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Abstract. We present c-reductions, a simple, flexible and very general
state space reduction technique that exploits an equivalence relation on
states that is a bisimulation. Reduction is achieved by a canonizer func-
tion, which maps each state into a not necessarily unique canonical rep-
resentative of its equivalence class. The approach contains symmetry
reduction and name reuse and name abstraction as special cases, and ex-
ploits the expressiveness of rewriting logic and its realization in Maude to
automate c-reductions and to seamlessly integrate model checking and
the discharging of correctness proof obligations. The performance of the
approach has been validated over a set of representative case studies.

1 Introduction

Taming state space explosion is one of the key challenges for effective model
checking analysis. Bisimulation-based state space reductions are particularly at-
tractive, because they never generate spurious behaviors. This is because tem-
poral logic properties are preserved by bisimulations. Therefore, an LTL, CTL,
or CTL∗ formula holds on a bisimilar reduced system iff it holds in the orig-
inal system. A particular example are symmetry reductions which have been
extensively studied [1] and are used in model checkers (from the seminal works
on Murphi to extensions of Spin, Uppaal, Prism, etc.) and other verification
tools such as SAT solvers or planners. Developing and applying such state space
reduction techniques is still a challenging task: (i) automatic detection of system
regularities like symmetries is not trivial and thus often delegated to the sys-
tem designer; (ii) their exploitation is sometimes done by enriching the system
description language (e.g. scalarset datatypes in [2, 3]), so that the user is re-
quired to learn new primitives; (iii) the implementation of state space reduction
techniques has to be combined (both theoretically and practically) with the rest
of the techniques and algorithms implemented in the model checker, and often
this integration effort has to be repeated for every new version, improvement
or technique; and (iv) checking correctness of the reductions is not easy and
requires reasoning techniques (e.g. theorem proving) that may not be integrated
in the model checking framework, or part of the user’s skills. Indeed, problem
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(iv) means that in order to correctly model check a formula in a reduced system
it must be a correct reduction of the original system, which requires discharging
proof obligations. The problem, however, is that most model checkers lack the-
orem proving support (within the same framework) for discharging such proof
obligations, so that the checking task is usually left to the user and may never
be done, decreasing the confidence that can be placed on the verification.

Research Questions. In addressing problems (i)–(iv) above, our work asks
and provides answers to the following research questions: (1) Can symmetry
reductions be generalized to reductions requiring only that the bisimulation is
an equivalence relation? (2) Can model checking support for such bisimulation-
based reductions be provided in a way that does not require any changes to
the underlying model checker, yet with high performance? (3) Can the system
description language be kept likewise unchanged? (4) Can the specifications of
reduced systems be automatically generated from those of the original systems?
(5) Can model checking and theorem proving be seamlessly integrated for such
reductions, so that correctness proof obligations are explicitly generated and can
be semi-automatically discharged by appropriate tools?

Our Contributions. We answer question (1) in the affirmative by proposing
the notion of c-reduction, based on the idea of providing a canonizer func-
tion that computes a not-necessarily unique representative of the equivalence
class of states defined by the bisimulation. This notion is quite flexible, since
unique canonical representatives, although maximally space-efficient, can be
time-inefficient. Furthermore, it is fully general : it subsumes various reduction
techniques such as symmetry reduction, name reuse and name abstraction; and
it can be applied to any Kripke structure. Questions (2) and (3) are answered
in the affirmative: no such changes are needed (moreover, in [8] we report on
performance experiments showing that c-reductions can achieve drastic state
space reductions). Question (5) is answered by proposing rewriting logic [4] as
an efficiently executable logical framework supported by a high-performance tool
(Maude [5]) and having a formal tool environment where both LTL model check-
ing and the discharging of correctness proof obligations for c-reductions are
seamlessly integrated and partially automated. In fact, our answer to question
(5) takes the form of a formal methodology, which breaks proofs of correctness
into smaller, manageable proof subtasks. Many of the steps in our methodol-
ogy apply to any c-reduction, but some of them are directly tailored to sym-
metry reductions. As we gain more experience, we plan to extend all steps of
our methodology to arbitrary c-reductions. Question (4) is answered in our cur-
rent prototype for a very wide class of concurrent systems, namely, object-based
concurrent systems, and takes the form of a theory transformation that automat-
ically maps the original system into the desired c-reduction of it.

We have evaluated our approach over a set of examples by considering the
ease of defining reduction strategies, the effectiveness of the correctness checks,
and the performance of the resulting reductions. Compared to previous work,
we have observed performance gains in some cases (including previous imple-
mentations of symmetry reductions in Maude [6]), and a great flexibility in the
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definition of reductions, which allows us to subsume a wide range of reductions
including permutation and rotation symmetries, name reuse and name abstrac-
tion, which have interesting applications (e.g. implementation of the operational
semantics of languages with dynamic features such as resource allocation). The
usefulness of our proof methodology has also been evaluated through a case
study. A preliminary version of our tool is available for download [7].

Synopsis. Sect. 2 offers the necessary background. Sect. 3 presents c-reductions
in a generic way, focusing on Kripke structures. Sect. 4 describes the realiza-
tion of c-reductions in rewriting logic, highlighting the theoretical results, and
the reasoning and verification mechanisms and tools underlying our methodol-
ogy for specifying and verifying c-reductions. Sect. 5 covers related work and
conclusions.1

2 Preliminaries

We will use a simple running example of a banking system2 of concurrent objects
of the same class (accounts) having a natural number as attribute (their balance),
and body-less messages (one dollar transfers) for them. The behavior of objects
is governed by a simple rule: a message m for an object i can be consumed by
object i to increment its balance by one. The system exhibits a clear symmetry:
all objects are instances of the same class and have the same behaviour.

Systems like this (and of course more sophisticated ones) can be easily specifi-
cied as theories of rewriting logic [4], which can be specified as Maude [5] modules
to be executed and analyzed within the Maude framework.

Definition 1 (rewrite theory). A rewrite theory M is a tuple M = (Σ,E ∪
A,R, φ) where Σ is a signature, specifying the basic syntax (function symbols)
and type infrastructure (sorts, kinds and subsorting) for terms, i.e. state descrip-
tions; E is a set of (possibly conditional) equations, which induce equivalence
classes of terms (and are used to specify functions), and (possibly conditional)
membership predicates, which refine the typing information; A is a set of axioms
which also induce equivalence classes of terms, i.e., equational axioms describ-
ing structural equivalences between terms, like associativity and commutativity;
R is a set of (possibly conditional) non-equational rules, which specify the local
concurrent transitions in a system whose states are E ∪A-equivalence classes of
ground Σ-terms; and where φ : Σ → Pfin(N) is a frozenness map, assigning to
each function symbol f of arity n a subset φ(f) ⊆ {1..n} of its frozen argument
positions, i.e. positions under which rewriting with rules in R is forbidden.

In our example we can define a theory (a Maude module) BANK whose signa-
ture Σ includes sorts for messages (Message), objects (Object), their identifiers

1 Interested readers are referred to [8] which includes complementary material: the
formal proofs ([8, Sect. A]), a performance evaluation with literature benchmark ([8,
Sect. B]), and a full description of our case study ([8, Sect. C,D]).

2 Indeed, it is a simplification of the model of a bank account system described in [5].
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and attributes as natural numbers (Nat), configurations (Configuration) and
states (State), and operators that allow us to represent an object i with at-
tribute x as a term < i | x >, a message for object i as a term credit(i), an
empty configuration (of objects and messages) by none, and the multiset union
of configurations by juxtaposition, obeying associativity and commutativity as
axioms. The operator { } wraps an entire configuration c as a state {c}. Rules
rl { < i | x > credit(i) c1 } => { < i | s(x) > c1} , and rl { < i |

x > credit(i) } => { < i | s(x) > } model the above described behavior
of objects. Informally, one of these rules applies to states containing an object <
i | x >, a message credit(i) for it, and (possibly) a subconfiguration c13. If
such a match is found, the state can be replaced by the term on the right-hand
side of the rule (after applying the substitution of the match), resulting in a
state without the message and where object i increments its balance with the
successor operator s.

For the sake of simplicity, we assume that the system under study is described
by a rewrite theory M = (Σ,E ∪ A,R, φ) whose rules are “topmost” for a des-
ignated kind [State] of states. We also assume that an operator { } is used
to enclose states so that all rules in R have that operator as their top opera-
tor in their left-hand sides. These assumptions are already quite general: they
can cover, for example, object-based concurent systems. We further assume that
M has good executability properties, i.e., that E is sufficient complete, (ground)
confluent and terminating modulo A (that is, that the equational part correctly
defines functions), and R is coherent with E modulo A [5] (that is, that apply-
ing equations to evaluate functions does not interfere with the application of the
rules that specify system transitions). Moreover, unless we state the contrary,
all extensions of M that we shall define will be required to be ground conflu-
ent, ground terminating, and sufficiently complete w.r.t. the same signature of
constructors as M. Fortunately, the standard Maude tools offer automatization
support for checking such properties. Our running example satisfies all these
conditions.

We consider the well-known semantic domain of Kripke structures for rewrite
theories, suitable for state space exploration problems like model checking.

Definition 2 (Kripke structure). A Kripke structure K is a tuple K = (S,→
, L,AP) such that S is a set of states, → ⊆ S×S is a transition relation between
states, and L : S → 2AP is a labelling function mapping states into sets of atomic
propositions AP (i.e. observations on states).

The Kripke semantics of a rewrite theory has State-sorted terms as states and
one-step rewrites between State-sorted terms as transitions. The labelling func-
tion is defined by Boolean predicates specified equationally in the rewrite theory.
As proved in [9], any computable Kripke structure, even an infinite-state one,
can be obtained from an executable rewrite theory using only a finite signature
Σ, and finite sets E of equations, A of axioms and R of rules.

3 The second rule is needed since we treat the fact that none is an identity for union
equationally rather than axiomatically.
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Definition 3 (Kripke semantics of rewrite theories). Let M = (Σ,E ∪
A,R, φ) be a rewrite theory with a designated state sort State, and a set AP ∈
Σ of Boolean state predicates equationally defined in E. The Kripke structure
associated to M is KM = (TState/E∪A,→, L,AP) such that TState/E∪A are all
State-sorted states, → is defined as {[u] → [v] | M � u →1

R,State v} (i.e.
transitions are one-step rewrites between E ∪ A equivalence classes of State-
terms in M), and L is such that p ∈ L(s) iff p(s) =E∪A true.

We will consider bisimulation as the key semantic equivalence.

Definition 4 (bisimulation). Let K = (SK ,→K , LK , APK), H = (SH ,→H

, LH , APH) be two Kripke structures, and let ∼ ⊆ SK ×SH be a relation between
SK and SH . We say that ∼ is a bisimulation between K and H iff for each two
states s ∈ SK and s′ ∈ SH such that s ∼ s′ we have that: (i) LK(s) = LH(s′);
(ii) s →K r implies that there is a state r′ s.t. s′ →H r′ and r ∼ r′; and (iii)
s′ →H r′ implies that there is a state r s.t. s →K r and r ∼ r′.

The notion of bisimulation can be lifted to rewrite theories in the obvious way.We
shall focus on bisimulations such that the relation ∼ is an equivalence relation,
which includes the case of bisimulations induced by symmetries, i.e. when two
states are bisimilar if they belong to the same class of symmetric states.

For instance, suppose that the initial state of our example is {< 0 | 0 > < 1

| 0 > credit(0) credit(1)}. We have then two possible transitions (given by
the application of the rules governing the system), leading respectively to states:
{< 0 | 1 > < 1 | 0 > credit(1)} and {< 0 | 0 > < 1 | 1 > credit(0)}.
These two states are syntactically different but they are symmetric, i.e. equal up
to the permutation of object identifiers.

Indeed, equivalence classes of symmetric states can be conveniently defined as
the orbits of a group action (permutations in our example), which yield symmetry
reductions as a special case of our approach. We hence recall here some basic
notions about groups and group actions.

Definition 5 (group basics). A group is a tuple G = (G, •, e, ( )−1) where G
is a set of elements, • : G ×G → G is a binary associative operation, e ∈ G is
an identity (i.e. ∀f ∈ G.f • e = e • f = f), and ( )−1 is an inverse operator (i.e.
∀f ∈ G.f • f−1 = f−1 • f = e).

Let G be a group and H ⊆ G be a subset of G. The group generated by
H denoted 〈H〉 is defined as the closure of H under the inverse and product
operators ( )−1 and • of G. In general 〈H〉 will be a subgroup of G, but if 〈H〉
coincides with G, then H is said to generate G and its elements are called
generators.

Let G be a group and A be a set. An action of G on A is a monoid homo-
morphism �·� : G → [A → A], that is, �f • g� = �f� ◦ �g�, where f ◦ g denotes
function composition in (A → A), and �e� = idA, with idA the identity on A.

Notable examples are permutation and rotation groups, which capture typical
symmetries introduced by process replication in concurrent systems. Generators
define groups in a concise manner, e.g. transpositions and single rotations for
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permutation and rotation groups, respectively. The action of a group on the
states of a Kripke structure implicitly defines an equivalence relation.

Definition 6 (equivalence induced by a group action). Let S be a set
of states, G be a group and �·� be the action of G on S. Then the equivalence
relation ∼G induced by G on S is defined by: s ∼G s′ ⇔ ∃f ∈ G.�f�(s) = s′.

Group actions can be defined in rewriting logic with equations of the form
[[f]](t) = t’ where f denotes a group element (typically a generator) and
t, t’ are State-sorted terms. For instance, in our running example, the appli-
cation of object identifier transpositions i<->j can be defined (by structural
induction) with the equations:

eq [teq1] : [[i<->j]]({c1}) = {[[i<->j]](c1)} .

eq [teq2] : [[i<->j]](none) = none .

eq [teq3] : [[i<->j]](c1 c2) = ([[i<->j]](c1)) ([[i<->j]](c2)) .

eq [teq4] : [[i<->j]](< k | x >) = < [[i<->j]](k) | x > .

eq [teq5] : [[i<->j]](credit(k)) = credit([[i<->j]](k) ) .

eq [teq6] : [[i<->j]](i) = j .

ceq [teq7] : [[i<->j]](k) = k if (i != k) /\ (j != k) .

For example, the unconditional (eq) rule teq 4 defines the application of a
transposition [[i<->j]] to an object (< k | x >) as the object obtained by
transposing its identifier. Equations teq6 and teq7 take care of transposing
identifiers. A symmetric version of teq6 is not needed since <-> is commutative.
Equation teq7 is conditional (ceq): it applies when teq6 is not applicable.

3 C-Reductions for Kripke Structures

We introduce the idea of canonical reductions, abbreviated c-reductions as a
generic means to reduce a Kripke structure K by exploiting some equivalence
relation ∼ on the states of K which is also a bisimulation on K (i.e. between
K and itself). In Sect. 4 we will explain how c-reductions are specified, proved
correct, and used for model checking in rewriting logic.

We start by defining canonizer functions, which are used to compute for a
given state a (not necessarily unique) canonical representative of its equivalence
class, modulo some equivalence relation which is also a bisimulation (e.g. a canon-
ical permutation of the identifiers of processes with identical behavior).

Definition 7 (canonizer functions). Let K = (S,→, L,AP) be a Kripke
structure, and let ∼ ⊆ S × S be a an equivalence relation which is a bisimu-
lation on K. A function c : S → S is a ∼-canonizer (resp. strong ∼-canonizer)
iff for each s ∈ S we have s ∼ c(s) (resp. s ∼ c(s), and s ∼ s′ → c(s) = c(s′)).

Canonizer functions are used to compute smaller but semantically equivalent
(i.e. bisimilar) Kripke structures by applying canonizers after each transition.
Strong canonizers provide unique representatives for the equivalence classes of
states and, hence, more drastic space reductions. That is, for two different but
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equivalent states s ∼ s′ they provide the same canonical representative (i.e.
c(s) = c(s′)). Typical examples of strong canonizers for equivalence classes are
functions based on enumeration strategies [10] which generate the complete set
of states of the equivalence class and then apply some function over it (e.g.
based on a total ordering of the states). For instance, in our running example,
an enumeration canonizer just generates all states that result from permuting
(symmetric) processes in all possible ways and then selects one according to
some total order (e.g. the lexicographic order of the description of states). In
particular, for a state {< 0 | 1 > < 1 | 0 > credit(1)} the enumeration will
produce its whole orbit: { {< 0 | 1 > < 1 | 0 > credit(1)}, {< 0 | 0 > <

1 | 1 > credit(0)}}. Then the canonizer would assign the least state of the set
according to some total order, e.g. “identifier first, balance second” which would
provide {< 0 | 0 > < 1 | 1 > credit(0)} as representative. Canonizers can
be obtained in more efficient and smarter ways as shown in Sect. 4.4, e.g. with
local search strategies [10] that repeatedly apply transpositions until the least
state is reached. Instead, a non-strong (or weak) canonizer can provide different
representatives for equivalent states. That is, it might be the case that c(s) �=
c(s′) even though s ∼ s′. Weak canonizers provide weaker state space reductions,
but they often enjoy advantages over strong canonizers: in some cases they are
easier to be defined and analyzed, and their computation can be much more
efficient in terms of runtime cost. Such heuristic canonizers can be found for
instance in [11, 3], where the rough idea is to consider an ordering of the states
that only depends on part of the state description. The resulting ordering relation
is partial and the representative of a state is computed as one of the least states
of the ordering.

The reduction of the state space is obtained by applying the canonizer to
states after a transition. This is what we call a c-reduction.

Definition 8 (c-reduction of a Kripke structure). Let K = (S,→, L,AP)
be a Kripke structure, and let c : S → S be a ∼-canonizer function for some
equivalence relation ∼ ∈ S×S which is a bisimulation on K. We call the Kripke
structure K/c = (S, (→; c), L,AP) the c-reduction of K, where the composed
transition relation →; c is defined by →; c = {(s, c(r)) ∈ S2 | s → r}.
An important result is then that a c-reduction is bisimulation preserving.

Theorem 1 (∼-preservation). Let K = (S,→, L,AP) be a Kripke structure,
let ∼ be an equivalence relation on S that is a bisimulation on K, and let c be
a ∼-canonizer function. Then ∼ is a bisimulation relation between K and K/c.

4 Correct c-Reductions in Rewriting Logic

We now describe a methodology for specifying, proving correct, and analyzing c-
reductions in rewriting logic. In this methodology, correctness proofs and model
checking verification are supported by tools in the Maude formal environment
such as the Maude LTL Model Checker [12], Invariant Analyzer [13], Inductive
Theorem Prover [14] and Church Rosser and Coherence Checker [15].
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Fig. 1. Modules and steps

We assume that there is some regularity
in M that we try to exploit by defining an
equivalence (bisimulation) relation ∼ on
states to ease the analysis of M. We also
assume that the specification M satisfies
the assumptions in Sect. 2 and is conve-
niently structured (see Fig. 1) into a core
equational part (M.E), and its extension
with state predicate functions that define
the atomic propositions (M.AP ) and be-
havioral rules (M.R). Such modular struc-
ture is very natural and easy to achieve, and facilitates our methodology. Fig. 1
schematizes our methodology by identifying the main theories (or modules), their
incremental construction via extensions (triple arrows) or refactoring (dashed ar-
rows), and the modules involved in each step (dotted arrows). In particular, our
methodology consists in the following steps: (i) specify and verify the equivalence
relation ∼; when the equivalence ∼G is induced by a group G, specify the group
action that induces ∼G in a module M+G and verify that it is indeed a group
action (Sect. 4.1) which ensures ∼G to be an equivalence relation; (ii) verify that
∼ preserves the state predicates AP (Sect. 4.2) by analyzing their invariance un-
der an auxiliary theory M/G that models group actions; (iii) verify that ∼ is a
bisimulation (Sect. 4.3) by checking a coherence-like property between the rules
of M.R and those of M/G; (iv) define a canonizer c in a module M + c and
show it to be a ∼-canonizer (Sect. 4.4); (v) build the c-reduction M/c of M
(Sect. 4.5), and (vi) use M/c for model checking analysis purposes. Our methol-
ogy then ensures that any CTL* property ϕ holds on M/c if and only if it
holds on M, since M/c has been proved to be a correct c-reduction of M, and
therefore bisimilar to M.

Some of the above steps are independent or apply at different levels of abstrac-
tion, so that they act as building blocks to be re-used as needed. For instance,
verifying a c-reduction strategy does not require performing all the verification
steps if it is based on a state equivalence that has been already proven to be cor-
rect. In practice, bisimulation relations and their canonizers need not be defined
and proven correct for every system, as there will be classes of systems for which
they can be specified once and for all. In such cases, one can define c-reductions
as theory transformations for wide classes of examples corresponding, for in-
stance, to certain permutation groups, or to other useful equivalence relations
besides the symmetry reduction case. In Maude this can be done by exploiting
reflection, so that the c-reduction is automatized as a function at the metalevel,
possibly after checking some proof obligations. Our current prototype [7] applies
some generic c-reductions to any object-based module.

Even though in some of the steps of our methodology we focus on c-reductions
based on group actions, the c-reduction technique, in particular steps (v-vi), is
more general and allows arbitrary canonizers. We focus on group actions to
illustrate the ideas and the semi-automatic correctness checks (steps (i)-(iv))
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with a simple example. More substantial examples can be found in [7]; several
of them are mentioned, together with detailed performance experiments and
comparisons with other tools and methods in [8, Sect. B].

4.1 Specifying and Verifying Group Actions

We give a simple method to equationally specify group actions and verify their
correctness in terms of a set H of generators only, without having to explicitly
define the group G generated by H . The key ideas, explained in detail in [8,
Sect. E], consist on: (a) “uncurrying” the desired group action function �·� :
G −→ (State → State) as a function �·� : G × State −→ State; (b) choosing
a subset H ⊆ G that generates G as a monoid; and (c) specifying the inverse
i(g) = g−1 of each generator g ∈ H as a product of generators by a function
i : H → H∗, where H∗ is the free monoid on the alphabet H .

The trick is that, after equationally specifying steps (b) and (c), G needs not
be explicitly defined : it is enough to specify the action of the generators by a
function �·� : H × State → State, which extends uniquely to a monoid action
�·� : H∗ × State → State satisfying for each u ∈ State, g ∈ H , w ∈ H∗ the
recursive equations: �ε�u = u and �wg�u = �w�(�g�u). Then it is easy to prove
(see [8, Sect. E]) that the only possible group action �·� : G × State → State

extending �·� : H × State → State exists if and only if the following equalities
hold for each generator g and each state u: �g�(�g−1�(u)) = �g−1�(�g�(u)) = u.
Then G needs not be explicitly specified, because we can safely replace G by the
group H∗/i = H∗/{g · i(g) = ε | g ∈ H}, so that ∼G=∼H∗/i, and the group
action �·� : G × State → State can be replaced by the simpler monoid action
�·� : H∗ × State → State.

The following definition captures (a) and (b), where we assume that H has
been equationally specified by a new sort H , and then H∗ has been specified by
instantiating a parameterized module List [X ] to the instance List [H ].

Definition 9 (group pre-action specification). Let M = (Σ,E ∪ A,R, φ)
be the rewrite theory under study with designated State sort. A group pre-action
on M is an equational theory M +G = (Σ ∪ ΣG, E ∪ EG ∪ A, ∅, φ) which is a
protecting extension of the equational part of M, M.E, where ΣG and EG extend
the equational theory M.E with a sort H, a sort H∗ of lists of elements in H (i.e.
the module List [H ] is protected in M+G), a function �·� : H×State → State

recursively extended to a monoid action �·� : H∗ × State → State as explained
above, and a function i : H → H∗.

The proof obligations that need to be verified to show that a group pre-action is
a group action are as follows:

Proposition 1 (correctness criteria for group actions). Let M + G =
(Σ ∪ΣG, E ∪EG ∪A) be a group pre-action on M. Then in the inital algebra of
M+G the function �·� : H×State→ State uniquely extends to a group action
of H∗/i on State if and only if the following two equations hold inductively in
such an initial algebra: (i) (∀g : H,u : State) �g�(�g−1�(u)) = u, and (ii)
(∀g : H,u : State) �g−1�(�g�(u)) = u.
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Using the above implicit definition method and checking the correctness cri-
teria in the above proposition one can equationally define group actions and
prove their correctness by inductive equational reasoning. In particular, this can
be done for any group action of interest, defining symmetries between states,
including the full and rotation symmetries that have been identified and thor-
oughly studied in the past. Note that sometimes (e.g. transpositions) i(g) = g,
so that i needs not be defined explicitly, because it is the identity function. The
action function �·� : H × State → State can be very easily specified in Maude,
by topmost equations relating two State-sorted terms of the form [[g]]({t})
= {t’}, for (patterns of) elements g ∈ H .

Inductively showing that the equations (i) and (ii) in Proposition 1 are sat-
isfied can usually be done easily by structural induction on the algebraic struc-
ture of states. For instance, to check that in our running example full sym-
metries yield a group action, all we have to do is to prove the equality �i ↔
j�(�i ↔ j�({t})) = {t}, i.e. that applying the same transposition of i and j
(denoted i ↔ j) twice amounts to applying the identity. This proof can be
done by structural induction on State-sorted terms. For instance, to show that
the property holds in the general case (i.e. [[i<->j]] ([[i<->j]] ({c1 c2}))
= {c1 c2}), we apply the equations implementing the group action (namely
teq1, teq3) to obtain {[[i<->j]] ([[i<->j]] (c1)) [[i<->j]] ([[i<->j]]

(c2))} = {c1 c2} and conclude the proof by applying induction.4

Once proved that M+G correctly specifies a group action, we can conclude
that the induced relation on states ∼G is actually an equivalence relation. In our
example, we have an equivalence relation induced by object permutations.

4.2 Checking That ∼ Preserves Atomic Predicates

To prove that the equivalence ∼G induced by the action of group G preserves
the atomic propositions AP we proceed as follows. First, we define a rewrite
theory M/G for the sole purpose of analysis. The theory M/G is a protecting
extension of M+G that introduces some rewrite rules to “move” inside orbits.

Definition 10. Let M+G = (Σ∪ΣG, E∪EG∪A, ∅, φ) be the theory specifying
the action of a group G with generator H ⊆ G on the states of a theory M =
(Σ,E∪A,R, φ). Then, the theory M/G is defined as M/G = (Σ∪ΣG, E∪EG∪
A,RM/G, φ), where RM/G = {{t} => [[g]]({t})) | g ∈ H}.
In words, we replace the rules of M by rules that move from a state u to a state
v obtained by applying a generator to u. If H is infinite, RM/G is also infinite.
However, in practice we can often find a finitary reformulation of RM/G, because
RM/G can often be expressed very concisely using patterns for the elements in H .
For instance, the module BANK/PERMUTATION of our running example contains
just two rules: rl { < i | x > < j | y > } => { [[i<->j]] ( < i | x >

< j | y >) } and rl { < i | x > < j | y > c1 } => { [[i<->j]] ( < i

| x > < j | y > c1) } to model transitions transposing two arbitrary objects.

4 For the full proof see [8, Sect. C].
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It is easy to see (by the properties of the generators of a group) that two states
are reachable in M/G if and only if they are in the same orbit, i.e. that for any
two states u, v we have the equivalence: u ∼G v ⇔ u →∗

RM/G
v. Therefore,

proving that a predicate p ∈ AP is preserved by ∼G, i.e. that for each pair of
states u, v ∈ TStateE/A

u ∼G v implies p(u) = p(v), is equivalent to proving that
p is stable under M/G, i.e. M/G |= (p ⇒ �p), where � denotes the always
operator of LTL.

To prove stability we need only to focus on the positive equations defin-
ing when p holds, which we assume are of the form p({t}) = true, or
p({t}) = true if cond, with cond a condition. In our example, the predicate
some-message characterizing states in which there is at least one message around
for some existing object is defined by the equations eq some-message( < i |

x > credit(i)) = true and eq some-message( < i | x > credit(i) c1 )

= true.
Under the assumptions that: (i) the constructors of M.E are free modulo the

axioms A, and (ii) the terms t in predicate equations p({t}) = true, and the
left-hand sides of rules in M/G are constructor terms, we can use the results in
[16] to reduce proving M/G |= (p ⇒ �p) to the following proof obligations:

Proposition 2 (predicate preservation through stability). Let M/G the
auxiliary rewrite theory of Definition 10 and M satisfy assumptions (i)–(ii)
above. and let p be an atomic proposition defined in M.AP by positive equa-
tions of the form described above. Then, p is preserved by ∼G iff for each rule
{t’} => {t’’} ∈ RM/G, each equation p({t}) = true in M.AP , and each
A-unifier5, we can prove p({ϑ({t’’}}) = true.

Proposition 2 is very useful in practice, since we can use the Invariant Ana-
lyzer [13, 16] (InvA) to automate a good part of the effort of proving stabil-
ity, leaving the remaining proof obligations for the Maude inductive theorem
prover [14]. For example, the above mentioned proposition can be shown to be
invariant under object permutations by InvA in a fully automatic way.

4.3 Checking That ∼ Is a Bisimulation

Once the state relation ∼ we want to exploit has been shown to preserve the
atomic propositions of interest, we have to check that ∼ is a bisimulation.

{θ(t)}
M/G

��

M
�� {θ(t’)}
M/G ∗��

{θ(t’’’)} M
�� {w}

In the case of an equivalence relation∼G induced by
a group G, proving that ∼G is a bisimulation amounts
to showing joinability of suitable “critical pairs” be-
tween the state transition rules {t} => {t’} in the
rule set M,6 and the rules {t’’} => {t’’’} of M/G.
Indeed, bisimulation is ensured if we prove that for all ground A-unifiers θ be-
tween t and t’’ and each corresponding critical pair denoted with ordinary
arrows in the diagram on the right, there is a rule R giving us a one-step rewrite
{θ(t’’’)} →M {w} for which we can prove: {θ(t’)} →∗

M/G {w}.
5 Mappings of variables into non-necessarily ground terms such that ϑ(t’) =A ϑ(t).
6 The case of conditional rules in M is analogous, using conditional critical pairs.
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Proposition 3 (correctness of bisimulation by joinability). Let M be
the rewrite theory under study, with an action of the group G. Then ∼G is a
bisimulation between M and itself iff for all rules {t} => {t’} in RM, all rules
{t’’} => {t’’’} in M/G, and all ground A-unifiers θ between t and t’’ there
is a state {w} such that {θ(t’)} →∗

M/G {w} and {θ(t’’’)} →M {w}.
The above proposition requires considering the set of all ground A-unifiers which
may be infinite. Fortunately, we can instead use A-unifiers with variables and, in
particular, the most general ones. Since each ground A-unifier is an instance of a
most general one, if we can prove the conditions in Proposition 3 for the finite set
of most general A-unifiers, then we have proved bisimilarity. However, using the
most general A-unifiers may not always automatically prove bisimilarity: some
inductive joinability proof obligations may still be left.

That is, the use of most general A-unifiers yields the following sound and easy
to automate proof method. First, we use the Maude A-unification command to
find most general A-unifiers ϑ between {t} and {t’’}, respectively the left-hand-
sides of each rule {t} => {t’} of M, and each rule {t’’} => {t’’’} of M/G
(after a renaming of variables to ensure that they have no variables in common).
Second, for each such A-unifier ϑ we can use the Maude search command to
determine all possible 1-step rewrites {ϑ(t’’’)} →M {w}. Note that for each
ground instance s of {ϑ(t’’’)} the obtained rewrite steps correspond to some
of the possible transitions outgoing from state s. Last, we can use the search
command again to check if at least one of such obtained terms {w} can also be
reached from {ϑ(t’)} in M/G. For example, applying this method to our run-
ning example yields six unifiers in the first step, each requiring one reachability
check that is efficiently solved by the search command of Maude. Proposition 4
summarizes the method.

Proposition 4 (soundness of the bisimulation check). Let M be the
rewrite theory under study and ∼G an equivalence on states induced by the ac-
tion of a group G. Then ∼G is a bisimulation between M and itself if for each
rule {t} => {t’} in M, rule {t’’} => {t’’’} in M/G, and most general
A-unifier ϑ between t and t’’, there is one state {w} with {ϑ(t’’’)} →M {w}
for which we can show {ϑ(t’)} →∗

M/G {w}.

4.4 Defining and Verifying Canonizer Functions

The next step is to define canonizer functions c : State → State in a protecting
extensionM+c of the rewrite theoryM under study. Note that in order to define
c we may need to define some auxiliary functions (e.g. the ordering relations used
in symmetry reduction to determine orbit representatives).

Definition 11 (c-extension of a rewrite theory). Let M = (Σ,E∪A,R, φ)
be the rewrite theory under study. A c-extension of M is a protecting extension
of M of the form M + c = (Σ ∪ Σc, E ∪ Ec ∪ A,R, φc) where c ∈ Σc with
c : State → State, and φc extends φ by making all functions in Σc frozen.7

7 Imposing frozenness on the operators of Σc is needed for the result of [8, Lemma 1].
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Many candidate canonizers may exist for a given bisimulation ∼, each leading
to different results in terms of the size of the reduced state space and compu-
tational performance. In any case, all canonizer functions must preserve ∼, i.e.
they must be ∼-canonizers. This may require some theorem proving but it can
be relatively easy to check in most cases, since we can use the equations Ec and
show that each one preserves ∼.

For example, in the case of local reduction strategies [10] for symmetries based
on a group G with generators H ⊆ G, the equations Ec defining c are of the
form c({t}) = c([[g]]({t})) if [[g]]({t})<{t} with g ∈ H, < defining
an ordering relation on states, plus an equation c({t})={t} [owise] to deal
with the case when none of the previous equations is applicable, that is, when
there is no way to transform a state into a smaller equivalent one by applying a
generator (or inverse of a generator). Since such equations define c in terms of
group actions or of the identity function when all conditions fail, preservation of
the equivalence ∼G induced by G is immediate by the very definition of c.

Examples of local search strategies are implemented in our prototype tool [7].
In our running example, we can define such a canonizer as follows:

ceq c( { < i | x > < j | y > c1 } )

= c( { [[i<->j]]( < i | x > < j | y > c1 ) } )

if i < j /\ x < y .

eq c({c1}) = {c1} [ owise ] .

A very similar situation is that of enumeration strategies [10], where canonizers
are defined as c({t}) = min{[[f]]({t}) | f ∈ G}. Again, preservation of ∼G

by c follows from the very definition of c. Indeed, for all states u, c(u) will be
necessarily of the form �g1 • g2 • · · · • gn�(u), with each gi being a generator. We
call the equation format described above group application form.

Proposition 5 (group application ∼G canonizers). Let M be the rewrite
theory under study, ∼G the state equivalence induced by a group action, M/G
as in Definition 10, and M + c a c-extension of M such that the equations of
Ec defining c are in group application form. Then, c is a ∼G-canonizer.

In practice, when specifying ∼G-canonizers in the above form, all we have to
check are the executability properties of the equations of M + c: termination,
(ground) confluence and sufficient completeness, plus M protected in M+c, for
which we can use the standard Maude tools.

Note that proving ground confluence of c is not sufficient to show that c is a
strong canonizer. It may still be the case that for some two states u, v such that
u ∼ v we have that c(u) �= c(v). For example, in the case of equivalences ∼G

induced by a group G generated by H ⊆ G as a monoid, to prove that c is a
strong canonizer we also need to show that for all group elements in g ∈ H and
states s we have c(s) = c(�g�(s)). It is easy to see that if this holds, an inductive
argument allows us to conclude c(s) = c(�f�(s)) for all f ∈ G and hence for any
two equivalent states s ∼G s′ = �f�(s). Of course, there are cases in which no
check is needed. For instance, it is well-known that enumeration strategies yield
strong canonizers, while local strategies are not strong in general.
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4.5 Defining c-Reductions

The next step is defining a c-reduction of M as a rewrite theory M/c. This is
very useful, since then no changes to a model checker are needed to support c-
reductions : we just model checkM/c. We show that M/c can be easily obtained
by applying a theory transformation M �→ M/c defined as follows.

Definition 12 (c-reduction of a rewrite theory). Let M + c = (Σ ∪
Σc, E ∪ Ec ∪ A,R, φc) be a c-extension of M = (Σ,E ∪ A,R, φ) for which c

is a ∼-canonizer of an equivalence bisimulation ∼. We then call M/c = (Σ ∪
Σc, E∪Ec∪A,Rc, φc) a c-reduction of M, where Rc = {t => c(t’) if cond |
(t => t’ if cond) ∈ R}.
M/c is very much like M, except that each rule t => t’ if cond in R, is
transformed into a rule t => c(t’) if cond, i.e. into a rule where the canon-
izer function c is applied to the right hand side to ensure that canonization is
performed after each system transition. For our running example we obtain, e.g.
a rule: rl { < i | x > credit(i) c1 } => c({ < i | s(x) > c1 }).

This transformation is supported by our prototype [7] for the class of object-
based rewrite theories. Our transformation exploits Maude reflective features: it
is defined by a function that manipulates the meta-representation of the input
theory to be c-reduced.

For some rules in M/c it may be more efficient not to apply the canonizer
after each step. For instance, if we know that the corresponding rule in M will
always result in a canonical state we can save the time of applying the canonizer.

It is trivial to show that M/c is a c-reduction by construction, and in
particular that KM/c = KM/c. It can also be shown that it has good exe-
cutability properties. By the properties required for Ec, it inherits all the prop-
erties of the equational part of M, namely sufficient completeness, confluence
and termination modulo A. Moreover, it can be shown that M/c is coherent
modulo A.

Theorem 2 (executability ofM/c). Let M be the rewrite theory under study,
and let M/c be as in Definition 12. If M + c has good executability properties,
then M/c also has good executability properties.

The above theorem means that we can use M/c for model checking analysis.
For example, in our running example we can use the Maude LTL model checker
to successfully verify the property ♦�¬some-message (“eventually there will be
no more messages forever”) efficiently. If we explore the whole state space of our
running example using the Maude reachability analyzer we can check that the
state space of the c-reduced system is drastically smaller than that of the original
system. For instance, if we choose an initial state with 4 empty accounts with 4
messages for each, the original state space has 625 states, while the c-reduced
one has only 70.

This is just a simple example: the performance experiments reported in [8,
Sect. B] include examples taken from the literature where the applied c-reductions
provide drastic gains and allow analyzing systems whose original state spaces is
too large to be effectively analyzed.
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5 Related Work and Conclusions

Related Work. We briefly comment on some interesting related approaches
besides the ones already mentioned. A complementary line of research focuses on
automatic symmetry detection, proposed for some model checkers, e.g. SPIN [10]
and ProB [17]. Our approach does not forbid (though does not yet provide)
automatically detected symmetries but focuses on user-definable ones, providing
a methodology to check their correctness, with the main advantage being that
we rely on tools and techniques used to perform the verification of the system
itself. A related work is reported in [18] where formal methods are used to prove
the soundness of the reduction techniques of [17].

Interesting are as well other state space reduction techniques, in particular
those already proposed in the setting of rewriting logic and Maude, such as
partial order reduction [19], and equational abstraction [20]. The closest one
is [20], where abstractions are defined equationally. The main difference with
our approach is in the kind of behavioral equivalence considered: equational ab-
stractions yield simulations while we focus on bisimulations. With respect to [19]
our approach is orthogonal and we are hence investigating how to combine them
to improve the efficiency of rewriting-logic based interpreters of programming
languages, in particular those with primitives for dynamic memory allocation.

Conclusions. We have presented c-reductions, a general bisimulation-based re-
duction technique that exploits canonizer functions whenever a bisimulation is
an equivalence relation. The main differentiating features with respect to other
state space reduction techniques are: (i) no changes to the underlying model
checker are required, and reductions are defined using the original system de-
scription language; (ii) model checking and correctness proofs for the reduction
are seamlessly integrated and supported by tools; (iii) semi-automation: both
for applying the reduction and for checking their correctness; and (iv) general-
ity: it subsumes in a uniform way symmetry reduction as well as other kinds of
reductions (e.g. name reuse and name abstraction).

We have presented the basic concepts, described some typical classes of reduc-
tions, and illustrated how they can be analyzed. Our methodology performs a
series of incremental steps Sect. 4.1–4.5, which include checking that the equiv-
alence relation is a bisimulation and that the reduction strategies preserve such
equivalence relation. Even if not presented here, we have performed a set of
experimental results (see [8, Sect. B]) were we have observed a comparable per-
formance with respect to symmetry reduction extensions of mature tools such
as SPIN and performance gains with respect to previous implementations of
symmetry reduction in Maude [6].

The flexibility of our approach has allowed us to define a wide range of re-
ductions. Beyond the classical permutation and rotation symmetries, we have
considered some simple cases of name reuse and name abstraction, which are
crucial to deal with the infinite state spaces of systems with dynamic allocation
of resources. Indeed, compared to the approach presented in [3, 11] we are able to
treat a wider class of systems, where identifiers of symmetric objects can appear
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as pointers in attributes of other objects, and with wider classes of symmetries
such as rotational ones. Similar remarks can be made about [6], with respect to
which we offer a wider class of reduction strategies and better performance.

Even though we have emphasized reductions based on group actions, the c-
reduction approach is more general and accepts any possible canonizer function.
Correctness proof methods fully covering the general case should be developed
in future work. A preliminary version of our tool is publicly available [7].
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