔ U � 〈R, t〉 → 〈
R, t′〉 ⇔ U � 〈

U, 〈R, t〉〉 → 〈
U,

〈
R, t′〉〉 . . . .

In particular, the universal theory U has a type, called Theory, whose terms meta-represent rewrite theories. That is, a
theory T is meta-represented by the term T of type Theory. Then we can meta-represent a theory transformation (T ,Γ ) �→
B[T ,Γ ] as a function7 B : Theory × Params −→ Theory : (T ,Γ ) �→ B[T ,Γ ], where Params is a data type meta-representing
the additional parameters of the transformation. Furthermore, a meta-theorem of Bergstra and Tucker [12] ensures that if
the theory transformation is effective — that is, computable — we can always axiomatize B by means of a finite set of
confluent and terminating equations within rewriting logic in a finitary extension of the universal theory U .

Note that, although rewriting logic is a first-order formalism, reflection endows it with powerful higher-order features
to represent formal patterns within the logic. Indeed, there are strong similarities (for which I use the ≈ symbol) between
logical reflection and polymorphism in typed λ-calculi. For example, we have a strong similarity Theory ≈ Type, between
the type of all theories in rewriting logic and the type of all types in some polymorphic calculi. Likewise, there is a strong
similarity between the typings: U : Theory ≈ Type : Type, but without the inconsistencies that Type : Type can create in
some λ-calculi. Using these strong similarities, a formal pattern (T ,Γ ) �→ B[T ,Γ ] corresponds to a polymorphic function
λ(T ,Γ ).B[T ,Γ ]. In Maude, these higher-order features are efficiently supported by the META-LEVEL module [19], and by
Maude’s extensible module algebra [25].

3. Example 1: A pattern for medical device safety

This example illustrates the case of a pattern for cyber-physical systems which is a parameterized module for medical
device safety called the Command Shaper pattern [54]. It ensures strong safety properties for a wide range of instances of
the pattern. For this and subsequent patterns I will explain the:

• Problem: what is the general problem that the pattern tries to solve?
• Context: what is the class of correct inputs to which the pattern can be applied?
• Solution: how is the pattern specified, and in which sense does it solve the original problem?
• Guarantees: what guarantees are provided by the pattern when correctly applied?
• Advantages and Shortcomings: what are the advantages, and what the possible limitations?

7 Note that this function will in general be partial, since usually not all pairs (T ,Γ ) will be admissible arguments. In practice it is of course very important

to precisely characterize the domain of the given transformation B , that is, the set of its correct inputs (T ,Γ ). Such a domain can be characterized using
membership equational logic [38], which is a sublogic of rewriting logic.
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The problem addressed by the Command Shaper pattern can be illustrated by means of three examples and their as-
sociated safety requirements. The context of applicability is then precisely characterized through the parametric notion of
an SR-safety theory. The solution is described as the Command Shaper pattern, which is a parameterized object-oriented
module. The guarantees are the SR-safety properties ensured by the pattern. And the advantages and shortcomings are
explained.

3.1. Problem: Illustrated by three medical devices and their safety requirements

Let us first consider an Implanted Cardiac Pacemaker as the one described in the figure below, where the device, its
implantation in the patient’s chest, and an electrocardiogram (ECG) are displayed.

Modern pacemakers do not stimulate the patient’s heart at a fixed rate. Instead, they can sense and evaluate changes in
patient motor activity through appropriate sensors and software and have a rate adaptation interface to adjust the patients
heart rate during exercise. This makes the pacemaker more flexible and adaptable, but since now the rate is variable, this
could become a safety hazard, unless the following two safety properties can be guaranteed:

• The pacemaker must not pace too fast for too long, and should allow sufficient resting time between fast pacing periods;
• The pacemaker must not change the pacing rate too drastically over time.

A second example belongs to the area of Patient Controlled Analgesia, where pain mitigation is provided by a Morphine
Infusion Pump such as the one pictured below.

Such a pump has an interface to increase morphine injection rate (bolus dose) which can be operated by the patient.
This allows the patient to obtain pain relief without the direct assistance of medical personnel, but this could become a
safety hazard, unless the following two safety requirements can be guaranteed:

• Morphine injections must be administered with sufficient time between doses; and
• The total number of injections should not exceed a specified maximum number of bolus doses per hour.

The third example is a Mechanical Ventilator as the one pictured below.
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Such a device is used on a sedated patient, for example when performing a procedure under total anesthesia. It has a
pause interface, because sometimes the ventilator needs to be temporarily stopped, for example to obtain an X-ray of the
patient. This poses a serious potential safety hazard, namely, lack of oxygen in the patient’s brain, unless:

• The ventilator is never paused for too long; and
• It is never paused too often.

3.2. Context: Stress–Relax Safety (SR-Safety)

These three examples illustrate a common theme about medical devices: for specific reasons patient’s bodies may be
placed under moderate stress temporarily, provided they are given sufficient time to recover. For each of the three medical
devices we have considered, device states can be partitioned into two classes: stressed states and relaxed states. Stressed
states are states in which the patient cannot stay for too long (heart pacing too fast, holding breath for too long, etc.),
since otherwise permanent physical harm may result for the patient. Relaxed states are safe states that allow the patient to
recover over time from a previous period of stressed states.

Safety in these circumstances can be characterized as Stress–Relax Safety (SR-Safety) [54], which imposes bounds on the
stress and relax durations of device operation as well as on the rate at which relevant constants can change. Consider, for
example, a pacemaker implanted on a patient for whom a safe minimal heart rate is 60 bpm when inactive. Furthermore,
for this patient a critical heart rate is considered to be at 100 bpm, so that any heart rate above 100 bpm will be considered
stressed, and any heart rate at or below 100 bpm will be considered relaxed. The key idea is that the pacemaker can pace at
relaxed rates indefinitely without compromising patient safety, but should not pace at stressed rates for prolonged periods
of time. Also, there should be enough distance between stressed periods. For example, if the pacemaker’s pace drops below
100 bpm after a stress period, it should stay in the relaxed region for some time before allowing the pace to become
stressed again. These safety constraints can be expressed as: (i) upper bounds on stress durations over time; (ii) minimum
distance between stress periods; and (iii) a maximum pacing rate while on a stressed state and a minimum pacing rate for
relaxed states, as shown in the following figure.

Furthermore, device states reflecting continuous physiological parameters should change gradually, to allow time for the
patient to adapt to the effects. For example, it would be unsafe for the pacemaker when pacing at a rate of 100 bpm to
immediately drop to 60 bpm over 1 second. This means that the rate of change in pacing speed (the absolute value of the
“acceleration”) should not exceed a prudent upper bound, as shown by the slope in the above figure.
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Of course, the same safety notions apply to the morphine infusion pump and the mechanical ventilator, except that the
physical parameters involved (bolus doses, respirator pauses) are different from those of the pacemaker. In each case there
will be similar safety bounds that should not be exceeded.

The general safety requirements applicable to all these devices can be axiomatized by means of an SR-safety parameter
theory [54]. I do not describe this parameter theory in detail here. Instead, I summarize the main ideas that it captures.
It applies to a general class of objects having an attribute that is a value of sort Val to be set by a message set-val. The
problem, of course, is that the value to be set could be unsafe. To avoid this, the object will later be wrapped inside the
command shaper wrapper. The safety of a value to be set depends on the domain-specific bounds of each device and on the
history of previous settings. This is formalized by requiring that the set Val of values should be a totally ordered set with
minimum and maximum values, and with an intermediate critical value, so that values less or equal to the critical one are
relaxed values, and values greater than the critical one are stressed. The SR-safety of a set-val command trying to set the
object to a certain value v does not only depend on v itself: it is time- and history-dependent. Assuming a given frequency
with which new values are set, and assuming a log of previous setting commands, and certain bounds on the allowable
rates of change in values, an SR-safety envelope can be defined, so that we can determine whether the new value to be set is
SR-safe in the given state of the system. Being “SR-safe” means that setting the value in the current situation will not cause
the patient to remain in a stressed situation for too long, will allow the patient to stay in a relaxed state long enough so
as to recover from a prior stress, and will never change too drastically. If the given value is not SR-safe, then it should be
replaced by an alternative SR-safe value that will keep the system within its SR-safety envelope.

Of course, all these notions are parametric. The choice of a specific set Val of values, and of all the required constants is
domain-specific, and is precisely determined by a theory interpretation, so that, as usual for all parameterized modules, the
class of admissible inputs for the command shaper pattern described below is exactly the class of all theory interpretations
correctly instantiating the SR-safety parameter theory to a concrete domain of values satisfying all the axioms (as translated
by such an interpretation) of the SR-safety theory. Note that such instantiations are not only domain-specific, so that the
domain of values may differ quite a lot from, say, a pacemaker to a mechanical ventilator. They are also patient-specific, so
that the choice of constants, such as, for example, the maximum, critical, and minimum values, will typically depend on the
specific condition of the given patient and should be determined by a physician.

3.3. Solution: The command shaper pattern as a parameterized theory

The command shaper pattern is a parameterized rewrite theory in Real-Time Maude [54], whose instantiation for a given
medical device used on a given patient is obtained as the following pushout diagram:

The key idea of the command shaper pattern is that each medical device is wrapped in a command-shaper module,
a meta-object that monitors incoming device commands to ensure SR-safety [54]. The key function of the command-shaper
module is to treat commands from external devices — for example, from the patient pushing a button for requesting a
dose from the morphine infusion pump, or from the software adapting the pace of a pacemaker, or a pause command to a
mechanical ventilator — not as actual commands to always be followed by the device, but as suggestions that should only
be followed if they do not violate SR-safety.

The figure below shows the command shaper pattern applied as a meta-object wrapper around a pacing module in a
cardiac pacemaker. If a command to modify the pacing rate is SR-safe, it is passed to the pacing module; but if it is detected
to be SR-unsafe, the command-shaper can modify the command into a safe variant of it.
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3.4. Guarantees

The command shaper pattern ensures that SR-safety will never be violated. In more detail, the following properties are
satisfied by any correct input for the pattern:

• The state always remains within the allowed minimum and maximum values;
• The rate of change never exceeds the allowed bounds; and
• For the entire execution of the system, the states never remain stressed for too long, and enough recovery time is

allowed between stress periods.

The last property is of course history-dependent; but since the command shaper pattern contains as one of its attributes
a time-stamped log of prior stress-relaxed values, it can be characterized as an invariant in terms of the safety of such logs
at any time.

3.5. Advantages and shortcomings

An important advantage of the command shaper pattern is that it can be applied to a wide range of medical devices to
ensure their SR-safety under quite general conditions and is highly reusable. A significant limitation is that not all medical
safety problems fall within the class handled by the command shaper. For example, the safety of a glucose–insulin pump
depends on external context and sensor information, and cannot rely on any static notion of relaxed states.

4. Example 2: Achieving virtual synchrony with PALS

4.1. Problem: Achieving virtual synchrony in an asynchronous setting

Many distributed real-time systems (DRTS) are collections of components that communicate asynchronously through a net-
work. Each component has a local clock and can change state and respond to inputs from the environment and from other
components within hard real-time bounds. Furthermore, in many cases the DRTS as a whole should achieve virtual synchrony,
so that the components all receive inputs from and send outputs to other components at the right time. In this way, the
overall DRTS behaves as if it were synchronous. Such systems are common in application areas such as integrated modular
avionics and distributed control in motor vehicles. They are often safety-critical, where, besides having to satisfy domain-
specific safety requirements, one essential safety requirement is that their virtual synchrony must always be maintained.

The design, verification, and implementation of these systems is quite hard and error-prone due to insidious race conditions
that can occur because of asynchronous communication, message delays, and clock skews. In particular, their verification by
testing is very difficult and full of uncertainties, since slight timing variations in system executions may either fail to reveal
important bugs, or may lead to the ominous no fault found situation, where a known but unidentified bug cannot be caught
after intensive testing, because the exact timing circumstances that caused the bug cannot be reproduced. To make things
worse, model checking verification is often unfeasible, due to the typically huge state space explosion caused by the system’s
concurrency. Yet, the safety critical nature of these systems often requires thorough verification and a costly certification
process. That is, these are complex systems for which a brute force approach is very costly and may still leave designers
and safety inspectors with considerable uncertainty about the actual correctness of the system.

I explain below how the PALS formal pattern proposed in [45] and formalized and proved correct in [39,40] can drasti-
cally reduce the system complexity of a DRTS which should achieve virtual synchrony, making its design, verification and
implementation much simpler than with standard approaches, and ensuring correctness by construction.

4.2. Context: Ensembles of state machines and underlying infrastructure

A key advantage of the PALS pattern is that its acceptable inputs are quite simple: they are pairs (E,Γ ), where
E is a rewrite theory specifying a collection of interacting synchronous state machines, called an ensemble, and Γ are
infrastructure-dependent performance parameters further described below. I first sketch the ensemble idea. All the mathe-
matical details can be found in [40].



16 J. Meseguer / Science of Computer Programming 83 (2014) 3–34
Specifically, an ensemble E of state machines [39,40] is a collection of machines (i.e., automata) that interact synchronously
through specified input and output connections. The figure below describes a typical ensemble with three interconnected
state machines:

That is, each state machine can receive several inputs from either an external environment (the input wires entering the
outer box enclosing the ensemble) or from other machines, which are routed according to the ensemble’s wiring diagram.
After receiving such inputs, all machines then perform their transitions in lock step, sending their outputs to other machines
or to the external environment (outputs to the environment are depicted as wires leaving the outer box at the bottom). But
such outputs only become available as inputs in their destination components at the next cycle.

This means that the ensemble E as a whole behaves exactly as a single state machine, called its synchronous composition,
which is precisely the machine enclosed in the outer box, once we hide all the contents inside such a box. It also means
that the notion of a machine ensemble is recursive: each state machine can potentially be decomposed as the synchronous
composition of smaller state machines.

The external environment can be specified as either another state machine, or, more abstractly, by giving some constraints
restricting the possible inputs that the environment may produce.

The assumptions about the underlying infrastructure necessary for the application of the PALS pattern are quite reasonable.
They include: (i) an asynchronous bounded delay (ABD) network infrastructure, ensuring that there is a maximum bound on
the communication delays between any two components; and (ii) a clock synchronization algorithm guaranteeing a maximum
bound on clock skews. Based on such an infrastructure, the following performance bounds Γ can be derived on:

• Maximum clock skew ε with respect to a global clock;
• αmin and αmax times for each component reading its inputs, performing a transition, and producing outputs;
• μmin and μmax message transmission delay times.

The performance parameters Γ are used, together with the given ensemble E , to form an acceptable input (E,Γ ) for the
PALS pattern.

The great simplicity and drastic reduction in system complexity afforded by the PALS methodology comes from reducing
the design, verification and implementation of a complex, virtually synchronous DRTS to the much simpler task of designing
and verifying the ensemble E which is its abstraction and computing the performance parameters Γ for the given infras-
tructure. In this way, as further explained in Section 4.3, the design of the DRTS itself is completely automated by the PALS
transformation.

4.3. Solution: The PALS formal pattern

PALS stands for Physically Asynchronous yet Logically Synchronous systems. It is a formal pattern that reduces the design,
verification and implementation of a DRTS that must achieve virtual synchrony to its much simpler synchronous abstraction,
where the system operates in lock step and all complexities associated with asynchronous network communication, clock
skews, and network delays are abstracted out.

PALS is a theory transformation with performance parameters

(E,Γ ) �→ A(E,Γ )

where, as described in Section 4.2, E is a synchronous ensemble of state machines, and Γ are performance bounds based on
the underlying infrastructure. A(E,Γ ) is then the resulting asynchronous design of the distributed real-time system which,
as further explained in Section 4.4, is a correct by construction implementation of E ensuring virtual synchrony, provided the
performance requirements Γ are met by the underlying infrastructure.
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The PALS asynchronous model. The distributed system A(E,Γ ), adds a “wrapper” meta-object around each state machine
in E . Besides containing the state of its state machine, each wrapper has: (i) an input buffer for messages arrived during the
round; (ii) an output buffer to hold outgoing messages until they can be sent to the network; and (iii) round and backoff
timers to start each cycle and send outputs at the right times.

The asynchronous system consisting of these wrapped state machines communicating by message passing can achieve
logical synchrony with a period T determined by the performance constants Γ as follows: T � μmax + 2 · ε + max(2 · ε −
μmin,αmax), where this inequality is best possible [39,40].

The behavior of each node’s wrapper is described by rewrite rules specified in Real-Time Maude [39] and can be sum-
marized as follows:

1. At the beginning of each PALS period T (as perceived by the local clock): (i) reads messages from its input buffer;
(ii) executes a local transition (change state and generate new messages); (iii) puts the new messages in its output
buffer with a back-off delay.

2. Messages from the output buffer are sent to the network when the backoff timer has expired and the execution of the
local transition has finished.

3. Received messages (for the next cycle) are put in the input buffer.

4.4. Guarantees: Main correctness result

The main correctness result for PALS is that the synchronous model given by the ensemble E with environment
constraints c and its corresponding asynchronous implementation A(E,Γ ) are bisimilar [39,40]. Mathematically, this is
expressed by means of Kripke structures (Ece , L) and (A(E,Γ ), L′) respectively associated to the synchronous and asyn-
chronous models (so that state predicates can be specified by the corresponding labeling functions L and L′). Also, in
A(E,Γ ) a class of states called stable states is identified. These are states where each wrapper component has advanced
enough in the given cycle so that the global distributed state can be abstracted out as a state of the synchronous system E
by an abstraction function sync.

A key corollary of the bisimulation theorem is that E and A(E,Γ ) satisfy the same temporal logic formulas, when they
are properly restricted to the stable states in A(E,Γ ). More precisely, the stable states of the asynchronous system A(E,Γ )

determine a Kripke structure (StableA(E,Γ ), synch; L) such that the abstraction function

synch : (StableA(E,Γ ), synch; L
) −→ (Ece , L)

mapping stable distributed states to synchronous ensemble states defines a bisimulation between the two Kripke structures.
As an immediate corollary (see [39,40]), for any formula ϕ ∈ CTL∗(A P ) on atomic propositions A P , and for any stable
initial state {C0; t0} of (StableA(E,Γ ), synch; L), with C0 its configuration of objects, and t0 its global clock, we have the
equivalence:

(
StableA(E,Γ ), synch; L

)
, {C0; t0} |� ϕ ⇔ (Ece , L), synch

({C0; t0}
) |� ϕ.

This is a very useful result, since it reduces the model checking verification of a property in (StableA(E,Γ ), synch; L) to
the verification of the same property in the much simpler and much smaller synchronous abstraction (Ece , L). As illustrated
below with a case study, the state space reduction achieved by the synchronous abstraction can be so drastic that it allows
verification of properties on the synchronous system that cannot be model checked on the asynchronous system due to
state space explosion.

4.5. An avionics case study

The usefulness of the PALS bisimulation theorem can be illustrated by applying PALS to the following avionics case study
presented in [40], which is based on an AADL model by Abdullah Al-Nayeem of a similar specification developed by Steve
Miller and Darren Cofer. This case study, an Active Standby System, is typical of systems in integrated modular avionics, where
there are, for fault tolerance reasons, multiple cabinets (with power supply, computer, I/O, etc.) distributed in an aircraft, so
that the system has to be implemented as a DRTS.

The Active Standby System should decide which cabinet is active: (i) the standby side monitors the side’s functionalities
and the pilot’s manual switch; and (ii) the standby side notifies the active side if change of active sides is needed. Further-
more, the system must be able to cope with failures; although it is assumed that the two sides will not fail simultaneously.
The architecture of the active standby system for two sides can be summarized as follows:
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Such an architecture can be naturally abstracted as a synchronous design, but in practice it must be realized as a distributed
system of cabinets in the aircraft. It is therefore a design to which we can apply the PALS transformation to obtain a
correct-by-construction distributed realization based on the performance parameters Γ supplied by the underlying ABD
network, clock synchronization infrastructure, and so on.

The number of reachable states in the two models and the corresponding execution times can be compared by model
checking an invariant. Specifically, the invariant that when a side is failed it will only transmit the value 0 is used.

In the synchronous model, the number of states reachable from the initial state is 185, and model checking the invariant
in Maude takes less than a second on a 1.86 GHz server with 8 GB RAM. In the asynchronous model the invariant was first
model checked with no messaging delay in 33 minutes, exploring 3,047,832 reachable states. If the environment is restricted
to 12 instead of 16 possible different outputs (by not allowing side 1 to fail), then there are 1,041,376 reachable states, and it
takes about 190 seconds to search the entire state space. If the environment is further restricted so that no side can fail, then
there are 243,360 reachable states and the invariant can be analyzed in 30 seconds.

The asynchronous model was then analyzed for maximal messaging delay 1. That is, each message may take either zero
or one time units to arrive. In this case, exhaustive state space exploration was aborted by the operating system after two
hours. Restricting to 12 environment possibilities showed that 1,496,032 states were reachable from the given initial state.
The analysis took 420 seconds of cpu time. With only eight different environment possibilities, the numbers were 349,856
reachable states and 52 seconds.

The following table summarizes these experiments:

Model Max. msg. dly 8 env. possibilities 12 env. poss. 16 env. poss.

# states ex. time # states ex. time # states ex. time

Synchr. n/a 47 0.04 s 107 0.1 s 185 0.2 s
Asynchr. 0 243,360 30 s 1,041,376 190 s 3,047,832 2000 s
Asynchr. 1 349,856 52 s 1,496,032 420 s aborted

4.6. Advantages and shortcomings

The obvious advantage of PALS is the drastic reduction that it achieves in the complexity of a DRTS design, verification,
and implementation. By allowing expressing a DRTS in terms of its much simpler, synchronous version, a design becomes
much easier to understand, and its synchronization requirements are made explicit. At the verification level, particularly for
model checking verification, the difference in many cases is one between being able to model check a synchronous design
with much fewer states, or model checking verification being out of the question due to state space explosion. Regarding
implementation, since PALS itself is a formal executable specification, automatic generation of synchronous code from the
synchronous design is relatively straightforward, and the code generator is amenable to formal verification once a given
target language with a precise formal semantics has been chosen.

However, not all DRTS design problems can be solved by PALS. To begin with, only control systems requiring virtually
synchronous behavior and having components physically close enough to each other so as to make such virtual synchrony
possible within required performance bounds are amenable to a PALS solution. Furthermore, PALS is based on the strong
assumption that all components operate at the same rate. In practice this assumption is quite restrictive: the typical situation is
that of multirate systems, where different components change at different rates but still need to be synchronized. Section 6.2
explains how PALS can be composed with two other simpler patterns to achieve a much more flexible pattern supporting
multirate DRTS designs.
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5. Examples 3–5: Reflective meta-object patterns for DoS protection

The examples in this section illustrate formal patterns based on distributed object reflection, using both onion-skin
meta-objects and nested “Russian doll” meta-objects (see Section 2.2.3). A common theme running through these patterns is
network security; specifically, protection against Denial of Service (DoS) attacks. The Server Replicator pattern of Section 5.3,
a pattern to maintain server performance under heavy loads, is generally useful for QoS purposes but, as explained in
Section 6.1, plays a crucial role in DoS protection when composed with the ASV pattern.

5.1. The cookies meta-objects

5.1.1. Problem: Modular DoS cookie protection
Usually, DoS protection mechanisms are not described and implemented in a modular way. Instead, an underlying pro-

tocol is changed in an ad-hoc manner to make it DoS-resilient. For example, the TCP protocol can be defended against SYN
attacks using SYN cookies [13]. The main question asked and answered in [17] is: can cookie-based DoS protection be made
modular and generic by formally specifying cookies as a pattern applicable to a wide class of systems?

5.1.2. Context: Client–server systems
The “context” part of the pattern is very simple: it can be applied to any input rewrite theory specifying a client–server

system under minimum assumptions, namely, that the communication pattern is that of requests sent from clients to
servers, which are answered back by corresponding replies from severs to clients. The specific nature of the requests and
replies and the application domain of the given client–server system are totally irrelevant.

5.1.3. Solution: The cookie meta-objects
The solution is a formal pattern applicable to any client–server system under the minimal assumptions described above.

The cookies pattern encapsulates the clients and servers in the given client–server system within two generic onion-skin
meta-objects: one used to wrap each client, and another used to wrap each server. These meta-objects mediate the client–
server communication by exchanging cookies and checking cookie credentials as a prerequisite for getting an answer from
the server. The precise executable semantics of these meta-objects is given by the following rewrite rules, where _;_ denotes
the multiset union operator used to form configurations containing clients, servers, and messages.

Client Wrapper Rules

ConnectReq: [C , CPc , null, (to S , m from C ); X ]c → [C , CPc , (to S , m from C ), X]c ; (to S , connect from C ) if SIn(S,CPc) = false
SetCookie: (to C , k from S); [C , CPc , (to S , m from C ), X ]c → (to S , (k,m) from C ); [C , {(S,k)} ∪ CPc , null, X]c if

SIn(S,CPc) = false
MsgToServer: [C , {(S,k)} ∪ CPc , null, (to S , m from C ); X ]c → [C, {(S,k)} ∪ CPc , null, X]c ; (to S , (k,m) from C )
AcceptReply: (to C,m1 from S); [C , CPc , msg , X ]c → [C , CPc , msg , (to C,m1 from S); X]c if not m1 : Cookie

Service Wrapper Rules

CookieGeneration: (to S , connect from C ); [S , CPs , l, Y ]s → (to C , rand(l) from S) [S, {(C, rand(l))} ∪ CPs,next(l), Y ]s; if
CIn(C,CPs) = false

ResendCookie: (to S , connect from C ); [S, {(C,k)} ∪ CPs, l, Y ]s → [S, {(C,k)} ∪ CPs, l, Y ]s; (to C , k from S)
ForwardRequest: (to S , (k,m) from C ); [S, {(C,k)} ∪ CPs, l, Y ]s → [S, {(C,k)} ∪ CPs, l, (to S,m from C); Y ]s

DropRequest1: (to S , (k,m) from C ); [S,CPs, l, Y ]s → [S,CPs, l, Y ]s if CIn(C,CPs) = false
DropRequest2: (to S , (k,m) from C ); [S, {(C,k)} ∪ CPs, l, Y ]s → [S, {(C,k)} ∪ CPs, l, Y ]s if (k �= k′)
ForwardReply: [S,CPs, l, (to C,m from S); Y ]s → [S,CPs, l, Y ]s; (to C,m from S)

Let me explain what the above rewrite rules do. The meta-object for clients is used to wrap each client configuration X
containing a client named C and possibly incoming or outgoing messages as follows8:

[C,CPc,msg, X]c

where C is the client’s name, which is also used as the name of its meta-object wrapper, CPc is a set of pairs of the form
(S,k), where S is the name of some server, and k is a cookie that was provided by that server, msg is either a message,
or the null constant, and X is the inner configuration containing the client named C and possibly some messages. The
predicate Sln(S,CPc) checks whether a pair of the form (S,k) already exists in CPc for server S .

8 Note the abbreviated notation for objects. Following the convention in Section 2.2.3, we would use explicit names for the different attributes, say,
[C, cookies : CPc ,message : msg, conf : X]c . In the abbreviated notation the attribute names are left implicit.
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Similarly, a meta-object for servers is used to wrap each server configuration Y containing a server named S and possibly
incoming or outgoing messages as follows:

[S,CPs, l, Y ]s

where S is the server’s name, which is also used as the name of its meta-object wrapper, CPs is a set of pairs of the form
(C,k), where C is the name of some client, and k is a cookie already generated by the server wrapper to communicate with
C ’s wrapper, l is a seed used to generate fresh cookies, and Y is the inner configuration containing the server named S and
possibly some messages.

The conditional rule ConnectReq detects that a request message m from client C to server S exists in the wrapper’s
inner configuration, but that no cookie from S exists in CPc , and no message is stored in the wrapper’s third component.
Instead of sending the message to the server, a request for connection is sent to the server’s meta-object wrapper, while
the message itself is stored in the wrapper’s third component.

The reaction of S ’s server wrapper when receiving a connection request from C ’s client wrapper is described in the
conditional rule CookieGeneration, where, after checking that no cookie already exists for C in CPs , the random cookie
rand(l) is generated from the current seed l and is both stored with C in CPs and sent to C ’s wrapper, while the seed l
is updated to next(l). Similarly, the rule ResendCookie takes care of the case when a connection request from C is received
after a cookie for C had already been generated and just resends that cookie.

Upon receiving the cookie from S , the meta-object for client C both stores such a cookie, together with the name S , in
its CPc component and forwards to S ’s meta-object the request that was holding in its third component (together with the
cookie) as specified in rule SetCookie. After a cookie for C has been stored in both C ’s wrapper and in the wrapper for the
server S contacted by C , communication between the wrapped client and server can proceed normally. The rule MsgtoServer
sends a request m from C , accompanied by the corresponding cookie k. The rule ForwardRequest passes on such a request
to the server stored in the meta-object’s inner configuration, provided the cookie received is the correct one. If it is not,
either because no such cookie exists or because it is false, the request is dropped by the server’s meta-object wrapper as
specified by rules DropRequest1 and DropRequest2. Obviously, these two rules are the heart of the DoS protection provided
by the cookie mechanism.

Finally, the reply to C from server S appearing in S ’s inner configuration is sent by S ’s wrapper to C ’s wrapper according
to rule ForwardReply; and it is passed down to C ’s inner configuration by C ’s wrapper according to the conditional rule
AcceptReply, which performs a type check to ensure that the type of the reply is a normal message and not a cookie.

Provided the interactions of the original system follow the standard client–server communication protocol, the cookie
meta-objects specified by the above rewrite rules will automatically make such a system DoS resilient without changing in
any way its underlying functionality: the original clients and servers remain blissfully ignorant of the fact that they have
been wrapped and know nothing about cookies.

5.1.4. Guarantees: Preservation of safety properties
The guarantees provided by the cookie meta-objects have two aspects. A first, obvious aspect is the actual DoS resiliency

added, which is a quantitative availability property whose performance can be formally analyzed, for example by statistical
model checking methods such as the ones discussed later in this section. A second, very important aspect of the pattern’s
guarantees answers the question: if the client-server system satisfied some safety properties before the cookie patterns were
added, are such properties preserved after the cookie meta-objects are installed? The answer is yes, even in the presence of
a Dolev–Yao intruder.

The formal guarantees for this second aspect take the form of two main preservation theorems for the cookie meta-objects
as follows (see [17] for a more detailed description of these preservation theorems):

1. Any client–server system meeting the minimal assumptions of the cookie meta-object pattern and deployed in a faulty
network environment satisfies the same safety temporal logic properties (without the © operator) as the system ob-
tained by applying the cookie meta-objects to it.

2. Any client–server system meeting the minimal assumptions of the cookie meta-object pattern and deployed in an
insecure network environment with a Dolev–Yao attacker satisfies the same safety temporal logic properties (without
the © operator) as the system obtained by applying the cookie meta-objects to it.

In particular, if the original client–server system used a cryptographic protocol that had been verified secure against certain
types of Dolev–Yao attacks, then all such safety properties remain valid when the system is hardened against DoS attacks
by adding the cookie meta-objects.

5.1.5. Advantages and shortcomings
The most obvious advantage of this pattern is that it makes the cookie DoS protection mechanism fully modular and

therefore available to any client–server system under minimal assumptions. Furthermore, the modularity achieved is not
just the complete separation of concerns between the normal client–server communication and the cookie mechanism, but
also the modularity of safety properties. That is, the safety properties of the original client–server system are fully preserved
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by the pattern. The limitations of the pattern are those of the cookie mechanism itself, which provides a measure of DoS
protection, but not the strongest DoS protection possible. For example, it implicitly assumes that the addresses of malicious
attackers are fake, so that only honest clients will be able to receive and store cookies from the server they have contacted.

5.2. The Adaptive Selective Verification (ASV) meta-objects

5.2.1. Problem: Adaptive defense against DoS attacks
Security does not come for free: security defenses have themselves a cost. It can be expensive to use a DoS defense

mechanism when no DoS attack exists. Cost can itself be part of the defense idea, in the sense that participants incur a
cost for a service in terms of, for example, bandwith, computation time, or actual money, a cost that dishonest participants
may not want or may not be able to pay. But such a cost still has to be payed by honest participants. When should such a
price be payed? And how much should be payed? An insidious problem is that a DoS attack may be mounted in a stealthy,
gradual fashion, so that a system’s availability is ultimately crippled, but the worsening of conditions is so gradual that it
may not be detected, or may be detected quite late. Is it possible to design DoS defenses that can adapt to the level of the
DoS attack so that: (i) their cost is minimal when no attack exists; (ii) gradual increases on the severity of a DoS attack are
detected and reacted to accordingly; and (iii) the cost of the defense is commensurate with the severity of the attack? Also,
can such defenses be made modular, so that they can be easily applied to a wide range of systems?

5.2.2. Context: Client–server systems
As for cookies, the context part of the ASV pattern is very simple: it can be applied to any input rewrite theory specifying

a client–server system under the minimal assumption that the communication pattern is that of requests sent from clients
to servers, which are answered back by corresponding replies from severs to clients.

5.2.3. Solution: The Adaptive Selective Verification (ASV) pattern
The Adaptive Selective Verification (ASV) protocol [34] is a cost-based, DoS-resistant protocol which uses bandwidth as

its currency. Its attacker model is a shared channel model [33]. It can be intuitively described by means of the following
analogy. A DoS attack is analogous to somebody (a client) asking a question and trying to get a response from somebody
else (a server) in a horribly noisy environment: communication can break down because the extreme noise drowns the
question, which may not even be understood by the person to whom it is addressed. ASV is analogous to endowing the
client with a megaphone whose intensity can be gradually increased as the level of noise increases; and endowing the
server with noise cancellation technology that can tune out even extreme background noise, so that requests from honest
clients can still be heard.

In ASV this is achieved by: (i) adaptation: the client resends an exponentially growing number of copies of its original
request (up to a certain bound) to the server as it has to wait longer and longer to get a reply; and (ii) selection: the server
probabilistically drops more and more requests as its becomes more and more congested because of an attack.

ASV has been formally specified as a probabilistic rewrite theory in [9], and has been explicitly described in [6] and
[27] as a formal pattern, where client and server onion-skin meta-objects can be added to the objects of an underlying
client–server system under minimum requirements with no change whatsoever to the underlying system.

The client–server system before and after applying the ASV pattern can be depicted as follows.

For example, the selection feature of the server meta-object allowing the server to probabilistically drop more requests
as congestion increases is specified by the probabilistic rewrite rule PR below. Before explaining that rule, I explain what
a probabilistic rewrite rule is in general. Usual rewrite rules t → t′ are deterministic, in the sense that the set of variables
appearing in the term t′ is a subset of the set of variables in the term t . This means that when t is instantiated by a
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matching substitution θ in a subterm u of a term C[u], so that u = θ(t) and the term C[u] can be rewritten by the rule
to the term C[θ(t′)], the resulting replacement subterm θ(t′) is fully determined by the matching substitution θ . Instead, if
there are extra variables in t′ that do not appear in t , so that, say, the rule is of the form t(�x) → t′(�x, �y), with �y the extra
variables in t′ , then the rule is non-deterministic. This is because the matching substitution θ for the variables �x in t does not
determine the result of applying the rule to a term C[u] with u = θ(t): we still need to also instantiate the extra variables �y
in t′ by another substitution ρ to get a resulting term C[(θ ∪ ρ)(t′)]. In general there may be an infinite number of choices
for ρ , so that the non-determinism may be infinitely branching.

A probabilistic rewrite rule [4] is a non-deterministic rewrite rule t(�x) → t′(�x, �y) with the extra information that a prob-
ability distribution π(θ) is used to choose the substitution ρ for the extra variables �y, where the probability distribution
π(θ) need not be fixed, but may in general depend parametrically on the matching substitution θ for the variables �x in the
left-hand side t . Such a probabilistic rewrite rule is then specified with the notation:

t(�x) → t′(�x, �y) with probability �y := π(θ).

In particular, if π(θ) is an independent distribution, the vector assignment �y := π(θ) can be decomposed as a conjunction
y1 := π1(θ) ∧ · · · ∧ yn := πn(θ).

Let me now explain the probabilistic rewrite rule PR below.

PR : (s ← (c, r)
)[s, cnt : n,buf : L, conf : X] → if b then

[
s, cnt : n + 1,buf : L[k] := (c, r), conf : X

]
else [s, cnt : n + 1,buf : L, conf : X] fi

if |L| � MaxLoad

with probability b := Bernoulli
(

f (n + 1)
) ∧ k := Unif

(|L|).
The rule PR is conditional, so that it is only applied if the size |L| of the buffer L exceeds a maximum load MaxLoad.

It specifies the probabilistic behavior of the server wrapper [s, cnt : n,buf : L, conf : X] containing the actual server named s
in its inner configuration X , and having a buffer L to store pending requests and a request counter n, when it receives a
request message (s ← (c, r)) from client c with contents r and the maximum load has been exceeded.

Note that an if-then-else operator is used in the right-hand side term t′(�x, �y); if-then-else is an equationally-defined
function like any other one and has the standard semantics. Note also that extra variables �y in the right-hand side are the
Boolean variable b, and the natural-number variable k. The value of b is chosen by tossing a coin with bias determined
by a function f (n + 1) whose details are unimportant. That is, the choice is made according to the Bernoulli distribution
Bernoulli( f (n + 1)). Instead, the value of k is chosen in the set of natural numbers up to |L| according to the uniform
distribution. If b comes out true, then the counter is increased, and the request in the k-th position of the buffer is discarded
to make room for the new request from c. Otherwise, the new request from c is ignored, but the counter is increased.

5.2.4. Guarantees: Adaptive DoS protection
What formal guarantees can be given for the ASV pattern? Some first answers to this question were given in [34] by

analytic hand proofs under some simplifying assumptions. The answers show that ASV is somehow optimal, in the sense of
leading to a DoS defense by clients and servers that very closely approximate the behavior of an omniscient DoS defense protocol.
An “omniscient” DoS defense protocol is one in which clients and servers are assumed to have complete knowledge of two
key rates: (i) the client request factor ρ , measuring the proportion of the server’s computation resources consumed by honest
clients per time window; and (ii) the attack factor α, measuring the proportion between the total amount of computation
required to process all requests sent by the attacker on a given time window and the total amount of computation that a
server is capable of in such a window. Obviously, if α > 1, the server is already overwhelmed; and if α � 1, an unprotected
server can be so overwhelmed that a DoS attack will fully succeed in shutting it down. In the idealized omniscient DoS
protocol described in [34], clients and servers adapt to the attack having full knowledge of the values α and ρ at any time.
Assuming that α and ρ cannot exceed respective upper bounds, using the omniscient protocol any client can connect with
its server with very high probability (Theorem 1 in [34]). Of course, such omniscience is impossible to achieve in practice,
due to the distributed nature of the problem. What a client observes in ASV is the latency in getting an answer back for its
own requests; and what the server observes is essentially α + ρ . However in ASV: (i) each client succeeds in establishing a
connection with essentially the same confidence guarantee as in the omniscient case (see Theorem 2 in [34]); and (ii) the
bandwith consumption needed by clients adapting to the attack is essentially of the same order as that required in the
omniscient protocol (see Theorems 3–4 in [34]).

By formally specifying both ASV and the omniscient protocol as probabilistic rewrite theories and performing statistical
model checking verification on both theories, the above results have been extended in [9] as follows: (i) the hand proofs of
Theorems 1, 2, and 3 have been confirmed by model checking verification; (ii) the same results have been shown to hold
beyond the bounds assumed by the hand proofs by model checking verification; and (iii) comparisons with non-adaptive
DoS defense protocols that in [34] were based only on the evidence provided by simulations have been verified to hold
with high statistical confidence by model checking verification.
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The general idea is that analytical hand proofs become increasingly difficult as one considers more general and complex
operating conditions. Under such, more complex conditions, simulations can give partial evidence about the behavior that
a system will exhibit; but such an evidence can be weak, because a somewhat different choice of parameters might yield
a simulation showing a quite different behavior. Statistical model checking verification occupies a useful middle ground
between hand proofs and simulations: weaker than hand proofs but of much more general applicability; and allowing
considerably stronger conclusions than those one can glean from simulations results alone.

5.2.5. Advantages and shortcomings
Two main advantages are ASVs optimal, omniscient-like adaptability, and the genericity of ASV when specified as a

pattern applicable to any client–server system under minimal assumptions. The main limitation is that, although ASV can
optimally adapt to increasingly harsh DoS attacks and maintain a client–server system still available to clients with high
probability, as the attack worsens, a significant service degradation in terms of average latency is unavoidable, because more
and more copies of honest client requests get discarded by rule PR before each honest request gets answered. However, we
shall see in Section 6.1 that, when the advantages of ASV are combined with those of the Server Replicator (SR) pattern, it
is possible to maintain a fixed quality of service even when under increasingly harsh DoS attacks.

5.3. The Server Replicator (SR) meta-object

5.3.1. Problem: Provisioning more servers to handle high loads
Web-based systems can dynamically adapt to high-demand situations by dynamically allocating extra resources. For

example, a server can adapt to increases in demand or to DoS attacks by leveraging the scalability of the Cloud to provision
more copies of itself. Provided the needed resources are not exhausted, this can allow a service to continue its operation
without any substantial loss in the quality of service. In extremely high-demand situations, however, such extra resources
may be exhausted, or may become prohibitively expensive. Therefore, a tradeoff exists between the quality of service (QoS)
offered and the amount and cost of resources dynamically provisioned.

5.3.2. Context: Simple client–server systems
The context part of the SR pattern is even simpler than in previous patterns; but such simplicity makes the pattern

somewhat restrictive in its applicability. It can be applied to any input rewrite theory specifying what I call a simple
client–server system. This is a client–server system such that: (i) its communication pattern is that of requests sent from
clients to servers, which are answered back by corresponding replies from servers to clients; and (ii) no other intermedi-
ate messages are involved in the client–server communication: just a client request followed by a reply from the server.
For example, a client–server system enhanced with the cookie wrappers of Section 5.1 is not a simple client–server sys-
tem, since the request and the reply messages are themselves mediated by the messages from the corresponding wrappers
to share a cookie. The SR pattern cannot handle a system like this, since it is essential to SR that the particular server
clone handling a client request should be immaterial; but if cookie information has to be exchanged, this assumption is
violated.

5.3.3. Solution: The Server Replicator (SR) pattern
The Server Replicator meta-object (SR) is a simple Russian dolls meta-object pattern developed in [26,47,27]. The SR

pattern can be applied to the server side of any simple client–server system as described above. SR has an overloading
factor parameter, beyond which a new server is provisioned. This parameter can be fine tuned to reach the desired tradeoff
between QoS and cost of resource allocation. An overloading factor of 1 means that servers are already overwhelmed.

In more detail, the SR meta-object: (i) wraps around several instances of the same server; (ii) distributes incoming
requests among the wrapped servers in a random, uniform way; (iii) keeps information about the load of the servers based
on the amount of requests received and periodically estimates such load; and (iv) spawns a new server each time the
estimated load exceeds the chosen overloading factor.

For example, the probabilistic rewrite rule governing how the SR meta-object forwards an incoming message to a ran-
domly chosen replicated server with name i in its current server pool C is specified by the following SC probabilistic rewrite
rule:

SC : (s ← (m, c)
)[s, server.list : SL, conf : C] →

[
s, server.list : SL, conf : (i ← (m, c)

)
C
]

with probability i := Random(SL)

where the name i of the server in the server pool C is chosen randomly according to a uniform distribution among the
names in the server list SL.
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The distributed architecture of SR is depicted below.

Provided that the overloading factor is below 1, so that the servers are never overwhelmed, the SR pattern can ensure a
predictable and stable QoS from the replicated servers. However, as already mentioned, under severe high-demand situations
such as those in a DoS attack, provisioning new servers so that they are never overwhelmed may require a very large
number of servers and can be too expensive.

Could it be possible to find a way to raise the overloading factor way beyond 1 (so that we can make do with much
fewer resources), yet in such a way that QoS is maintained? This question is explored in Section 6.1, where an answer based
on combining SR with ASV is given.

5.3.4. Guarantees
Provided that: (i) the overloading factor is kept below 1; (ii) the time required for processing server requests is relatively

uniform, so that message count is a reliable way of estimating server load; and (iii) the SR meta-object periodically checks
the load with sufficient frequency, a stable quality of service, what [27] calls stable availability, can be maintained. Since,
the statistical model checking verification for several QoS indicators has been verified for SR not just for overloading factors
below 1, but for factors higher than 1 when combined with the ASV pattern, a detailed discussion of such verification is
postponed until the more general setting of the ASV + SR pattern is presented in Section 6.1.

5.3.5. Advantages and shortcomings
The key advantage of SR is of course that it allows dynamic adaptation to increasingly heavier loads while maintaining

a stable quality of service. The limitations are twofold. First, a stable quality of service can only be ensured if: (i) the
overloading factor is below 1; and (ii) the total load does not exceed the number of hardware resources available to provision
new servers, which can easily be exhausted if a massive DoS attack against the servers is launched. Second, only simple
client–server systems where the only pattern of communication is a client request followed by a server reply are acceptable
inputs for the SR pattern.

6. Examples 6–7: Composed patterns

The notion of composed pattern was already discussed in Section 2.3. As pointed out there, not all possible pattern
compositions are generally useful. Therefore, attention should focus on compositions that solve important problems and are
widely applicable. Lack of such usefulness may result from several reasons. First, some pattern compositions do not preserve
the guarantees offered by some of the patterns used in their composition and therefore are bad compositions. Second, some
arbitrary compositions may not be generally useful, because the combination of functionalities that they provide is too
ad-hoc to meet a frequently occurring need. This does not make some such compositions useless: some may still be quite
useful for a specific, concrete design having a particular combination of needs, and may even happen to preserve properties
ensured by the patterns used in the composition. The point is that in such cases the given composition should be part of
the architecture of a particular system, instead of being a highly reusable pattern by itself.

Of particular interest are compositions that: (i) solve a common problem and are applicable to a wide class of input
systems; (ii) preserve the properties of the patterns used in the composition; and (iii) may even have emerging properties
that cannot be achieved by any of the simpler patterns out of which they are built. If at least conditions (i)–(ii) are met, we
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can rightfully call such compositions composed patterns. The two composed patterns presented in this section, namely, the
ASV + SR pattern and the Multirate PALS pattern, do actually satisfy conditions (i)–(iii) and are therefore useful examples
that illustrate the general idea.

6.1. The ASV + SR pattern: Stable availability under DoS attacks

Note that neither ASV nor SR are sufficient in practice to withstand a severe DoS attack while maintaining desired QoS
levels. On the one hand, the problem with SR is that, unless the overloading factor remains below 1 to ensure that the
servers are never overwhelmed, messages from honest clients may either get dropped, or may only be answered after
long delays. But during a severe DoS attack, over-provisioning to always keep servers from being overwhelmed may easily
become either too expensive or just unrealistic. On the other hand, the problem with ASV is that, although it ensures that
with high probability all honest client messages will be answered, the average latency experienced by clients may easily
increase beyond acceptable limits during a severe DoS attack. Before explaining how the SR and ASV formal patterns are
combined in [26,47,27] to maintain acceptable QoS under DoS attacks, I explain the problem that ASV + SR solves, namely,
that of achieving stable availability under very adverse conditions.

6.1.1. Problem: Achieving stable availability under DoS attacks
Availability is a key security property by which a system remains available to its users under some conditions. This

property can be compromised by a DoS attack, which may render a system unavailable in practice. Since availability prop-
erties are quantitative properties, some DoS defense mechanisms may provide better availability properties than others. In
fact, even when protected against DoS, performance degradation will typically be experienced in some aspects of system
behavior such as, for example, the average Time To Service (TTS) experienced by clients, the success ratio with which clients
manage to communicate with their server, or the average bandwidth (or some other cost measure) that a client needs to
spend to successfully communicate with its server. Obviously, an ideal DoS protection scheme is one that renders the system
to a large extent impervious to the DoS attack, no matter how bad the attack can get (up to a maximum bound assumed in
the shared channel model). That is, up to some acceptable and constant performance degradation, the system behaves in a
“business as usual” manner: as if no attack had taken place, even when in fact the attack worsens over time. This property
is called stable availability in [27].

More precisely, stable availability is formulated as a requirement parameterized by explicitly specified and quantifiable
availability properties such as, for example, TTS, success ratio, average bandwidth, and so on. The system is then said to
be stably available with respect to the specified quantities if and only if, with very high probability, each such quantity q
remains very close (up to fixed bounds ε) to a threshold θ , which does not change over time, regardless of how bad the
DoS attack can get within the bounds allowed by the shared channel assumption.

6.1.2. Context: Simple client–server systems
The context part of the ASV + SR pattern is the same as that of the SR pattern described in Section 5.3.2, namely,

a simple client–server system such that its communication pattern is that of requests sent from clients to servers, which
are answered back by corresponding replies from servers to clients with no other intermediate messages involved in the
client–server communication. The key point is that the ASV meta-objects do not generate any meta-object-specific messages:
a client ASV wrapper just keeps resending an increasing number of copies of a request message until it is answered; and
a server ASV wrapper receives client requests (possibly dropping some) and, when they are answered by the server in its
inner configuration, forwards their replies as usual. This means that a simple client–server system remains simple after being
composed with the ASV pattern. As explained in Section 5.3.2, this is essential to be able to correctly compose ASV and
SR.

6.1.3. Solution: The combined ASV + SR pattern
The idea of ASV + SR is very simple: to compose ASV and SR into a pattern that combines the advantages of both

without their respective shortcomings, so that stable availability can be achieved. SR by itself becomes fragile as soon as
servers reach their overwhelming level. But combined with ASV, the overload factor may safely be raised way above 1.
This means that provisioning of resources under the extreme conditions of a DoS attack now becomes feasible, since much
fewer servers are needed to achieve stable availability. This offers to a system designer a useful and easily tunable tradeoff
between a somewhat higher QoS by provisioning more resources (but much fewer than those needed with SR alone), or a
somewhat lower QoS by provisioning extra resources more greedily.

As explained in [47,27] and summarized below, ASV + SR is a Russian dolls distributed formal pattern applicable to any
client–server system under minimum requirements and easily tunable by the overload factor of SR. ASV + SR is obtained by
composing a client–server system with the ASV and SR patterns as follows: (i) clients and servers adapt to the DoS attacks
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by being composed with ASV onion-skin meta-objects; and (ii) servers in the cloud adapt to an increased load with the SR
Russian dolls meta-object. In this way, we obtain the adaptive distributed architecture depicted below.

6.1.4. Guarantees: Stable availability properties under DoS attacks
What formal guarantees can be associated to the ASV + SR pattern? In particular, which stable availability properties are

ensured by ASV + SR? Also, how can such properties be verified?
This last question is nontrivial for two reasons: (i) both ASV and SR involve probabilistic algorithms and are in fact

probabilistic rewrite theories [4], so standard model checking techniques are insufficient: one needs to use either probabilistic
or statistical model checking techniques; and (ii) stable availability properties are intrinsically quantitative, so that neither
a “true” or “false” answer, such as the answer given to a standard temporal logic formula, nor even a probability answer
p ∈ [0,1] associated to a probabilistic temporal logic formula are meaningful. What we need is a quantitative answer in the
form of a real number value (for example an average latency), or perhaps an interval [a,b], within which such a quantity
lies.

All this suggests expressing the desired stable availability properties in a quantitative temporal logic such as QuaTEX [4],
where formulas evaluate not to “true” or “false,” nor even to a probability p ∈ [0,1], but to an interval of real number
values. Indeed, all the desired stable availability properties for ASV + SR can be naturally expressed by QuaTEX formulas
and can be efficiently model checked in parallel using the PVeStA tool [8].

In [47,27], several stable availability properties of ASV + SR have been specified in QuaTEX and have been verified in
PVeStA by statistical model checking with a 99% confidence interval. The following quantities can be maintained stable
under an increasingly harsher DoS attack using the ASV + SR pattern:

• The expected client success ratio, i.e., the percentage of clients that are able to establish a connection with the service
within a given time bound.

• The expected average TTS, i.e., the average time it takes a client to connect to the service.
• The expected client bandwidth, i.e., the amount of bandwidth a client has to use to establish the connection.

Furthermore, the expected number of servers that need to be provisioned for the service in the cloud for a chosen overload
factor was also analyzed by statistical model checking.

The results of the statistical model checking analysis reported in [47,27] are summarized in the following graphics,
where in all cases the horizontal line describes the number of attackers (1.5 attackers are enough to completely overwhelm
a server), and the vertical axis measures the desired quantity. The following choices of the overload factor were analyzed:
k = 4,8,16,32, where k = 1 is the level at which servers are overwhelmed. For example, ASV + SR(8) means that the
overload factor has been set 8 times above the level when servers are overwhelmed. Also, for comparison purposes, the
behavior of ASV without SR is plotted in some of the graphics.

ASV + SR can sustain the expected client success ratio above 90% at the cost of provisioning new servers. Note that this
success ratio is measured within a limited time window: if one waits long enough, ASV ensures that requests will eventually
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be answered with high probability. Note that the corresponding success ratio of ASV within the given time window is seen to

drop as the DoS attack worsens.

ASV + SR can sustain the expected average TTS at a low level. Instead, the TTS with ASV alone increases as the DoS

attack worsens.

ASV + SR keeps the expected client bandwidth usage at a constant level, whereas with ASV alone client bandwith usage

increases as the DoS attack worsens.
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Higher overloading factors reduce the amount of provisioned servers significantly. This should make it possible to with-
stand a severe DoS attack with a realistic amount of resources and at reasonable cost.

6.1.5. Advantages and shortcomings
The main advantage of ASV + SR is that it combines the omniscient-like optimal adaptation of ASV as a DoS defense

mechanism, ensuring that servers remain available with high probability, with the SR adaptation to higher server loads. By
combining both patterns, stable availability under DoS attacks becomes possible. This was not achievable by ASV alone, and
was only achievable at very high cost by SR with a very large amount of resources. The main limitation of the ASV + SR
pattern is that the client–server systems to which it can be applied must be simple; that is, their communication sequences
must be restricted to client requests followed by server replies.

6.2. The multirate PALS pattern

6.2.1. Problem: Achieving virtual synchrony for a multirate asynchronous DRTS
As pointed out in Section 4.6, the strongest limitation of the PALS pattern is that it assumes that all components operate at

the same rate. In practice this assumption is too restrictive, because, for physical reasons, different sensors and actuators must
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often operate at different rates. This means that in a distributed control system, subcomponents closer to the sensors and
actuators are typically faster than intermediate components, which are themselves faster than a central controller. Of course,
all these components still need to act in a virtually synchronous way. But now this synchronization must take account of the
different rates (integer multiples of the slowest rate, namely, that of the central controller) at which different components
operate.

If anything, the multirate nature of these systems makes them even more complex than a DRTS operating at a single
rate. Can virtual synchrony be achieved for a multirate DRTS? Can the good features of PALS somehow be generalized to the
multirate setting? Pattern composition seems to be the simplest and most satisfactory answer: we do not need to change
PALS itself; we just need to compose it with appropriate patterns to handle the acceleration and deceleration involved in
the multiple rates.

6.2.2. Context: Multirate ensembles and underlying infrastructure
As for PALS, we need first of all to specify the semantic conditions for the acceptable inputs to our desired Multirate

PALS pattern. In this case, such inputs should be triples (E, T ,Γ ), where E is a multirate ensemble, T is the global period,
and Γ are the performance bounds provided by the underlying infrastructure.

A multirate ensemble is a synchronous interconnection of state machines with specified rates, as the one depicted below
(for a precise mathematical definition, see [11]):

where the two wires entering the outer box are those of the slow environment (for example, the airplane pilot interacting
with the airplane’s central control system), whereas some faster machines may have their own faster environments (env2 and
env3 in the picture), corresponding for example to sensors and actuators. Since an environment can be viewed as another
(typically non-deterministic) state machine, in the above picture we assume that M4 has been composed with env2 into a
single machine, and likewise that M5 has been composed with env3, so that, conceptually, only the slow environment is
now outside the outer box.

However, the above picture is still too high level and leaves a number of important questions unanswered. For example,
in what sense can the outputs of, say, the faster machine M3 become inputs of the slower machine M1? Conversely, in what
sense can the outputs of, say, the slower machine M1 become inputs of the faster machine M3? These obvious questions are
not entirely trivial. They can however be answered by introducing two simple auxiliary patterns for (typed) state machines:

1. The k-decelerator pattern is a transformation

(M,k) �→ M×k

with M a typed machine and k a nonzero natural number; and
2. The adaptor closure is a transformation

(M,α) �→ Mα

with M a typed machine and α a tuple of functions called an input adaptor.

The details of both transformations are spelled out in [11], but the key ideas are easy and natural. M×k is the machine
obtained by “running” M k times, so that M and M×k have the same set of states, but the inputs to (resp. outputs from)
M×k are k-tuples of inputs to (resp. outputs from) M . Therefore, M×k “skips all intermediate states” and transitions to the
state reached after consuming k inputs. In the above multirate ensemble picture, for example, M×3

3 now has the same rate
as M1, so that talk about feeding inputs and outputs to each other becomes meaningful.

There is, however, a remaining problem: inputs to M×3
3 must now be k-tuples, and outputs form M×3

3 are likewise
k-tuples; but inputs and outputs to M1 need not be k-tuples at all. This remaining problem is solved by the adaptor closure
pattern.
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The technical definition in [11] (and the above ensemble picture) assume that state machines may have several input
and output wires, feeding different types of data; that is, they assume typed machines. Let us assume, for example, that the
output wire of M3 and the leftmost input wire to M1 both carry a floating point number. Likewise, let us assume that the
rightmost input wire of M1, the leftmost output wire of M1, and the rightmost input wire of M3 all carry a Boolean value.
How can we adapt these inputs and outputs? By introducing input adaptor functions for each machine.

For example, we can adapt the inputs of M1 by using a pair of functions α = (α1,α2), with α1 : (x1, x2, x3) �→ (x1 + x2)/2
(that is, we take the average of the first two inputs), and with α2 the identity function on the Booleans. A function like
α1 may indeed be very useful. Why? Because in an actual distributed implementation, the last value x3 from M3 may,
due to network delays and clock skew, arrive too late for it to be used by M1. α1 then gives us the flexibility of ignoring
that last input from M3 that M1 cannot get on time anyway. Likewise, we can for example adapt the inputs of M×3

3
by using a function β : b �→ (b,⊥,⊥), where ⊥ is a “no-op” input which we assume M3 can also accept. That is, the
only meaningful input is the first Boolean input b; the remaining two are no-ops. The adaptor closure transformation
(M,α) �→ Mα constructs a new machine where adaptors have first been added to the input wires, as depicted below (again,
see [11] for the detailed definition):

In our two examples we get in this way input-adapted machines M1α and M×3
3β that now can be synchronously composed

in the usual sense.
In summary, and as further explained in [11], a multirate ensemble E contains information not only about the different

machines, their rates, and their wiring, but also about the input adaptors needed to hook them together. Then, the syn-
chronous composition of E is the single slow machine obtained by: (i) slowing down fast machines; and (ii) adding input
adaptors to each machine to obtain a single-rate ensemble, just as in Section 4.2; then (iii) we obtain our desired synchronous
composition of E as the slow machine that is the standard (in the sense of Section 4.2) synchronous composition of the
single-rate ensemble obtained after steps (i) and (ii).

The performance bounds Γ are provided by the underlying bounded delay network and the clock synchronization
algorithm, exactly as for PALS (see Section 4.2). The addition of a third argument T corresponding to the slow period
is now important because of the presence of fast machines. In an asynchronous setting, if a distributed object encap-
sulating a k-fast machine is going to be able to deliver all its k messages on time as inputs to a slow machine, the
inequality T /k � 2ε + μmax + max(2ε − μmin,αmax,k) must be satisfied, where αmax,k is the maximum time needed by
the k-fast machine to process inputs, make a transition and produce outputs. If k is large enough, satisfying this inequality
with a desired period T may be unfeasible. Fortunately, however, as illustrated by the example of the adaptor function
α1 : (x1, x2, x3) �→ (x1 + x2)/2 above, for many applications it is not necessary that the above inequality is maintained. How-
ever, in the case of α1, T still has to be such that the first two inputs from the distributed version of M3 arrive on time. As
further explained in [11], this means that, based on the bounds Γ , the chosen slowest period T and the ensemble’s adap-
tor functions co-determine each other, and need to be checked against each other to ensure that the synchronous multirate
design has a feasible asynchronous implementation.

6.2.3. Solution: The multirate PALS pattern
A decelerated machine M×k is of course a very useful abstraction to understand a synchronous multirate design; but in

the physical world of sensors and actuators nothing can be decelerated. This means that in an actual distributed implemen-
tation it is the k-fast machine M , and not its decelerated version, M×k , that has to be running. And yet, it is M×k that should
interact with the slow machines using suitable adaptors. How can this tension be reconciled? By developing asynchronous
versions of the k-decelerator pattern and the adaptor closure pattern as onion-skin wrappers in Real-Time Maude. This has
also the great advantage, both in terms of modularity and of conceptual clarity, of not requiring any change whatsoever to
the original PALS wrappers, and is the key to the modular design of Multirate PALS as a pattern composition.

That is, Multirate PALS is a theory transformation of the form:

(E, T ,Γ ) �→ MA(E, T ,Γ )

where (E, T ,Γ ) satisfies the semantic requirements discussed in Section 6.2.2 (including the satisfaction of the mutual
constraints that, given the performance bounds Γ , must be satisfied between the slow period T and the adaptors in E).

The key idea is that each machine in the ensemble E is wrapped by several onion-skin wrappers. Specifically, a k-fast
machine is wrapped by a 3-layer onion meta-object of the form:
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whereas a slow machine is wrapped by a 2-layer onion meta-object of the form:

This means that all the multirate complexities are handled by the inner k-decelerator and input adaptor wrappers, so
that the outer PALS wrapper can behave exactly as if the system were a single-rate system.

6.2.4. Guarantees: Main correctness result
Recall from Section 6.2.2 that, given a multirate ensemble E , its synchronous composition is the single state machine

obtained as the synchronous composition of the single-rate ensemble obtained by: (i) slowing down fast machines; and
(ii) adding input adaptors to each machine. The key result about Multirate PALS presented in [11] is that, relative to a set
of atomic propositions A P and a labeling function L, the Kripke structure associated to the synchronous composition of E
and the Kripke structure determined by the stable states of MA(E, T ,Γ ) are bisimilar, and therefore satisfy the same CTL∗
formulas.

There is, however, a small technical proviso required for the above result to hold. It has to do with the fact that, thanks
to the use of input adaptors, we may have distributed designs MA(E, T ,Γ ) where not all k outputs of a k-machine reach
a slow machine on time. For example, for the input adaptor α1 : (x1, x2, x3) �→ (x1 + x2)/2 it is enough for inputs x1 and
x2 to arrive to the slow machine M1. We can model this by considering that the input entering M1’s input adaptor is the
triple (x1, x2,⊥). Since α1(x1, x2, x3) = α1(x1, x2,⊥), it does not matter at all that x3 could not arrive on time. However, in
the definition of the synchronous product of E , outputs to be consumed in the next cycle are part of the state, so that the
state containing the output (x1, x2, x3) and that containing the output (x1, x2,⊥) are different states. The technical proviso
required for our desired bisimulation result to hold is that the labeling function L of the Kripke structure associated to
the synchronous product of E should not be able to distinguish between these two states. Technically, this is formalized by
defining an equivalence relation ≡A of “adaptor equivalence” between states of the synchronous product, where two states
are equivalent iff the outputs contained in the two states are equal after adaptors are applied, which is exactly what happens
in our example thanks to the equality α1(x1, x2, x3) = α1(x1, x2,⊥).

As for PALS, the practical upshot is a huge state space reduction, allowing model checking analysis of systems which
could not be model checked in their asynchronous version because of the state space explosion caused by their concurrency.
The effectiveness of this state space reduction for Multirate PALS has been demonstrated by a nontrivial case study involving
a multirate distributed system controlling the turning maneuver of an airplane, where the pilot gives commands to the
system, which controls the ailerons in the two wings and the rudder in the tail, all operating at different, faster rates than
that of the central controller [10].

6.2.5. Advantages and shortcomings
Two obvious advantages are the great reduction in the system complexity of a multirate DRTS for design, verification,

and implementation purposes, and the modularity and genericity of the pattern. A subtle point, hinted at in the above
discussion, is that the bounds Γ , the period T , and the adaptors α co-determine each other. This means that even the
much simpler synchronous design E must still take into account what can be feasibly implemented given the underlying
infrastructure.

7. Related work and conclusions

7.1. Related work

There has been extensive work on patterns at the informal level; see, e.g., [30,16,50]. There has also been extensive work
on formalizing patterns, e.g., [5,44,49,28,55,52,22,2]. Comparing with that work, it seems fair to say that these are valuable
contributions but: (i) my focus on distributed systems makes new contributions; and (ii) except for [49], where LOTOS is
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used, the formalizations in the work just cited are typically not executable, so that they should be viewed more as formal
requirements than as algorithmic solutions. For example, the behavioral aspects of patterns in [44,55,22] are formalized in
Lamport’s TLA [35], or extensions of it such as DisCo [44]. By contrast, as pointed out in footnote 1, I consider the use of
executable specifications in a computational logic, as opposed to just giving axioms stating formal requirements, essential to
capture design patterns as computational solutions.

The assume-guarantee aspects of a pattern; that is, the idea that its formal guarantees can be viewed as a contract [42]
that will be kept if the pattern is instantiated in a way that respects its semantic requirements, is emphasized for example
in [52], where, in what appears to be a violation of C.S. Peirces’s ethics of terminology, “assume/guarantee” is renamed to
“responsibilities/rewards.” Since my own work is on formal patterns for distributed systems, it is of course also related to
the extensive literature on assume/guarantee reasoning for concurrent systems, e.g., [18,1,46,57].

As already pointed out, the work presented here on formal patterns for distributed systems is closely related to work on
distributed object reflection [3,21,41,56]. Also, my earlier joint work with Lui Sha [51] on formal patterns for cyber-physical
systems was a sketch of things to come and is in the same spirit as the ideas presented here. The already-cited work on
which the formal patterns summarized in this paper is based [54,45,39,17,34,9,6,27] has been very valuable in developing
the more general ideas presented here.

7.2. Conclusions and future work

Distributed systems, possibly with real-time and probabilistic features, which can adapt to changing environment and
performance demands and come with strong formal guarantees about their behavior are quite complex, and hard to design,
verify and build. In this paper I have proposed formal patterns, specified as theory transformations in rewriting logic, as a
way to drastically reduce all aspects of system complexity when designing, verifying, implementing, and maintaining systems
of this kind. The general idea is that many practical systems can then be developed by composing such patterns, greatly
reducing system complexity and design, verification, and implementation costs, and greatly increasing their quality.

I have illustrated the proposed notion of formal pattern and its usefulness with a variety of example patterns. These
examples show in practice that all features (1)–(6) needed for having an adequate semantic framework in which to express
formal patterns (see Section 1.1) are well supported by rewriting logic.

Of course much work remains to be done. For example, although rewriting logic specifications can be directly used
to derive distributed system implementations (see, e.g., [19,7,53]), I have not addressed the important issue of deriving
correct-by-construction implementations of formal patterns in conventional languages. This is an important topic for future
research.

Another important area of future work is augmenting the mathematical proofs of a formal pattern’s properties with
machine-assisted proofs. This is a labor-intensive process, but very much worth doing, since it further increases the high
confidence that can be placed on a pattern. Likewise, machine-assisted proofs for such properties at the conventional code
level for code generators and code weavers that compose the input system’s code with the pattern’s code would be nontriv-
ial to obtain but extremely valuable. Proof efforts of this kind can be amortized over a large number of pattern instantiations.

The developing of libraries of formal patterns which contain formal executable specifications, correctness proofs, and
correct-by-construction conventional code implementations to solve many distributed system problems is an even more
ambitious long-term objective.
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