
Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Rewriting modulo SMT and open system analysis

Camilo Rocha a,∗, José Meseguer b, César Muñoz c

a Department of Electronics and Computer Science, Pontificia Universidad Javeriana, Cali, Colombia
b Department of Computer Science, University of Illinois, Urbana, IL, USA
c NASA Langley Research Center, NASA, Hampton, VA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 September 2014
Received in revised form 5 October 2016
Accepted 6 October 2016
Available online 12 October 2016

This paper proposes rewriting modulo SMT, a new technique that combines the power of
SMT solving, rewriting modulo theories, and model checking. Rewriting modulo SMT is
ideally suited to model and analyze reachability properties of infinite-state open systems,
i.e., systems that interact with a nondeterministic environment. Such systems exhibit both
internal nondeterminism, which is proper to the system, and external nondeterminism,
which is due to the environment. In a reflective formalism, such as rewriting logic,
rewriting modulo SMT can be reduced to standard rewriting. Hence, rewriting modulo
SMT naturally extends rewriting-based reachability analysis techniques, which are available
for closed systems, to open systems. Furthermore, a single state expression with symbolic
constraints can now denote an infinite set of concrete states. The proposed technique is
illustrated with the formal analysis of: (i) a real-time system that is beyond the scope
of timed-automata methods and (ii) automatic detection of reachability violations in a
synchronous language developed to support autonomous spacecraft operations.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Symbolic techniques can be used to represent possibly infinite sets of states by means of symbolic constraints. These
techniques have been developed and adapted to many other verification methods such as SAT solving, Satisfiability Modulo
Theories (SMT), rewriting, and model checking. A key open research issue of current symbolic techniques is extensibility.
Techniques that combine different methods have been proposed, e.g., decision procedures [50,51], unification algorithms [7,
11], theorem provers with decision procedures [53,1,10], and SMT solvers in model checkers [3,30,49,63,67]. However, there
is still a lack of general extensibility techniques for symbolic analysis that simultaneously combine the power of SMT solving,
rewriting- and narrowing-based analysis, and model checking.

This paper proposes a new symbolic technique that seamlessly combines rewriting modulo theories, SMT solving, and
model checking. For brevity, this technique is called rewriting modulo SMT, although it could more precisely be called rewrit-
ing modulo SMT + B , where B is an equational theory having a matching algorithm. It complements another symbolic
technique combining narrowing modulo theories and model checking, namely narrowing-based reachability analysis [48,8].
Neither of these two techniques subsumes the other. Indeed, each technique has specific advantages: narrowing-based
reachability analysis is more general and can perform more powerful forms of symbolic execution based on narrowing, as
opposed to matching and rewriting. But rewriting modulo SMT can verify both satisfiability and validity of constraints in

* Corresponding author.
E-mail addresses: camilo.rocha@javerianacali.edu.co (C. Rocha), meseguer@cs.illinois.edu (J. Meseguer), cesar.a.munoz@nasa.gov (C. Muñoz).
http://dx.doi.org/10.1016/j.jlamp.2016.10.001
2352-2208/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlamp.2016.10.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:camilo.rocha@javerianacali.edu.co
mailto:meseguer@cs.illinois.edu
mailto:cesar.a.munoz@nasa.gov
http://dx.doi.org/10.1016/j.jlamp.2016.10.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2016.10.001&domain=pdf

270 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
the decidable built-in subtheory, and can be considerably more efficient because of the higher efficiency of matching versus
unification modulo a set of axioms.

In rewriting logic [46], deterministic systems can be naturally specified by equational theories, but specification of con-
current, nondeterministic systems in rewriting logic requires rewrite theories, i.e., triples R = (�, E, R) with (�, E) an
equational theory describing system states as elements of the initial algebra T�/E , and R rewrite rules describing the
system’s local concurrent transitions. Rewriting modulo SMT techniques can then be applied to increase the power of
rewrite-based equational reasoning for (�, E) such as, for instance, inductive theorem proving [39,29,40], termination check-
ing [28,61], and procedural verification [41]. However, the full power of rewriting modulo SMT, including its model checking
capabilities, can be better exploited when applied to concurrent open systems.

An open system is a concurrent system that interacts with an external, nondeterministic environment. When such a
system is specified by a rewrite theory R = (�, E, R), it has two sources of nondeterminism, one internal and the other
external. Internal nondeterminism comes from the fact that in a given system state several instances of each rule in R
may be enabled. The local transitions thus enabled may lead to completely different states. What is peculiar about an
open system is that it also has external, and often infinitely-branching, nondeterminism due to the environment. That is,
the state of an open system must include the state changes due to the environment. Technically, this means that, while
system transitions in a closed system can be described by rewrite rules of the form t(−→x)→t′(−→x), transitions in an open
system can instead be modeled by rules of the form t(−→x) → t′(−→x , −→y), where the extra variables −→y on the right-hand
side of the rule are fresh new variables that can represent external nondeterminism such as, for instance, user input, sensor
probing, and random computations. Therefore, a substitution for the variables −→x �−→y decomposes into two substitutions,
one, say θ , for the variables −→x under the control of the system and another, say ρ , for the variables −→y under the control
of the environment. In rewriting modulo SMT, such open systems are described by conditional rewrite rules of the form
t(−→x) → t′(−→x , −→y) if φ(

−→x ,
−→y), where φ is a constraint solvable by an SMT solver. This constraint φ may still allow the

environment to choose an infinite number of substitutions ρ for −→y , but can exclude choices that the environment will
never make.

Consider the example of a real-time system comprising a thermostat sensing the temperature from the environment and
an air conditioning device. The purpose of the thermostat plus the air conditioner is to maintain the system’s temperature
near a desired setpoint. The thermostat does this by switching the air conditioning device on or off, depending on the
relation between the temperature it senses from the environment and the setpoint. For this example, the state of the
system can be modeled by tuples of the form

〈 time:_ , temp:_ , setpoint :_ ,ac:_ 〉 or [time:_ , temp:_ , setpoint :_ ,ac:_]
where the values associated to attributes time, temp, and setpoint are natural numbers specifying, respectively, the system’s
global clock, the temperature sensed by the thermostat from the environment, and the system’s desired setpoint, and the
value associated to attribute ac is a Boolean constant indicating whether the air conditioning device is turned on or not.
The idea is that the first two attributes in a state (i.e., time and temp) are the ones under control of the environment, while
the last two attributes (i.e., setpoint and ac) are the ones under the internal control of the system. The state transitions can
be modeled by the following three rules, with R, S, T , Te natural number variables and B a Boolean variable:

〈 time:R, temp:T , setpoint : S,ac:B 〉→ [time:R, temp:T , setpoint : S,ac:true] if T > S

〈 time:R, temp:T , setpoint : S,ac:B 〉→ [time:R, temp:T , setpoint : S,ac:false] if T ≤ S

[time:R, temp:T , setpoint : S,ac:B]→ 〈 time:R + 1, temp:Te, setpoint : S,ac:B 〉
The first rule models the situation in which the temperature sensed from the environment exceeds the setpoint of the
system and, thus, the air conditioning device must be turned on (if it was not). The second rule models the opposite
situation in which the temperature sensed from the environment does not exceed the setpoint of the system and the air
conditioning device must be turned off (if it was not). The third rule is a tick rule modeling the passage of time and the
corresponding changes in the environment, namely, the global clock is increased by one time unit and the next value of
the temperature is read from a sensor. The interplay between states of the form 〈_〉 and [_] can be explained as follows:
rules under the internal control of the system are only applicable to states of the form 〈_〉 and produce states of the form
[_] in zero-time transitions, while the rule under the control of the external environment is only applicable to states of the
form [_] and produces states of the form 〈_〉 in one time unit. In the above-stated sense, this is an example of an open
system that interacts with an external nondeterministic environment: the extra variable Te in the right-hand side of the last
rule represents the external nondeterminism due to changes in the environment. Note that this system cannot be directly
executed via term rewriting because there are infinitely many substitutions for Te .

The non-trivial challenges of modeling and analyzing open systems can now be better explained. They include: (1) the
enormous and possibly infinitary nondeterminism due to the environment, which typically renders finite-state model check-
ing impossible or unfeasible; (2) the impossibility of executing the rewrite theory R = (�, E, R) in the standard sense, due
to the nondeterministic choice of the substitution ρ that instantiates the extra variables on the right-hand side of a rule;
and (3) the, in general undecidable, challenge of checking the rule’s condition φ, since without knowing ρ , the condition
φθ is non-ground, so that its E-satisfiability may be undecidable. As further explained in the paper, challenges (1)–(3) are

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 271
all met successfully by rewriting modulo SMT because: (1) states are represented not as concrete states, i.e., ground terms,
but as symbolic constrained terms (t ;ϕ) with t a term with variables ranging over the domains handled by the SMT solver
and ϕ an SMT-solvable formula, so that the choice of ρ is avoided; (2) rewriting modulo SMT can symbolically rewrite
such pairs (t ;ϕ) (describing possibly infinite sets of concrete states) to other pairs

(
t′ ;ϕ′); and (3) decidability of φθ (more

precisely of ϕ∧φθ) can be settled by invoking an SMT solver. In this sense, rewriting modulo SMT is a symbolic reachability
analysis technique for topmost rewrite theories, i.e., rewrite theories for which nondeterministic computation specified by
the rules happens at the top of the state terms. Many systems whose state can be represented by a set or multiset of ob-
jects and messages can be naturally specified as topmost rewrite theory. In particular, most distributed systems and network
protocols, including those with real-time features, can be easily modeled this way. This rewriting-based system specification
style is illustrated with the above thermostat example — which is fully specified later in the paper — and with two longer
case studies.

Rewriting modulo SMT can be integrated with model-checking by exploiting the fact that rewriting logic is reflective [20],
i.e., is a logic in which important aspects of its metatheory can be represented at the object level in a consistent way. Hence,
rewriting modulo SMT can be reduced to standard rewriting. In particular, all the techniques, algorithms, and tools available
for model checking of closed systems specified as rewrite theories, such as Maude’s search-based reachability analysis [19],
become directly available to perform symbolic reachability analysis on systems that are now infinite-state.

The approach and formal analysis techniques proposed in this paper are illustrated with the formal analysis of the
CASH scheduling protocol [15] and the formal executable semantics of, and formal analysis for, the Plan Execution Inter-
change Language (PLEXIL) [26]. The CASH protocol specifies a real-time system whose formal analysis is beyond the scope
of timed-automata [2]. The language PLEXIL is a safety-critical synchronous language developed by NASA to support au-
tonomous spacecraft operations.

This paper is an extended and revised version of [58], including:

• A running example, namely, the real-time and open system comprising the thermostat and the air conditioning device,
that is used for the purpose of explaining concepts, definitions, and results in Sections 3, 4, and 5.

• Complete proofs of all results in Sections 3, 4, and 5.
• A more comprehensive description of the CASH protocol case study in Section 7, in which all transitions rules are

included and explained.
• A new case study in Section 8 on automatically detecting symbolic reachability violations for PLEXIL.

The rest of this paper is organized as follows. Section 2 presents some preliminary material on rewriting logic. Sec-
tion 3 introduces built-in subtheories and elaborates on some of its equational properties. Section 4 presents the concept of
rewriting modulo a built-in equational sub-theory. Section 5 then explains how to perform sound and complete symbolic
rewriting with these theories. Section 6 presents an overview of a reflective implementation in Maude that offers support
for symbolic rewriting modulo SMT. Sections 7 and 8 present case studies, respectively, on the symbolic reachability anal-
ysis for the CASH real-time protocol and the plan execution language PLEXIL. Finally, Section 9 presents some concluding
remarks.

2. Preliminaries

Notation on terms, term algebras, and equational theories is used as in [6,36]. An order-sorted signature � is a tuple
� = (S, ≤, F) with a finite poset of sorts (S, ≤) and set of function symbols F typed with sorts in S . The binary relation
≡≤ denotes the equivalence relation (≤ ∪ ≥)+ generated by ≤ on S and its point-wise extension to strings in S∗ . The
function symbols in F can be subsort-overloaded. To avoid ambiguous parses they are required to satisfy the condition that,
for w, w ′ ∈ S∗ and s, s′ ∈ S , if f : w −→ s and f : w ′ −→ s′ are in F , then w ≡≤ w ′ implies s ≡≤ s′ . For any sort s ∈ S , the
expression [s] denotes the connected component of s, that is, [s] = [s]≡≤ . A top sort in � is a sort s ∈ S such that for all
s′ ∈ [s], s′ ≤ s.

Let X = {Xs}s∈S denote an S-indexed family of disjoint variable sets with each Xs countably infinite. The set of terms of
sort s and the set of ground terms of sort s are denoted, respectively, by T�(X)s and T�,s; similarly, T�(X) and T� denote,
respectively, the set of terms and the set of ground terms. T�(X) and T� denote the corresponding order-sorted �-term
algebras. All order-sorted signatures are assumed preregular [36], i.e., each �-term t has a unique least sort ls(t) ∈ S s.t.
t ∈ T�(X)ls(t) . It is also assumed that � has nonempty sorts, i.e., T�,s �= ∅ for each s ∈ S . The set of variables of t is written
vars(t) and for a list of terms t1, . . . , tn , vars(t1, . . . , tn) = vars(t1) ∪ · · · ∪ vars(tn). For a term t ∈ T�(X) and −→x a list of
variables in X , the expression t(−→x) denotes the term t and the fact that each variable in vars(t) occurs in the list −→x .
A term t is called linear if and only if each x ∈ vars(t) occurs only once in t . For S ′ ⊆ S , a term is called S ′-linear if and only
if each x ∈ vars(t) with sort in S ′ occurs only once in t .

A substitution is an S-indexed mapping θ : X −→ T�(X) that is different from the identity only for a finite subset of X
and such that θ(x) ∈ T�(X)s if x ∈ Xs , for any x ∈ X and s ∈ S . The identity substitution is denoted by id and θ |Y denotes the
restriction of θ to a family of variables Y ⊆ X . The domain of θ , denoted dom(θ), is the subfamily of X such that x ∈ dom(θ)

if and only if θ(x) �= x, for each x ∈ X . The range of θ is the set ran(θ) =⋃{vars(θ(x)) | x ∈ dom(θ)}. Substitutions extend
homomorphically to terms in the natural way. A substitution θ is called ground if and only if ran(θ) = ∅. The application of

272 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
a substitution θ to a term t is denoted by tθ and the composition (in diagrammatic order) of two substitutions θ1 and θ2

is denoted by θ1θ2, so that tθ1θ2 denotes (tθ1)θ2. A context C is a λ-term of the form C = λx1, . . . , xn.c with c ∈ T�(X) and
{x1, . . . , xn} ⊆ vars(c); it can be viewed as an n-ary function (t1, . . . , tn) �→ C(t1, . . . , tn) = cθ , where θ(xi) = ti for 1 ≤ i ≤ n
and θ(x) = x for x /∈ {x1, . . . , xn}.

A �-equation is an unoriented pair t = u with t ∈ T�(X)s , u ∈ T�(X)s′ , and s ≡≤ s′ . A conditional �-equation is a triple
(t, u, γ), denoted t = u if γ , with t = u a �-equation and γ a finite conjunction of �-equations; �-equations and condi-
tional �-equations will be just called �-equations for brevity. An equational theory is a tuple (�, E), with � an order-sorted
signature and E a finite collection of (possibly conditional) �-equations. An equational theory E = (�, E) induces the
congruence relation =E on T�(X) defined for t, u ∈ T�(X) by t =E u if and only if E � t = u, where E � t = u denotes
E-provability by the deduction rules for order-sorted equational logic in [47]. For the purpose of this paper, such inference
rules, which are analogous to those of many-sorted equational logic, are even simpler thanks to the assumption that �
has nonempty sorts, which makes unnecessary the explicit treatment of universal quantifiers. Similarly, =1

E denotes prov-
able E-equality in one step of deduction. The E-subsumption ordering �E is the binary relation on T�(X) defined for any
t, u ∈ T�(X) by t �E u if and only if there is a substitution θ : X −→ T�(X) such that t =E uθ . The expressions TE (X) and
TE (also written T�/E(X) and T�/E) denote the quotient algebras induced by =E on the term algebras T�(X) and T� , re-
spectively. T�/E is called the initial algebra of (�, E). A theory inclusion (�, E) ⊆ (�′, E ′), with � ⊆�′ and E ⊆ E ′ , is called
protecting if and only if the unique �-homomorphism T�/E −→ T�′/E ′ |� to the �-reduct1 of the initial algebra T�′/E ′ is a
�-isomorphism, written T�/E � T�′/E ′ |� . Intuitively, if a theory inclusion (�, E) ⊆ (�′, E ′) is protecting, this means that:
(i) =E ′ does not identify terms in T�(X) that cannot be proved equal by =E , that is, no confusion is added when extending
(�, E) to (�′, E ′), and (ii) for each sort s of � and t′ ∈ T�′,s there is a t ∈ T�,s such that t′ =E ′ t , that is, no junk is added
to the sorts of � when extending (�, E) to (�′, E ′).

A set of equations E is called regular (resp., linear) if and only if for any equation (t = u if γ) ∈ E vars(t) = vars(u)

(resp., both t and u are linear terms). Moreover, E is called collapse-free for a subset of sorts S ′ ⊆ S if and only if for any
t = u ∈ E and for any substitution θ : X −→ T�(X) neither tθ nor uθ map to a variable having some sort s ∈ S ′ . In this
paper, intuitively, regularity assumptions are used to prevent some equations from adding/dropping variables and linearity
assumptions are used to forbid the use of matching for denoting equality among terms; these two assumptions are crucial
for proving completeness of the proposed approach. Furthermore, the exclusion of collapsing equations for the relevant
subset of sorts helps in providing a clear syntactic distinction between built-in terms and all other terms (see Definition 1
in Section 3).

A �-rewrite rule is a triple l → r if φ, with l, r ∈ T�(X)s , for some sort s ∈ S , and φ =∧
i∈I ti = ui a finite conjunction of

�-equations. A rewrite theory is a tuple R = (�, E, R) with (�, E) an order-sorted equational theory and R a finite set of
�-rules. R = (�, E, R) is called a topmost rewrite theory if it has a top sort State such that no operator in � has State as
argument sort and each rule l → r if φ ∈ R satisfies l, r ∈ T�(X)State and l /∈ X . A rewrite theory R induces a rewrite relation
→R on T�(X) defined for every t, u ∈ T�(X) by t →R u if and only if there is a rule (l → r if φ) ∈ R and a substitution
θ : X −→ T�(X) satisfying t =E lθ , u =E rθ , and E � φθ . The tuple TR = (T�/E , →∗

R) is called the initial reachability model
of R [14].

Appropriate requirements are needed to make an equational theory E admissible, i.e., executable in rewriting languages
such as Maude [19]. In this paper, it is assumed that the equations of E can be decomposed into a disjoint union E � B ,
with B a collection of regular and linear structural axioms (such as associativity, and/or commutativity, and/or identity) for
which there exists a matching algorithm modulo B producing a finite number of B-matching solutions, or failing otherwise.
Furthermore, it is assumed that the equations E can be oriented into a set of (possibly conditional) sort-decreasing, oper-
ationally terminating, confluent rewrite rules

−→
E modulo B . The rewrite system

−→
E is sort decreasing modulo B if and only

if for each (t → u if γ) ∈ −→E and substitution θ , ls(tθ) ≥ ls(uθ) if (�, B,
−→
E) � γ θ . The system

−→
E is operationally terminating

modulo B [25] if and only if there is no infinite well-formed proof tree in (�, B,
−→
E) (see [45] for terminology and de-

tails). Furthermore,
−→
E is confluent modulo B if and only if for all t, t1, t2 ∈ T�(X), if t →∗

E/B t1 and t →∗
E/B t2, then there

is u ∈ T�(X) such that t1 →∗
E/B u and t2 →∗

E/B u. The term t↓E/B∈ T�(X) denotes the E-canonical form of t modulo B so
that t →∗

E/B t↓E/B and t↓E/B cannot be further reduced by →E/B . Under sort-decreasingness, operational termination, and
confluence, the term t↓E/B is unique up to B-equality.

For a rewrite theory R, the rewrite relation →R is undecidable in general, even if its underlying equational theory is
admissible, unless conditions such as coherence [66] are given (i.e., whenever rewriting with →R/E∪B can be decomposed
into rewriting with →E/B and →R/B). A key goal of this paper is to make such a relation both decidable and symbolically
executable when R is topmost and E decomposes as E0 � B1, where E0 is a built-in theory for which formula satisfiability
is decidable and B1 has a matching algorithm.

1 For � ⊆ �′ a subsignature inclusion and A a �′-algebra, its �-reduct A|� is the �-algebra obtained from A by ignoring all operators and sorts in
�′ \� .

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 273
3. Built-in subtheories

For the purpose of rewriting modulo SMT, a built-in subtheory corresponds to the portion of the equational theory
that will be handled by the SMT solver. The goal of this section is twofold. On the one hand, it introduces the concept of
built-in subtheory, key for defining rewriting modulo built-in subtheories in Section 4. On the other hand, it presents some
equational properties of these theories that are useful in proving the main theorems of this paper in Section 5.

The signature of a built-in subtheory defines the sorts and the function symbols that the SMT solver can handle.

Definition 1 (Signature with built-ins). An order-sorted signature � = (S, ≤, F) is a signature with built-in subsignature �0 ⊆�

if and only if �0 = (S0, F0) is many-sorted, for each s ∈ S0 its connected component [s] in (S, ≤) is the singleton set
[s] = {s}, and, for F1 = F\F0, if f : w −→ s ∈ F1, then s /∈ S0 and f has no other (subsort-overloaded) typing in F0.

The notion of built-in subsignature in an order-sorted signature � is modeled by a many-sorted signature �0 defining
the built-in terms T�0 (X0). The restriction imposed on the sorts and the function symbols in � w.r.t. �0 provides a clear
syntactic distinction between built-in terms (the only ones with built-in sorts) and all other terms.

Example 1. Consider the example of the open system comprising a thermostat and an air conditioning device from the
Introduction. This example is used here to illustrate the definition of a built-in subsignature (S0, F0) of an order-sorted
signature (S, ≤, F). Later on it will also be used to illustrate rewriting modulo SMT and its use in system analysis. In this
system, the set of sorts S is defined by:

S = {Nat,Bool,Attribute,AttrSet, State},
where Nat is the sort of natural numbers, Bool the sort of Boolean values, Attribute the sort of attributes, AttrSet the sort of
multisets of attributes, and State the topsort representing the system’s states. The partial order ≤ on S is the set:

≤= {(s, s) | s ∈ S} ∪ {(Attribute,AttrSet)}.
The set of function symbols F is given by the following definitions:

0 : −→ Nat s : Nat−→ Nat

true : −→ Bool false : −→ Bool

_ < _ : Nat× Nat−→ Bool _≤ _ : Nat× Nat−→ Bool

time:_ : Nat−→ Attribute temp:_ : Nat−→ Attribute

setpoint :_ : Nat−→ Attribute ac:_ : Bool−→ Attribute

mt : −→ AttrSet _ , _ : AttrSet× AttrSet−→ AttrSet

〈 _ 〉 : AttrSet−→ State [_] : AttrSet−→ State.

Natural numbers are represented in Peano-like notation with constant 0 and successor function s, Boolean values are repre-
sented by constants true and false, and operators < and ≤ are used to compare natural numbers in the usual way. Tokens
time, temp, setpoint, and ac are used as attribute names, with the former three taking a natural number as a parameter and
the latter one a Boolean value. Token mt is used to represent the empty multiset of attributes, while the union of (multi-
sets) of attributes is denoted by comma. Notice that by the subsort inclusion Attribute≤ AttrSet, any attribute is a singleton
multiset of attributes. Finally, a state is formed by enclosing a multiset of attributes in angular braces or square brackets.

The built-in subsignature �0 is defined to be that of the natural numbers and the Boolean values, namely �0 = (S0, F0)

is defined to be

S0 = {Nat,Bool}, F0 = {0, s, true, false,<,≤}.

There are a few extra things to be said about the signature presented in Example 1. First, note that some usual function
symbols for Nat and Bool have not been included as part of the signature. Second, for AttrSet to correctly model multisets
of attributes, some axioms such as associativity, commutativity, and identity for ‘,’ need to be included. Additional function
symbols and equational axioms for this specification will be gradually added later. Finally, observe that the Peano-like
specification of the natural numbers presented in this signature can be quite problematic when dealing with large numbers.
However, in rewriting logic specification languages such as Maude [19], and in state-of-the-art SMT solvers, there is no need
to explicitly define natural numbers in Peano-like notation: instead, natural numbers can be specified in decimal notation
and s(n) can be denoted as n + 1. Here, the Peano notation is used to better illustrate the difference between built-in
function symbols and the rest of the function symbols, but actually a possibly infinite signature �0 of built-in symbols
could be used.

274 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
Since the goal of rewriting modulo SMT is to achieve conditional symbolic rewriting with decidable built-in constraints
by delegating to an SMT solver the handling of such constraints on built-in terms, it is important to have a mechanism for
completely ‘hiding’ the syntactic details of built-in terms from the rewrite relation. In this paper, this idea of hiding the
structure of built-in terms from a term is captured by the notion of abstraction of built-ins, a mechanism for replacing each
one of the maximal built-in subterms of a term by distinct fresh new variables.

Definition 2. If � ⊇�0 is a signature with built-ins, then an abstraction of built-ins for a �-term t is a pair (λx1 · · · xn.t◦ ; θ◦)
consisting of context λx1 · · · xn.t◦ and a substitution θ◦ : X0 −→ T�0 (X0) such that: (i) t◦ ∈ T�1 (X) is an S0-linear term, (ii)
t = t◦θ◦; and (iii) dom(θ◦) = {x1, . . . , xn} are pairwise distinct variables disjoint from vars(t), and {x1, . . . , xn} = vars(t◦) ∩ X0,
where �1 = (S, ≤, F1) and X0 = {Xs}s∈S0 .

Lemma 1 shows that such an abstraction can always be chosen so as to provide a canonical decomposition of t enjoying
useful properties.

Lemma 1. Let � be a signature with built-in subsignature �0 = (S0, F0). For each t ∈ T�(X), there exists an abstraction of built-ins
(λx1 · · · xn.t◦; θ◦). Furthermore, {x1, . . . , xn} can always be chosen to be disjoint from an arbitrarily chosen finite subset Y of X0 .

Proof. By induction on the structure of t . �
From now on, for any t ∈ T�(X) and Y ⊆ X0 finite, the expression abstract�1 (t, Y) will denote the choice of an abstraction

pair (λx1 · · · xn.t◦ ; θ◦) satisfying the disjointness condition w.r.t. Y stated in Lemma 1. Note that each substitution θ with
dom(θ) = {x1, . . . , xn} has an associated quantifier-free (QF) formula [θ] =∧n

i=1 (xi = θ(xi)). In particular, the formula [θ◦]
associated to the substitution θ◦ in (λx1 · · · xn.t◦ ; θ◦) binds the abstraction variables x1 · · · xn to subterms of t .

Example 2. Let t be the term

〈 time : R, temp : s(s(T)), setpoint : S,ac : B 〉
in the signature of Example 1, where R, S, T are variables of sort Nat and B is a variable of sort Bool. Consider the term t◦

〈 time : N0, temp : N1, setpoint : N2,ac : B0 〉
and the substitution θ◦ defined by θ◦(N0) = R , θ◦(N1) = s(s(T)), θ◦(N2) = S , θ◦(B0) = B , and θ◦(x) = x otherwise, and with
N0, N1, N2 variables of sort Nat and B0 a variable of sort Bool. The context λN0, N1, N2, B0.t◦ is an abstraction of built-ins
for t and θ◦ satisfies properties (i)–(iii) in Lemma 1. Moreover, for any set Y not containing the variables N0, N1, N2 and
B0, the term t◦ and the substitution θ◦ satisfy abstract�1 (t, Y) = (λN0, N1, N2, B0.t◦ ; θ◦) with [θ◦] being the QF-formula

N0 = R ∧ N1 = s(s(T)) ∧ N2 = S ∧ B0 = B.

As illustrated by Example 2, the abstraction of built-ins for a given term t introduces new variables even for maximal
built-in subterms that correspond to a built-in variable in t . However, for efficiency reasons, an algorithm actually imple-
menting the abstraction procedure can avoid introducing extra-variables in these cases since these extra-variables are not
technically useful.

Under certain restrictions on axioms, matching a �-term t to a �-term u can be decomposed modularly into
�1-matching of the corresponding λ-abstraction and �0-matching of the built-in subterms. This is described in Lemma 3,
with the help of Lemma 2.

Lemma 2. Let � = (S, ≤, F) be a signature with built-in subsignature �0 = (S0, F0). Let B0 be a set of �0-axioms and B1 a set of
�1-axioms. For B0 and B1 regular, linear, and collapse free for any sort in S0, and sort-preserving, and t ∈ T�(X0):

(a) if t ∈ T�0 (X0) and t =B1 t′ , then t = t′;
(b) if t ∈ T�1 (X0) and t =B0 t′ , then t = t′;
(c) if t ∈ T�1 (X0) and t =1

B1
t′ , then vars(t) = vars(t′) and t is linear if and only if t′ is so.

Proof.

(a) Axioms B1 do not mention any function symbol in F0 and are sort-preserving. Therefore, the equation in B1 can only
apply to variables in X0. But B1 is collapse-free for any sort in S0. Therefore, no B1 equation can be applied to t , forcing
t = t′ .

(b) Same argument as (a).
(c) Consequence of B1 being regular and linear. �

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 275
Lemma 3. Let � = (S, ≤, F) be a signature with built-in subsignature �0 = (S0, F0). Let B0 be a set of �0-axioms and B1 a set of
�1-axioms. For B0 and B1 regular, linear, collapse free for any sort in S0, and sort-preserving, if t ∈ T�1 (X0) is linear with vars(t) =
{x1, . . . , xn}, then for each θ : X0 −→ T�0 (X0):

(a) if tθ =1
B0

t′ , then there exist x ∈ {x1, . . . , xn} and w ∈ T�0 (X0) such that θ(x) =1
B0

w and t′ = tθ ′ , with θ ′(x) = w and θ ′(y) =
θ(y) if y �= x;

(b) if tθ =1
B1

t′ , then there exists v ∈ T�1 (X0) such that t =1
B1

v and t′ = vθ ; and
(c) if tθ =B0�B1 t′ , then there exist v ∈ T�1 (X0) and θ ′ : X0 −→ T�0 (X0) such that t′ = vθ ′ , t =B1 v, and θ =B0 θ ′ (i.e., θ(x) =B0

θ ′(x) for each x ∈ X0).

Proof.

(a) It follows from Lemma 2 (b) that B0 can only be applied on some built-in subterm θ(x) of tθ , for some x ∈ dom(θ).
That is, there is w ∈ T�0 (X0) such that θ(x) =1

B0
w and, since t is linear, t′ = tθ ′ , where θ ′(x) = w and θ ′(y) = θ(y) if

y �= x.
(b) It follows from Lemma 2 (c) that equational deduction with B1 can only permute the built-in variables in t and it does

not equate built-in subterms such as the ones in ran(θ). Hence, by Lemma 2 (c), there exists a linear v ∈ T�1 (X0) such
that t =1

B1
v and t′ = vθ .

(c) Follows by induction on the proof’s length in B0 � B1. �
4. Rewriting modulo a built-in subtheory

This section presents both the notion of a rewrite theory modulo built-ins and the ground rewrite relation induced by
it, along with some examples. This section concludes by presenting a technical result that is at the heart of the main con-
tribution of this paper: for a very general class of these rewrite theories, matching provides a complete ground unifiability
procedure.

A rewrite theory modulo a built-in subtheory is a topmost rewrite theory with a signature of built-ins and where
structural axioms can be given for both built-in and non-built-in terms, but equations are only allowed at the built-in level.
In these rewrite theories, rules are given at a top sort, built-in extra variables are allowed in their right-hand side, and
constraints are quantifier-free formulas over built-in terms.

Definition 3 (Rewriting modulo a built-in subtheory). A rewrite theory modulo the built-in subtheory E0 is a topmost rewrite
theory R = (�, E, R) with:

(a) �=(S, ≤, F) a signature with built-in subsignature �0=(S0, F0) and a top sort State in S \ S0;
(b) E = E0 � B0 � B1, where E0 is a finite set of �0-equations, B0 (resp., B1) are �0-axioms (resp., �1-axioms) satisfying

the conditions in Lemma 3 (i.e., B0 and B1 regular, linear, collapse-free for any sort in S0, and sort-preserving), E0 =
(�0, E0 � B0) and E = (�, E) are admissible, and the theory inclusion E0 ⊆ E is protecting;

(c) R a finite set of rewrite rules of the form l(−→x1 , −→y) → r(−→x2 , −→y) if φ(
−→x3) such that l, r ∈ T�(X)State , l is (S \ S0)-linear, −→xi is of the form −→xi :−→si with −→si ∈ S∗0, for i ∈ {1, 2, 3}, −→y :−→s with −→s ∈ (S \ S0)

∗ , and φ ∈ QF�0 (X0), where QF�0(X0)

denotes the set of quantifier-free �0-formulas with variables in X0.

In Definition 3, a quantifier-free �0-formula in QF�0(X0) is a Boolean combination of atoms, where an atom is a
�0-equation with variables in X0. Note that no assumption is made on the relationship between the built-in variables −→x1 in the left-hand side, −→x2 in the right-hand side, and −→x3 in the condition φ of a rewrite rule. This freedom is key for
specifying open systems with a rewrite theory because, for instance, −→x2 can have new variables not appearing in −→x1 .

The restriction to topmost rewrite theories in Definition 3 is a fairly mild one: any Turing machine is naturally a topmost
rewrite theory, and (more relevant for our present purposes) most distributed systems (including distributed object-based
ones), actor systems, cyber-physical systems, and network protocols, can be easily modeled by topmost rewrite theories
using the theory transformation described in [48]. Technically, one important advantage of topmost rewrite theories is that
narrowing is a complete reachability analysis method for them (without any termination assumptions), whereas complete-
ness is lost for arbitrary rewrite theories [48]. For a way of regaining completeness for arbitrary rewrite theories through
“back-and-forth” narrowing see [62].

Example 3. Recall the thermostat example from the Introduction, and the signature with built-ins from Examples 1 and 2.
Consider the following extension of this signature with natural number addition and Boolean conjunction, and some axioms
and equations for these symbols, where variables M, N have sort Nat and variables X, Y have sort Bool:

_+ _ : Nat× Nat−→ Nat _∧ _ : Bool× Bool−→ Bool

M + N = N +M X ∧ Y = Y ∧ X

276 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
M + 0= M M + s(N)= s(M + N).

Also, consider the topmost rewrite rules of the thermostat system from Section 1, where R, S, T , Te are variables of sort Nat
and B is a variable of sort Bool:

〈 time:R, temp:T , setpoint : S,ac:B 〉→ [time:R, temp:T , setpoint : S,ac:true] if T > S

〈 time:R, temp:T , setpoint : S,ac:B 〉→ [time:R, temp:T , setpoint : S,ac:false] if T ≤ S

[time:R, temp:T , setpoint : S,ac:B]→ 〈 time:R + 1, temp:Te, setpoint : S,ac:B 〉
This is an example of a rewrite theory modulo a built-in subtheory with built-in subsignature:

�0 = ({Nat,Bool}, {0, s, true, false,<,≤,+,∧}) .

In this rewrite theory, the sort State fulfills Condition (a) in Definition 3, and the sets B0 and E0 have two elements each,
namely,

B0 = {M + N = N +M, X ∧ Y = Y ∧ X}
E0 = {M + 0= M, M + s(N)= s(M + N)}.

Note that the axioms in B0 are regular, linear, collapse-free for Nat and Bool, respectively, and sort-preserving. It is easy to
check that the built-in subtheory E0 = (�0, E0 � B0) is admissible. Furthermore, in each rewrite rule, the left-hand side is
linear, the extra variables in the right-hand side are built-in variables, and the condition is a QF �0-formula.

The next task is to define what ground computation means for a rewrite theory modulo a built-in subtheory.

Definition 4 (Ground rewrite relation). Let R = (�, E, R) be a rewrite theory modulo E0. The ground rewrite relation →R
induced by R on T�,State is defined for t, u ∈ T�,State by t →R u if and only if there is a rule l → r if φ in R and a ground
substitution σ : X −→ T� such that (a) t =E lσ , u =E rσ , and (b) TE0 |= φσ .

The ground rewrite relation →R is the topmost rewrite relation induced by R modulo E on T�,State . This relation is
defined even when a rule in R has extra variables in its right-hand side: the rule is then nondeterministic and such extra
variables can be arbitrarily instantiated, provided that the corresponding instantiation of φ holds. Also, note that non-built-in
variables can occur in l, but φσ is a ground (i.e., variable-free) formula in QF�0(∅), so that either TE0 |= φσ or TE0 �|= φσ .

Example 4. Recall the rewrite theory modulo a built-in subtheory R from Example 3. The following is an example of a
rewrite computation with →R for the thermostat and air conditioning system:

〈 time : 0, temp : 69, setpoint : 73,ac : false 〉
→R [time : 0, temp : 69, setpoint : 73,ac : false]
→R 〈 time : 1, temp : 71, setpoint : 73,ac : false 〉
→R [time : 1, temp : 71, setpoint : 73,ac : false]
→R 〈 time : 2, temp : 74, setpoint : 73,ac : false 〉
→R [time : 2, temp : 74, setpoint : 73,ac : true]
→R 〈 time : 3, temp : 71, setpoint : 73,ac : true 〉

The initial state corresponds to the global clock having 0 time units, the thermostat registering a temperature of 69 degrees
from the environment and having setpoint at 73 degrees, while the air conditioning device is turned off. In this state, only
a transition under control of the system is enabled, namely, the transition that turns off the air conditioning device, which
is already off. The thermostat then senses 71 degrees from the environment and the global clock is advanced in one time
unit. The new temperature does not exceed the setpoint of the thermostat and thus the air conditioning device remains off
after the next internal transition. At time 2, the temperature is updated to 74 degrees and, consequently, the next zero-time
computation turns the air conditioning device on. Finally, at time 3, 71 degrees are sensed from the environment.

According to Definition 4, the first rewrite step in this computation is induced by the rewrite rule

[time:R, temp:T , setpoint : S,ac:B]→ 〈 time:R + 1, temp:Te, setpoint : S,ac:B 〉
and ground substitution σ satisfying

σ(R)= 0, σ (T)= 69, σ (S)= 73 σ(B)= false, σ (Te)= 71.

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 277
In this case, note that the constraint φ corresponds to the empty conjunction and then φσ = true, which is always satisfiable.
On the other hand, note that in each ground rewrite step with →R in the above trace, the extra built-in variable Te
in the right-hand side of the applied rule is non-deterministically chosen, which is technically captured by the ground
substitution σ .

For technical reasons, it is very useful to shift the focus to a class of rewrite theories modulo built-ins in which the
rewrite rules are left-linear. For any rewrite theory modulo built-ins such a simpler rewrite theory can always be obtained
by means of the semantics-preserving theory transformation R �→R◦ presented in Definition 5. As shown by Lemma 4,
this transformation preserves ground rewriting. The specific reason for this transformation is towards achieving the ultimate
goal of having an SMT solver exclusively handling all constraints over built-in terms, including those used for expressing
equality. If a left-hand side of a rule were allowed to be non-linear for built-in sorts, then equality over built-in terms could
be wrongfully delegated to the matching algorithm used for rewriting.

Definition 5 (Normal form of a rewrite theory modulo E0). Let R = (�, E, R) be a rewrite theory modulo E0. Its normal form
R◦ = (�, E, R◦) has rules:

R◦ = {
l◦ → r if φ ∧ [θ◦] | (l→ r if φ ∈ R) ∧ (

λ
−→x .l◦ ; θ◦)= abstract�(l,vars({l, r, φ}))} .

Note that the rewrite theory in Example 3 is already in normal form, since its set of rules is left-linear. Lemma 4 formal-
izes the previous claim about the fact that the rewrite relation induced by a rewrite theory modulo built-ins is preserved
under the transformation R �→ R◦ in Definition 5, specifically meaning that both theories satisfy the same reachability
properties.

Lemma 4 (Invariance of ground rewriting under normalization). Let R = (�, E, R) be a rewrite theory modulo E0 . Then →R =→R◦ .

Proof. It is shown that →R ⊆→R◦ and →R◦ ⊆→R .

(⊆) Let t, u ∈ T�,State . If t →R u, then there is a rule (l → r if φ) ∈ R and a ground substitution σ : X −→ T� such
that t =E lσ , u =E rσ , and TE0 |= φσ . It suffices to prove t →R◦ u with witnesses (l◦ → r if φ ∧ [θ◦]) ∈ R◦ and
ρ = θ◦σ . Note that t =E lσ = l◦θ◦σ = l◦ρ . For TE0 |= (φ ∧ [θ◦])ρ first note that TE0 |= φρ since φρ = φθ◦σ = φσ
(because vars(φ) ∩ dom(θ◦) = ∅) and TE0 |= φσ by assumption. For TE0 |= φ◦ρ notice that θ◦θ◦ = θ◦ because
ran(θ◦) ∩ dom(θ◦) = ∅, and then:

[θ◦]ρ =
(

n∧
i=1

xi = θ◦(xi)

)
ρ =

n∧
i=1

xiρ = θ◦(xi)ρ =
n∧

i=1

θ◦(xi)σ = θ◦(xi)θ
◦σ

=
n∧

i=1

θ◦(xi)σ = θ◦(xi)σ =�.

Hence, t →R◦ u.
(⊇) Let t, u ∈ T�,State . If t →◦

R u, then there is a rule (l → r if φ) ∈ R , with (λx1 · · · xn.l◦ ; θ◦) as the abstraction of
built-ins for l, and a ground substitution σ : X −→ T� such that t =E l◦σ , u =E rσ , and TE0 |= (φ ∧ [θ◦])σ . It
suffices to prove that t →R u with rule (l → r if φ) ∈ R . Substitution σ can be decomposed into substitutions
θ : X0 −→ T�0 (X0) and ρ : X −→ T� , with θ(x) = σ(x) if x ∈ {x1, . . . , xn} and θ(x) = x otherwise, such that σ = θρ .
From TE0 |= (φ∧[θ◦])σ it follows that TE0 |= φσ , i.e., TE0 |= φρ because vars(φ) ∩ dom(θ) = ∅. Also, it follows that
TE0 |=

∧n
i=1 θ(xi)ρ = θ◦(xi)ρ , which implies that:

t =E l◦σ = l◦θρ =E0�B0 l◦θ◦ρ = lρ.

Hence, t →R u. �
Finally, Lemma 5 states that for the class of normalized rewrite theories modulo built-ins, matching provides a complete

ground unifiability procedure. More specifically, by the properties of the axioms in a rewrite theory modulo built-ins R =
(�, E0 � B0 � B1), B1-matching a term t ∈ T�(X0) to a left-hand side l◦ of a rule in R◦ provides a complete unifiability
algorithm for ground B1-unification of t and l◦ .

Lemma 5 (Matching lemma). Let R = (�, E0 � B0 � B1, R) be a rewrite theory modulo E0. For t ∈ T�(X0)State and l◦ a left-hand
side of a rule in R◦ with vars(t) ∩ vars(l◦) = ∅,

t �B1 l◦ if and only if GUB1(t = l◦) �= ∅
where GUB1 (t = l◦) = {σ : X −→ T� | tσ =B1 l◦σ }.

278 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
Proof.

(=⇒) If t �B1 l◦ , then t =B1 l◦θ for some θ : X −→ T�(X). Let ρ : X −→ T� be any ground substitution, which exists
because � has nonempty sorts. Then θρ ∈ GUB1 (t = l◦).

(⇐=) Let σ ∈ GUB1 (t = l◦) with l → r if φ ∈ R . Let vars(l◦) ∩ X0 = {x1, . . . , xn} and X1 = X \ X0. Note that there are
substitutions

α : vars(l◦)∩ X1 −→ T�1(X0)

ρ : X \ dom(α)−→ T�

satisfying σ = αρ and such that (l◦α) ∈ T�1 (X0) is linear and

ran(l◦α)∩ (vars(t, l◦))= ∅.
Let ran(α) = {y1, . . . , ym}. Therefore, by Lemma 3, there exists u ∈ T�1 (X0) such that u =B1 l◦α, u is linear, and
vars(u) = vars(l◦α) = x1, . . . , xn, y1, . . . , ym , and uρ = t . Moreover, t can be written as u(t1, . . . , tn, tn+1, . . . , tn+m)

with ti ∈ T�0 (X0). Define θ : X0 −→ T�0 (X0) by θ(x) = ti if x ∈ {x1, . . . , xn}, θ(x) = ti+n if x ∈ {y1, . . . , ym}, and
θ(x) = x otherwise. Then:

t = u(t1, . . . , tn, tn+1, . . . , tm+n)

= u(x1, . . . , xn, y1, . . . , ym)θ

=B1 l◦αθ.

Therefore, t �B1 l◦ . �
5. Symbolic rewriting modulo a built-in subtheory

This section explains how a rewrite theory modulo built-ins, as proposed in Section 4, induces a symbolic rewrite relation
and presents a general mechanism for symbolic reachability analysis, along with some examples. One of the main results
of this section is that the symbolic rewrite relation is sound and complete w.r.t. to the ground rewriting semantics for
rewrite theories modulo built-ins from Section 4. The key idea is that, when constrains over the built-ins are decidable,
the transitions of the symbolic relation can be performed by rewriting modulo axioms and satisfiability of the constraints
can be handled by an SMT decision procedure. This approach provides an executable symbolic method via rewriting, called
rewriting modulo SMT, that is a sound and complete symbolic reachability mechanism for rewrite theories.

The symbolic rewrite relation induced by a rewrite theory with built-ins R operates over pairs (t ;ϕ), called constrained
terms, where t is a term and ϕ a constraint of built-ins. Intuitively, in a constrained term (t ;ϕ), the term t can contain
built-in variables and thus can serve the purpose of a template for all its ground instances that are constrained by ϕ .
Definition 6 spells out the precise semantics of a constrained term.

Definition 6 (Constrained terms). Let R = (�, E, R) be a rewrite theory modulo E0. A constrained term is a pair (t ;ϕ) in
T�(X)State × QF�0 (X0). Its denotation �t �ϕ is defined as �t �ϕ = {t′∈T�,State | (∃σ : X−→T�) t′=Etσ ∧ TE0 |= ϕσ }.

The domain of σ in Definition 6 ranges over all variables X and consequently �t �ϕ ⊆ T�,State for any t ∈ T�(X)State , even
if vars(t) �⊇ vars(ϕ). Note, then, that �t �ϕ semantically represents the set of all ground states that are E-equal to instances
of t and satisfy ϕ .

The following auxiliary notation for variable renaming is used for formally introducing the symbolic rewrite relation on
constrained terms: in the rest of the paper, the expression fresh− vars(Y), for Y ⊆ X with Y finite, represents the choice of
a variable renaming ζ : X −→ X satisfying Y ∩ ran(ζ) = ∅.

Definition 7 (Symbolic rewrite relation). Let R = (�, E, R) be a rewrite theory modulo built-ins E0. The symbolic rewrite
relation �R induced by R on T�(X)State × QF�0(X0) is defined for t, u ∈ T�(X)State and ϕ, ϕ′ ∈ QF�0(X0) by (t ;ϕ) �R(
u ;ϕ′) if and only if there is a rule l → r if φ in R and a substitution θ : X −→ T�(X) such that: (a) t =E lζθ and u = rζθ ,

(b) TE0 |= (ϕ′ ⇔ ϕ ∧ φζθ), and (c) ϕ′ is TE0 -satisfiable, where ζ = fresh− vars(vars(t, ϕ)).

The symbolic relation �R on constrained terms is defined as a topmost rewrite relation induced by R modulo E on
T�(X) with extra bookkeeping of constraints. Note that ϕ′ in (t ;ϕ) �R

(
u ;ϕ′), when witnessed by l → r if φ and θ , is

semantically equivalent to ϕ ∧ φζθ , in contrast to being syntactically equal. This extra freedom allows for simplification of
constraints if desired. Also, such a constraint ϕ′ is satisfiable in TE0 , implying that ϕ and φθ are both satisfiable in TE0 ,
and therefore �t �ϕ �= ∅ �=�u�ϕ′ . Note that, up to the choice of the semantically equivalent ϕ′ for which a fixed strategy is
assumed, the symbolic relation �R is deterministic, in the sense of being determined by the rule and the substitution ζθ ,
because the renaming of variables in the rules is fixed by fresh− vars. This is key when executing �R , as explained in
Section 6.

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 279
Example 5. Recall the rewrite theory modulo built-ins R for the thermostat and air conditioning device from Example 4. In
what follows, variables T , S, N0, N1, N2 range over the sort Nat. Below, there is an example of a symbolic rewrite computa-
tion with �R:

(〈 time : 0, temp : T , setpoint : S,ac : false 〉 ; true)

�R ([time : 0, temp : T , setpoint : S,ac : false] ; true)

�R (〈 time : 1, temp : N0, setpoint : S,ac : false 〉 ; true)

�R ([time : 1, temp : N0, setpoint : S,ac : false] ;N0 ≤ S)

�R (〈 time : 2, temp : N1, setpoint : S,ac : false 〉 ;N0 ≤ S)

�R ([time : 2, temp : N1, setpoint : S,ac : true] ; S < N1 ∧ N0 ≤ S)

�R (〈 time : 3, temp : N2, setpoint : S,ac : true 〉 ; S < N1 ∧ N0 ≤ S) .

At time 0, the initial state represents all those system instances where the setpoint and the temperature reading from
the environment are unspecified, and the air conditioning system is turned off; in this case, the state constraint is the
empty one represented by true. At time 1, the system transitions to a symbolic state in which the temperature reading
from the environment is captured by the fresh built-in variable N0; the next internal transition is possible because the
constraint N0 ≤ S is satisfiable. At time 2, the system reaches a state in which the external temperature is represented by
the fresh built-in variable N1. The next internal computation turns the air conditioning device on because the constraint
S < N1 ∧ N0 ≤ S is satisfiable. In the last transition, at time 3, the system reaches a state in which the external temperature
is represented by the fresh built-in variable N2. As a remark, note that the ground computation with →R given as part of
Example 4 is a semantic instance of the above-given symbolic computation with �R . More precisely, the ground trace
in Example 4 is an instance of the symbolic trace above, witnessed by a ground substitution σ satisfying σ(S) = 73,
σ(T) = 69, σ(N0) = σ(N2) = 71, and σ(N1) = 74. As a final remark, note that the constraints are accumulated in the
symbolic computation, despite the fact that some of their conjuncts are ‘meaningless’ w.r.t. the corresponding constrained
term. For example, N0 ≤ S does not play any role when constraining the term [time : 2, temp : N1, setpoint : S, ac : true]
because N0 does not occur in this state. In practice, such an important optimization can be considered as part of an
efficient implementation of the symbolic rewrite relation.

The next important question to ask is whether this symbolic rewrite relation soundly and completely simulates its ground
rewriting counterpart. The rest of this section affirmatively answers this question in the case of normalized rewrite theories
modulo built-ins. Thanks to Lemma 4, the conclusion is therefore that �R◦ soundly and completely simulates →R for any
rewrite theory R modulo built-ins E0.

The soundness of �R◦ w.r.t. →R◦ is stated in Theorem 1.

Theorem 1 (Soundness). Let R = (�, E, R) be a rewrite theory modulo built-ins E0, t, u ∈ T�(X)State, and ϕ, ϕ′ ∈ QF�0(X0). If
(t ;ϕ) �R◦

(
u ;ϕ′), then tρ→R◦ uρ for all ρ : X −→ T� satisfying TE0 |= ϕ′ρ .

Proof. Let ρ : X −→ T� satisfy TE0 |= ϕ′ρ . The goal is to show that tρ →R◦ uρ . Let l◦ → r if φ ∈ R◦ and θ : X −→ T�(X)

witness (t ;ϕ) �R◦
(
u ;ϕ′). Then t =E l◦ζθ , u =E rζθ , E0 � (ϕ′ ⇔ ϕ ∧ φζθ), and ϕ′ is TE0 -satisfiable. Without loss of

generality assume dom(θ) = vars(l◦ζ) and θ |vars(t,ϕ) = id, and let σ = ζθρ . Then note that tρ =E (l◦ζθ)ρ = l◦ζθρ = l◦σ and
uρ =E (rζθ)ρ = rζθρ = rσ . Moreover, TE0 |= (ϕ′ ⇔ ϕ ∧ φζθ) and TE0 |= ϕ′ρ imply TE0 |= φζθρ , i.e., TE0 |= φσ . Therefore,
tρ→R◦ uρ , as desired. �

The completeness of �R◦ w.r.t. →R◦ is stated in Theorem 2. Intuitively, completeness states that a symbolic relation
yields an over-approximation of its ground rewriting counterpart.

Theorem 2 (Completeness). Let R = (�, E, R) be a rewrite theory modulo built-ins E0, t ∈ T�(X)State, u′ ∈ T�,State, and ϕ ∈
QF�0 (X0). For any ρ : X −→ T� such that tρ ∈ �t �ϕ and tρ →R◦ u′ , there exist u ∈ T�(X)State and ϕ′ ∈ QF�0(X0) such that
(t ;ϕ) �R◦

(
u ;ϕ′) and u′ ∈ �u�ϕ′ .

Proof. By the assumptions there is a rule (l◦ → r if φ) ∈ R◦ and a ground substitution σ : X −→ T� satisfying tρ =E l◦σ ,
u′ =E rσ , and TE0 |= φσ . Without loss of generality assume vars(t, ϕ) ∩ vars(l◦, r, φ) = ∅, because l, r, φ can be renamed
by means of fresh− vars. Furthermore, since vars(t, ϕ) ∩ vars(l◦, φ) = ∅, σ = ρ can be assumed. The goal is to show the
existence of u ∈ T�(X)State and ϕ′ ∈ QF�0 (X0) such that (i) (t ;ϕ) �R◦

(
u ;ϕ′) and (ii) u′ ∈ �u�ϕ′ . Since l◦ is linear and

built-in subterms are variables, by Lemma 3 there exists α : X −→ T� satisfying tα =B1 l◦α. Hence GUB1 (t = l◦) �= ∅ and, by
Lemma 5, there exists θ ′ : X −→ T�(X) satisfying t =B1 l◦θ ′ and a fortiori t =E0�B0�B1 l◦θ ′ . Let θ : X −→ T�(X) be defined
by θ(x) = θ ′(x) if x ∈ vars(l) and θ(x) = ρ(x) otherwise. Note that θ |vars(l)ρ =E0�B0 ρ|vars(l) . Define u = rθ and ϕ′ = ϕ ∧ φθ ,
and then for (i) and (ii) above:

280 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
(i) It suffices to prove that TE0 |= ϕ′ρ , i.e., TE0 |= (ϕ ∧ φθ)ρ . By assumption TE0 |= ϕρ and TE0 |= φρ . Notice that:

φθρ = (φθ |vars(l))ρ =E0�B0 (φρ)ρ = φρ.

Hence TE0 |= φθρ .
(ii) By assumption u′ =E0�B0�B1 rρ; also:

rρ =E0�B0�B1 rθ |vars(l)ρ = rθρ = uρ.

Hence u′ =E0�B0�B1 uρ ∈ �u�ϕ′ by part (i). �
5.1. Computing with �R◦

Although the above soundness and completeness theorems, plus Lemma 4, show that →R is characterized symbolically
by �R◦ , for any rewrite theory R modulo a built-in subtheory E0, a key question to ask is how to effectively compute
this symbolic relation. More specifically, given a constrained term (t ;ϕ) in T�(X)State×QF�0(X0), how can one compute all
constrained terms

(
u ;ϕ′) in T�(X)State × QF�0(X0) such that (t ;ϕ) �R◦

(
u ;ϕ′)?

Given a rule l◦ → r if φ in R◦ and according to the proof of Theorem 2, the existence of a substitution θ : X −→
T�(X) satisfying t =E l◦ζθ (i.e., Condition (a) in Definition 7) can be achieved by employing the strategy of first reducing
t to its E0/B0-canonical form t↓E0/B0 (which exists and is unique by the admissibility of E0) and then trying to check if
t↓E0/B0�B1 l◦ζ via a matching algorithm modulo B1 (which exists and is finitary by the admissibility of (�, E)). If the set
of B1-matching solutions produced by the matching algorithm is empty, then such a substitution θ does not exist for the
given constrained term (t ;ϕ) and rule l◦ → r if φ. Otherwise, each one of the B1-matching solutions θ produced by the
matching algorithm is such that t =E0�B0 t↓E0/B0=B1 l◦ζθ , i.e., t =E l◦ζθ ; in this case, u = rζθ . Since the set of rules R◦
is finite and the matching algorithm is finitary, there are finitely many of such substitutions θ for a given constrained pair
(t ;ϕ).

For checking Condition (b) in Definition 7 and given θ satisfying t =E l◦ζθ as computed above, formula ϕ′ can be chosen
to be any quantifier-free formula in QF�0(X0) that is provably equivalent to ϕ ∧ φζθ in E0. In particular, ϕ′ can be chosen
to be the formula ϕ ∧ ((φζθ)↓E0/B0).

Finally, checking Condition (c) in Definition 7 is in general undecidable. However, checking this condition becomes decid-
able for built-in theories E0 that can be extended to a decidable theory E+0 (typically by adding some inductive consequences
and, perhaps, some extra symbols) such that

(∀ψ ∈ QF�0(X0)) ψ is E+0 -satisfiable ⇐⇒ (∃σ : X0 −→ T�0) TE0 |=ψσ . (1)

Many decidable theories E+0 of interest are supported by SMT solvers satisfying this requirement. For example, E0 can be
the equational theory of natural number addition, i.e., TE0 = (N, +, s, 0, <, ≤), and E+0 Presburger arithmetic. That is, TE0

is the standard model of both E0 and E+0 , and E+0 -satisfiability coincides with satisfiability in such a standard model. Under
such conditions, satisfiability of ϕ ∧ φζθ (and therefore of ϕ′) in a step (t ;ϕ) �R◦

(
u ;ϕ′) becomes decidable by invoking

an SMT-solver for E+0 .

Theorem 3 (Rewriting modulo axioms and modulo SMT). Let R = (�, E, R) be a rewrite theory modulo built-ins E0 and let E+0 be
a theory extending E0 such that satisfiability of QF E+0 -formulas is decidable and E+0 -satisfiability coincides with satisfiability in TE0 .
Then �R◦ can be effectively computed.

5.2. Symbolic reachability analysis

The goal of this section is to explain how rewriting modulo SMT can be used as a mechanism for solving existential
reachability goals in the initial model TR of a rewrite theory R modulo built-ins E0. This technique can be especially useful
for symbolically proving or disproving safety properties of R such as, for instance, inductive invariants of TR .

Consider the constrained terms (t ;ϕ) and
(
u ;ϕ′), with t, u ∈ T�(X)State and ϕ, ϕ′ ∈ QF�0(X0). For many safety proper-

ties, the existential reachability question of whether there are concrete states t′ ∈ �t �ϕ and u′ ∈ �u�ϕ′ such that t′ →∗
R u′ is

of particular interest, that is, whether from some state in �t �ϕ is it possible to reach some state in �u�ϕ′ . When �u�ϕ′ is a
set of bad states, the idea is to know whether reaching a bad state is possible.

This intuitive formulation is almost right, but overlooks the fact that if −→x = vars(t; ϕ) and −→y = vars(u; ϕ′), the set
of shared variables −→z = −→x ∩ −→y may be non-empty, where the variables −→z can be called the parameter variables. The
interpretation of those parameter variables −→z should then agree when instantiated to the concrete states t′ ∈ �t �ϕ and
u′ ∈ �u�ϕ′ such that t′ →∗

R u′ .
This can be formulated more precisely by saying that, given symbolic descriptions (t ;ϕ) of a set �t �ϕ of source states,

and
(
u ;ϕ′) of a set �u�ϕ′ of target states, the interest is in settling the question of whether in the initial model TR the

following existential reachability formula is satisfied:

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 281
TR |=
(∃−→x ∪−→y)

t →∗
R u ∧ ϕ ∧ ϕ′. (2)

This, of course, exactly means settling whether there is a ground substitution ρ such that tρ→∗
R uρ and TE0 |= ϕρ ∧ ϕ′ρ ,

so that ρ interprets the parameter variables −→z in the exact same way in the source and the target states.
Recall the system comprising the thermostat and the air conditioning device presented in Example 3. In this example,

(t ;ϕ) could be the source constrained term

(〈 time : 0, temp : T , setpoint : S,ac : false 〉 ; true)

and
(
u ;ϕ′) the target constrained term

([time : N0, temp : N1, setpoint : S,ac : B0] ; B1 ∧ N1 ≤ S ∧ B0) ,

so that the only parameter variable shared by both terms is S . An affirmative answer to the above reachability query would
mean that from some ground initial state at time zero and in which the air conditioning device is off, a problematic state
can be reached, namely, a state in which all zero-time transitions have taken place and in which the air conditioning device
is turned on despite the fact that the temperature sensed from the environment does not exceed the system’s setpoint.

The question, of course, is how to use symbolic rewriting to find answers to existential reachability queries of this kind.
Since in rewriting modulo SMT there is a useful division of labor between matching pattern terms modulo B1 and SMT
solving of built-in constraints, the above existential formula needs to be slightly modified into an equivalent one, more
suitable for technical reasons. Note that the set −→z of parameter variables decomposes as a disjoint union −→z = −→z0 � −→z1 ,
where −→z0 ⊂ X0, and −→z1 ⊂ (X \ X0). To be able to use matching modulo B1, the idea is to have: (i) the built-in parameter
variables −→z0 not to appear in u, but only in its condition ϕ′, and (ii) u to be a �1-term. This can easily be accomplished by
an abstraction of built-ins for the original u in

(
u ;ϕ′). That is, the �0-subterms of u can be abstracted with fresh abstraction

variables
−→
y′ ⊆ X0, where u◦ is S0-linear, and if

−→
y′ = y1, . . . , yn then [γ] is the conjunction y1 = v1∧· · ·∧ yn = vn associated

to the substitution γ = {y′1 �→ v1, . . . , y′n �→ vn} such that u = u◦γ . This yields a reformulation of the above existential
formula as the semantically equivalent one:

TR |=
(
∃−→x ∪−→y ∪−→y′

)
t →∗

R u◦ ∧ ϕ ∧ ϕ′ ∧ [γ], (3)

where two essential points are: (i) �u�ϕ′ = �u◦�ϕ′∧[γ] , and (ii) the built-in parameter variables −→z0 no longer appear in u◦
but appear instead in ϕ′ ∧ [γ].

In the above example, since −→z0 consisted only of the variable S , this can be easily accomplished by reformulating the
target constrained term

(
u ;ϕ′) as the following constrained term

(
u◦ ;ϕ′ ∧ [γ]):

([time : N0, temp : N1, setpoint : N2,ac : B0] ; B1 ∧ N1 ≤ N2 ∧ B0 ∧ N2 = S) .

Therefore, the existential reachability goal in (3) can be written for this example as

TR |= (∃T , S, N0, N1, N2, B0) 〈 time : 0, temp : T , setpoint : S,ac : false 〉
→∗

R [time : N0, temp : N1, setpoint : N2,ac : B0]
∧ N1 ≤ N2 ∧ B0 ∧ N2 = S. (4)

In general, thanks to the soundness and completeness results, Theorems 1 and 2, the solvability of existential reachability
queries of the form (3) can be achieved by the symbolic rewrite relation �R◦ . This results in a sound and complete symbolic
reachability analysis technique based on rewriting modulo SMT.

Theorem 4 (Symbolic reachability analysis). Let R = (�, E, R) be a rewrite theory modulo built-ins E0. The model-theoretic satisfac-
tion relation (3) holds if and only if there exist a term v ∈ T�(X)State, a constraint ψ ∈ QF�0(X0), and a B1-unifier2 θ of the equation
v◦ = u◦ such that: (a) (t ;ϕ) �∗

R◦ (v ;ψ),and (b) (ψ ∧[η] ∧ϕ′ ∧ [γ])θ is TE0 -satisfiable, where (v◦; η) is an abstraction of built-ins
for v.

Proof. By Theorems 1 and 2, and induction on the length of the rewrite derivation. The key points to bear in mind are that:
(i) �v �ψ = �v◦�ψ∧[η] and therefore (ii) �v �ψ ∩ �u◦�ϕ′∧[γ] = �v◦�ψ∧[η] ∩ �u◦�ϕ′∧[γ]; but then, since v◦ and u◦ are �1-terms,
reachability is achieved, i.e., �v �ψ ∩�u◦�ϕ′∧[γ] �= ∅, iff there is a B1-unifier θ of the equation v◦ = u◦ such that (b) holds. �

2 It is assumed that, in addition to a B1-matching algorithm, there is also a finitary B1-unification algorithm, so that a finite number of most general
such unifiers can be effectively computed; but see Remark 1 below for an alternative formulation not requiring B1-unification.

282 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
Note that ϕ is not included as a conjunct in the constraint (ψ ∧ [η] ∧ ϕ′ ∧ [γ])θ of Condition (b) of Theorem 4 because
(t ;ϕ) �R◦ (v ;ψ) implies that ϕ is a semantic consequence of ψ .

To be able to exploit Maude’s efficient built-in search command, which is based on B1-matching, the reflexive imple-
mentation described in Section 6 uses the following alternative reformulation of Theorem 4.

Remark 1. Theorem 4 can be reformulated in a way in which only B1-matching, as opposed to B1-unification, is required
to solve existential reachability queries. The key point is that, since R = (�, E, R) is a topmost rewrite theory, there is one
operator (or at most a finite number of them: the generalization to several such operators is straightforward), say

[_, . . . , _] : s1 · · · sn → State

typically not obeying any axioms3 B1, such that any �-term u of sort State is of the form u = [u1, . . . , un]. In this situation,
there is a substitution α = {y′′1 �→ u1, . . . , y′′n �→ un} with y′′i of sort si such that u = [y′′1, . . . , y′′n]α. Therefore, the semantic
relation (2) can be reformulated as:

TR |=
(
∃−→x ∪−→y ∪−→y′′

)
t →∗

R [y′′1, . . . , y′′n] ∧ ϕ ∧ ϕ′ ∧ [α], (5)

which holds if and only if there exist a term v ∈ T�(X)State , a constraint ψ ∈ QF�0(X0), and a substitution θ such that (a)
(t ;ϕ) �∗

R◦ (v ;ψ), (b) v =B1 [y′′1, . . . , y′′n]θ , and (c) ψ ∧ (ϕ′ ∧ [α])θ is TE0 -satisfiable.

Example 6, at the end of Section 6, illustrates how Remark 1 is useful in practice for querying the reachability goal (4)
in the thermostat example by invoking Maude’s search command. In this example, as pointed out in Remark 1, B1-matching
can be used for the purpose of solving existential queries via the symbolic relation �R because the target term in the
query is general enough and thus avoids the need for performing B1-unification in the search process.

6. Reflective implementation of �R◦

This section discusses the design and implementation of a prototype that offers support for symbolic rewriting modulo
SMT in the Maude system. The prototype relies on Maude’s meta-level features, which implements rewriting logic’s reflective
capabilities, and on SMT solving for E+0 integrated in Maude as CVC3’s decision procedures. The extension of Maude with
CVC3 is available from the Matching Logic Project [59]. In the rest of this section, R = (�, E0 � B0 � B1, R) is a rewrite
theory modulo built-ins E0, where E0 satisfies Condition (1) in Section 5. The theory mapping R �→ u(R), basically, makes
the rules unconditional by removing the constraints φ in the conditions of the rules in R .

In Maude, reflection is efficiently supported by its META− LEVEL module [19], which provides key functionality for rewrit-
ing logic’s universal theory U [20]. In particular, rewrite theories R are meta-represented in U as terms R of sort Module,
and a term t in R is meta-represented in U as a term t of sort Term. The key idea of the reflective implementation is
to reduce symbolic rewriting with �R◦ to standard rewriting in an associated reflective rewrite theory that extends the
universal theory U . This reduction is especially important for formal analysis purposes, because it makes available to �R◦
some formal analysis features provided by Maude for rewrite theories such as ground reachability analysis by search. This
capability is illustrated by the running example in Section 5, and by the case studies in Sections 7 and 8.

The prototype defines a parametrized functional module SAT(�0, E0 � B0) of quantifier-free formulas with �0-equations
as atoms. In particular, this module extends (�0, E0 � B0) with new sorts Atom and QFFormula, and new constants var(X0)

representing the variables X0. It has, among other functions, a function sat : QFFormula−→ Bool such that for φ, sat(φ) =�
if φ is E+0 -satisfiable, and sat(φ) =⊥ otherwise.

The process of computing the one-step rewrites of a given constrained term (t ;ϕ) under �R◦ is decomposed into
two conceptual steps using Maude’s metalevel. First, all possible triples (u ; θ ;φ) such that t →u(R◦) u is witnessed by a
matching substitution θ and a rule with constraint φ are computed4. Second, these triples are filtered out by keeping only
those for which the quantifier-free formula ϕ ∧ φθ is E+0 -satisfiable.

The first step in the process is mechanized by next, a function available from the parametrized module NEXT(R, State,
QFFormula) where R, State, and QFFormula are the metalevel representations, respectively, of the rewrite theory module
R, the state sort State, and the sort QFFormula for quantifier-free formulas. The function next uses Maude’s meta−match
function and the auxiliary function new− vars for computing fresh variables (see Section 5). In particular, the call

next(((S,≤, F � var(X0)), E0 � B0 � B1, R◦), t,ϕ)

computes all possible triples
(

u ; θ ′ ;φ′
)

such that t �R◦ u is witnessed by a substitution θ ′ and a rule with constraint
φ′ . More precisely, such a call first computes a renaming ζ = fresh− vars(vars(t, ϕ)) and then, for each rule (l◦ → r if φ),

3 If [_, . . . , _] were to obey any axioms in B1, since a B1-matching algorithm is assumed, there is the need for only a finite number α1, . . . , αk of
matching substitutions instead of a single α, so that [α] would be replaced by [α1] ∨ · · · ∨ [αk].

4 Note that in u(R◦) variables in X0 are interpreted as constants. Therefore, the number of matching substitutions θ thus obtained is finite.

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 283
it uses the function meta-match to obtain a substitution θ ∈ meta−match(((S,≤, F � var(X0)), B0 � B1), t↓E0/B0�B1 , l◦ζ),
and returns

(
u ; θ ′ ;φ′

)
with u = rζθ , θ ′ = ζθ , and φ′ = φζθ . Note that by having a deterministic choice of fresh variables

(including those in the constraint), next is actually a deterministic function.
Using the above-mentioned infrastructure, the parametrized module NEXT implements the symbolic rewrite relation

�R◦ as a standard rewrite relation, extending META− LEVEL, by means of the following conditional rewrite rule:

(X ;C)→ (
Y ;C ′

)
if

(
Y ; θ ;φ)

S := next(R•, X, C) ∧ C ′ := (C ∧ φ) ∧ sat(C ′)
where X, Y range over sort State and C, C ′ over sort Bool, and R• = ((S, ≤, F � var(X0)), B, R◦). Therefore, a call to an
external SMT solver is just an invocation of the function sat in SAT(�0, E0 � B0) in order to achieve the above functionality
more efficiently and in a built-in way. The matching condition [19](

Y ; θ ;φ)
S := next(R•, X, C)

is a syntactic variant of an equational condition mathematically interpreted as an ordinary equation. Operationally, when
executing this matching condition, the variables introduced in the left-hand side of the equation are instantiated by matching
the term

(
Y ; θ ;φ)

S against the canonical form of the term next(R•, X, C). Since matching substitutions need not be
unique, this matching condition provides a convenient way to perform a search through the canonical form of the structure
next(R•, X, C) without the need to explicitly define a function for this purpose.

Recall the existential reachability problem (5) in Section 5:

TR |=
(
∃−→x ∪−→y ∪−→y′′

)
t →∗

R [y′′1, . . . , y′′n] ∧ ϕ ∧ ϕ′ ∧ [α].
Given that the symbolic rewrite relation �R◦ is encoded as a standard rewrite relation, this reachability problem can be
solved by symbolic search, directly available in Maude from its search command. More precisely, for solving this reachability
goal, the following invocation of Maude’s search command will find a solution, if one exists:

search (t ;ϕ)→∗ ([y′′1, . . . , y′′n] ;C
)

such that sat(C ∧ ϕ′ ∧ [α]).
In this command, C is a built-in variable of sort Bool used for matching any constraint found in the search process. In this
way, whenever a symbolic state is reached, the interest is in checking whether the constraint C ∧ ϕ′ ∧ [α] is satisfiable,
meaning that a witness in the set

�[y′′1, . . . , y′′n]
�

ϕ′∧[α] of target states can be reached from at least one term in the set �t �ϕ

of source states.

Example 6. Recall the existential reachability problem (4) in Section 5 for the thermostat and the air conditioning system:

TR |= (∃T , S, N0, N1, N2, B0) 〈 time : 0, temp : T , setpoint : S,ac : false 〉
→∗

R [time : N0, temp : N1, setpoint : N2,ac : B0]
∧ N1 ≤ N2 ∧ B0 ∧ N2 = S.

Since the target term [time : N0, temp : N1, setpoint : N2, ac : B0] is a pattern satisfying the requirements found in Remark 1,
there is no need for involving unification algorithms in the symbolic search process, as stated in Theorem 4. Instead, the
following invocation of Maude’s search command will find a solution to this query, if one exists, up to a depth search bound
of 10:

search [,10] (< time: 0, temp: T, setpoint: S, ac: false > ; true)
=>* ([time: N0, temp: N1, setpoint: N2, ac: B0] ; B1)

such that sat(B1 and N1 <= N2 and B0 and N2 = S) .

As expected, this command terminates without finding any solution to the reachability query. It is key to note that the
search command appearing in the above code snippet is the one used in Maude for ground search, but thanks to the
reflective implementation of rewriting modulo SMT in the Maude system, this same command can actually be used also for
symbolic reachability analysis, as explained above. The pair [,10] in the above search command is an optional argument
providing a bound on: (i) the number of desired solutions (first pair component) and (ii) the maximum depth of the search
(second pair component): in this case, no bound is given for the number of desired solutions, but a bound of 10 is given
for the maximum depth of the search task.

In general, and as witnessed by the case studies presented in Sections 7 and 8, the prototype implementation discussed
in this section has been successfully used for checking reachability properties of interesting open and real-time systems.
However, as pointed out as part of the concluding remarks of this work in Section 9, some future work in incorporating
various state space reduction techniques can be beneficial for handling a broader class of problems with rewriting modulo
SMT.

284 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
7. Analysis of the CASH algorithm

This section presents a case study, developed jointly with K. Bae, of a real-time system that can be symbolically analyzed
in the prototype tool described in Section 6. The analysis applies model checking based on rewriting modulo SMT and it
is about the symbolic analysis of the CASH algorithm [15], a real-time scheduling algorithm that attempts to maximize
system performance while guaranteeing that critical tasks are executed in a timely manner. The CASH algorithm achieves
this goal by maintaining a priority queue of unused execution budgets that can be reused by other jobs to maximize
processor utilization. This algorithm poses non-trivial modeling and analysis challenges because it contains, for instance, an
unbounded priority queue, that cannot be modeled in timed-automata formalisms, such as those of UPPAAL [43] or Kronos
[68], which assume a finite discrete state. More details about the case study, including its full implementation, and the
prototype tool can be found in [9].

The CASH algorithm was specified and analyzed in Real-Time Maude by explicit-state model checking in an earlier paper
by P.C. Ölveczky and M. Caccamo [52], which showed that, under certain variations on both the assumptions and the design
of the protocol, it could miss deadlines. Explicit-state model checking has intrinsic limitations which the new analysis by
rewriting modulo SMT presented below overcomes. The CASH algorithm is parametric on: (i) the number N of servers in
the system, and (ii) the values of a maximum budget bi and period pi , for each server 1 ≤ i ≤ N . Even if N is fixed, there
are infinitely many initial states for N servers, since the maximum budgets bi and periods pi range over the natural numbers.
Therefore, explicit state model checking cannot perform a full analysis. If a counterexample for N servers exists, it may be
found by explicit-state model checking for some chosen initial states, as done in [52], but it could be missed if the wrong
initial states are chosen.

Rewriting modulo SMT is useful for symbolically analyzing infinite-state systems like CASH. Infinite sets of states are
symbolically described by constrained terms which may involve user-definable data structures such as priority queues, but
whose only variables range over decidable types for which an SMT solving procedure is available. For the CASH algorithm,
the built-in sorts are Int and Bool ranging, respectively, over the integer numbers and the Boolean values.

7.1. Symbolic states

In the symbolic CASH algorithm specification R, a symbolic state is a pair (t ;ϕ) of sort Sys in which the term t ∈
T�(X0)Configuration represents the symbolic state of execution of the algorithm and the formula ϕ ∈ QF�0(X0) is a constraint
on t . In this symbolic specification, the built-in terms range over the sorts Int for integer numbers and Bool for Boolean
values, and have the usual connectives. A symbolic state t has sort Configuration, representing multisets of objects, in which
multiset union is denoted by juxtaposition (i.e., by the empty syntax). An object has sort Object and has the form 〈 _ : _ | _ 〉,
where the first argument is an object identifier having sort Oid, the second argument a class identifier having sort Cid, and
the third argument is a multiset of attributes having sort AttrSet, where attribute union is denoted by comma. In each object
configuration there is a global object (of class global) that models the time of the system (with attribute name time), the
priority queue (with attribute name cq), the availability (with attribute name available), and a deadline missed flag (with
attribute name deadlineMiss). A configuration can also contain any number of server objects (of class server). Each server
object models the maximum budget (the maximum time within which a given job will be finished, with attribute name
maxBudget), period (with attribute name period), internal state (with attribute name state), time executed (with attribute
name timeExecuted), budget time used (with attribute name usedOfBudget), and time to deadline (with attribute name
timeToDeadline).

7.2. Symbolic transitions

The symbolic transitions of CASH are specified by 13 conditional rewrite rules whose conditions specify constraints
solvable by the SMT decision procedure and some extra conditions, with the help of auxiliary functions, which are solvable
by rewriting. The goal of the extra conditions is to minimize the number of (constrained) rewrite rules in the formal
specification of the protocol.

In what follows, the following conventions are adopted:

• Variables iNZT , iI, iT , inI1, inI2, etc., and their primed versions have built-in sort Int and denote symbolic integer ex-
pressions.

• Variables φ, iB, inB1, inB2, etc., and their primed versions have built-in sort Bool and denote symbolic constraints.
• Variable B has sort Boolean and denotes non-built-in Boolean values, i.e., Boolean values in the Maude language.
• Variable REST has sort Configuration and it is used in the rules to match parts of a state that are not relevant to a

particular rule.
• Variables G, O, and O′ have sort Oid and denote object identifiers.
• Variables AtSG, AtS, and AtS′ have sort AttrSet (see Section 4).
• Variables CQ , CQ1, CQ2, and their primed versions have sort Queue and denote priority queues.

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 285
In the following rules, matching equations of the form _:=_ are extensively used. As explained in Section 6, they are
mathematically interpreted as ordinary equations, but operationally the variables introduced in the left-hand side of the
equation are instantiated by matching the canonical form of the instance of the term on the right-hand side. Intuitively,
since these conditions are computed modulo axioms, a matching condition provides a convenient way to perform a search
through the canonical form of the structure of the right-hand side term without the need to explicitly define a function for
this purpose.

Rule [idleToExecuting]. This rule models the situation in which an inactive server can start executing if the processor is
available. In this case, the server transitions from state idle to executing, with zero use of its budget and execution time, and
the system’s processor is made unavailable.

(REST〈G : global | available : true, At SG〉
〈O : server | period : iN Z T , state : idle, timeToDeadline : iT ,

timeExecuted : inI1,usedOfBudget : inI2, At S〉;φ)

→ (REST〈G : global | available : false, At SG〉
〈O : server | period : iN Z T , state : executing, timeToDeadline : i I,

timeExecuted : 0,usedOfBudget : 0, At S〉;φ′)
if (int : i I const : iB);ECS :=

(int : iT + iN Z T const : iT > 0); (int : iN Z T const : iT ≤ 0)

∧ φ′ := φ ∧ iN Z T > 0∧ iB

∧ sat(φ′)
The auxiliary function symbol int : _const : _ represents a pair with first element an integer expression of sort Int and second
argument a constraint of sort Bool. In the case of this rule, there are two of these constructs representing the situations in
which timeToDeadline can be positive and negative. Depending on the situation, quantity timeToDeadline can be updated in
two different ways, each specified by the corresponding symbolic integer expression. Note that because constraint iNZT > 0,
this rule is enabled only in a state having a server with positive period.

Rules [idleToActiveP] and [idleToActiveN]. These rules model the situation where a server becomes active and another server is
executing, which in turn will either preempt (rule [idleToActiveP]) or not (rule [idleToActiveN]) according to its internal state.
Rules [idleToActiveP] and [idleToActiveN], in that order, are presented below.

(REST〈O : server | period : iN Z T , state : idle, timeToDeadline : iT ,

timeExecuted : inI1,usedOfBudget : inI2, At S〉
〈O ′ : server | timeToDeadline : iT ′, state : executing, At S ′〉;φ)

→ (REST〈O : server | period : iN Z T , state : executing,

timeToDeadline : i I, timeExecuted : 0,usedOfBudget : 0, At S〉
〈O ′ : server | timeToDeadline : iT ′, state : waiting, At S ′〉;φ′)

if (int : i I const : iB);ECS :=
(int : iT + iN Z T const : (iT > 0∧ iT ′ > 0∧ iT + iN Z T < iT ′));
(int : iN Z T const : (iT ≤ 0∧ iT ′ > 0∧ iN Z T < iT ′))

∧ φ′ := φ ∧ iN Z T > 0∧ iB

∧ sat(φ′)

(REST〈O : server | period : iN Z T , state : idle, timeToDeadline : iT ,

timeExecuted : inI1,usedOfBudget : inI2, At S〉
〈O ′ : server | state : executing, timeToDeadline : iT ′, At S ′〉;φ)

→ (REST〈O : server | period : iN Z T , state : waiting,

timeToDeadline : i I, timeExecuted : 0,usedOfBudget : 0, At S〉
〈O ′ : server | state : executing, timeToDeadline : iT ′, At S ′〉;φ′)

286 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
if (int : i I const : iB);ECS :=
(int : iT + iN Z T const : (iT > 0∧ iT + iN Z T ≥ iT ′));
(int : iN Z T const : (iT ≤ 0∧ iN Z T ≥ iT ′))

∧ φ′ := φ ∧ iN Z T > 0∧ iB

∧ sat(φ′)

Rules [stopExecuting1A] and [stopExecuting1B]. These rules model the situation where a server finishes execution and there is
at least one server waiting. In this case, the first waiting server in the queue starts executing. Also, if there is any budget
left, it is added to the global CASH. Below, the rules [stopExecuting1A] and [stopExecuting1B] are presented.

(REST〈G : global | cq : CQ CQ ′, At SG〉
〈O : server | state : executing,usedOfBudget : iT ,maxBudget : iN Z T ,

timeToDeadline : iT ′, timeExecuted : iN Z T ′,period : iN Z T ′′, At S〉
〈O ′ : server | state : waiting, timeToDeadline : iT ′′, At S ′〉;φ)

→ (REST

〈G : global | cq : (CQ (deadline : iT ′budget : (iN Z T − iT)) CQ ′), At SG〉
〈O : server | state : idle,usedOfBudget : iN Z T ,maxBudget : iN Z T ,

timeToDeadline : iT ′, timeExecuted : iN Z T ′,period : iN Z T ′′, At S〉
〈O ′ : server | state : executing, timeToDeadline : iT ′′, At S ′〉;φ′)

if ALL := · · ·
∧ inB1 := nextDeadlineWaiting(ALL, O , iT ′′)
∧ inB2 := belowDeadline(iT ′,CQ)

∧ inB3 := aboveOrEqualDeadline(iT ′,CQ ′)
∧ φ′ := φ ∧ iT ≥ 0∧ iN Z T > 0∧ iN Z T ′ > 0∧ iN Z T ′′ > 0∧ iN Z T > iT∧

iT ′ > 0∧ iN Z T ≤ iT + iT ′ ∧ inB1∧ inB2∧ inB3

∧ sat(φ′)

Variable ALL, whose specification has been omitted, represents the entire object configuration in the left hand side of the
rule. Function call nextDeadlineWaiting(ALL,O, iT ′′) computes a constraint over all waiting servers in ALL different from O
that is satisfiable by any of such servers whose timeToDeadline attribute is at least iT ′′ . If the system has missed a deadline,
this constraint is unsatisfiable. Function call belowDeadline(iT ′,CQ) computes a constraint that is satisfiable if and only if
all deadlines in CQ are less than IT ′ . Analogously, function call aboveOrEqualDeadline(iT ′,CQ ′) computes a constraint that is
satisfiable if and only if all deadlines in CQ ′ are at least IT ′ . Note that these two functions are used together in order to
keep the representation invariant of the system’s priority queue when inserting a new element into it.

The following is the specification of rule [stopExecuting1B]:
(REST

〈O : server | state : executing,usedOfBudget : iT ,maxBudget : iN Z T ,

timeToDeadline : iT ′, timeExecuted : iN Z T ′,period : iN Z T ′′, At S〉
〈O ′ : server | state : waiting, timeToDeadline : iT ′′, At S ′〉;φ)

→ (REST

〈O : server | state : idle,usedOfBudget : iN Z T ,maxBudget : iN Z T ,

timeToDeadline : iT ′, timeExecuted : iN Z T ′,period : iN Z T ′′, At S〉
〈O ′ : server | state : executing, timeToDeadline : iT ′′, At S ′〉;φ′)

if ALL := · · ·
inB1 := next DeadlineW aiting(ALL, O , iT ′′)

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 287
∧ φ′ := φ ∧ iT ≥ 0∧ iN Z T > 0∧ iN Z T ′ > 0∧ iN Z T ′′ > 0∧
iN Z T ≤ iT ∧ inB1

∧ sat(φ′)

Rules [stopExecuting2A] and [stopExecuting2B]. These two rules complement the previous two rules for situations where a
server finishes execution and there is no server waiting. The effect on the system is that the processor that was being used
by the finishing server is released.

The following is the specification of rule [stopExecuting2A]:
(REST〈G : global | cq : CQ CQ ′,available : B, At SG〉
〈O : server | state : executing,usedOfBudget : iT ,maxBudget : iN Z T ,

timeToDeadline : iT ′, timeExecuted : iN Z T ′,period : iN Z T ′′, At S〉;φ)

→ (REST

〈G : global | cq : (CQ (deadline : iT ′budget : (iN Z T − iT))CQ ′),
available : true, At SG〉

〈O : server | state : idle,usedOfBudget : iN Z T ,maxBudget : iN Z T ,

timeToDeadline : iT ′, timeExecuted : iN Z T ′,period : iN Z T ′′, At S〉;φ′)
if ALL := · · ·
∧ inB1 := belowDeadline(iT ′,CQ)

∧ inB2 := aboveOrEqualDeadline(iT ′,CQ ′)
∧ inB3 := noServerWaiting(ALL, O))

∧ φ′ := φ ∧ iT ≥ 0∧ iN Z T > 0∧ iN Z T ′ > 0∧ iN Z T ′′ > 0∧ iN Z T > iT ∧
iT ′ > 0∧ iN Z T ≤ iT + iT ′ ∧ inB1∧ inB2∧ inB3

∧ sat(φ′)
The following is the specification of rule [stopExecuting2B]:

(REST〈G : global | available : B, At SG〉
〈O : server | state : executing,usedOfBudget : iT , timeToDeadline : iT ′,

maxBudget : iN Z T , timeExecuted : iN Z T ′,period : iN Z T ′′, At S〉;φ)

→ (REST〈G : global | available : true, At SG〉
〈O : server | state : idle,usedOfBudget : iN Z T , timeToDeadline : iT ′,

maxBudget : iN Z T , timeExecuted : iN Z T ′,period : iN Z T ′′, At S〉;φ′)
if ALL := · · ·
∧ inB1 := noServerWaiting(ALL, O))

∧ φ′ := φ ∧ iT ≥ 0∧ iN Z T > 0∧ iN Z T ′ > 0∧ iN Z T ′′ > 0∧
iN Z T ≤ iT ∧ inB1

∧ sat(φ′)

Rule [deadlineMiss]. This rule models the detection of a deadline miss for a server with non-zero maximum budget, i.e.,
a situation where the system has reached an overflow and the allocated execution time cannot be exhausted before the
server’s deadline.

(REST〈G : global | deadlineMiss : B, At SG〉
〈O : server | state : St,usedOfBudget : iT , timeToDeadline : iT ′,

maxBudget : iN Z T , At S〉;φ)

→ (REST

288 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
〈G : global | deadlineMiss : true, At SG〉
〈O : server | state : St,usedOfBudget : iT , timeToDeadline : iT ′,

maxBudget : iN Z T , At S〉;φ′)
if St �= idle

∧ (int : i I const : iB);ECS :=
(int : iT const : (iT ′ > 0∧ iN Z T > iT + iT ′));
(int : iT const : (iT ′ ≤ 0∧ iN Z T > iT))

∧ φ′ := φ ∧ iT ≥ 0∧ iN Z T > 0∧ iB

∧ sat(φ′)

The following rules are included in the specification for modeling a job which is longer than the execution time in one
round of the server. This setting is considered in the rest of the rules, where an idle server may be immediately activated
again.

Rules [continueExInNextRound], [continueActInNextRound1] and [continueActInNextRound2]. These rules model the situation in
which a server has executed all it can in the current round but wishes to continue executing in the next round. Since
the server’s deadline is increased, it cannot just continue executing but must check if some waiting server suddenly gets a
shorter deadline.

The rule [continueExInNextRound] considers the case in which no other server is waiting and another server wishes to
continue executing in the next round.

(REST

〈O : server | state : executing,maxBudget : iN Z T ,usedOfBudget : iN Z T ′,
period : iN Z T ′′, timeToDeadline : iT , timeExecuted : inI1, At S〉;φ)

→ (REST

〈O : server | state : executing,maxBudget : iN Z T ,usedOfBudget : 0,

period : iN Z T ′′, timeToDeadline : i I, timeExecuted : 0, At S〉;φ′)
if ALL := · · ·
∧ inB1 := eval(ALL,noServerWaiting(O))

∧ φ′ := φ ∧ iN Z T > 0∧ iN Z T ′′ > 0∧ iB ∧ inB1

∧ sat(φ′)

The rule [continueActInNextRound1] considers the case in which some other server is waiting and the server willing to
continue executing becomes preempted.

(REST

〈O : server | state : executing,maxBudget : iN Z T ,usedOfBudget : iN Z T ′,
period : iN Z T ′′, timeExecuted : inI1, timeToDeadline : iT , At S〉

〈O ′ : server | state : waiting, timeToDeadline : iT ′, At S ′〉;φ)

→ (REST

〈O : server | state : waiting,maxBudget : iN Z T ,usedOfBudget : 0,

period : iN Z T ′′, timeExecuted : 0, timeToDeadline : i I, At S〉
〈O ′ : server | state : executing, timeToDeadline : iT ′, At S ′〉;φ′)

if ALL := · · ·
∧ inB1 := next DeadlineW aiting(ALL, O , iT ′))
∧ φ′ := φ ∧ iN Z T > 0∧ iN Z T ′′ > 0∧ inB1∧ iB

∧ sat(φ′)

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 289
The rule [continueActInNextRound2] considers the case in which some other server is waiting but the server willing to
continue executing can do so.

(REST

〈O : server | state : executing,maxBudget : iN Z T ,usedOfBudget : iN Z T ′,
period : iN Z T ′′, timeExecuted : inI1, timeToDeadline : iT , At S〉

〈O ′ : server | state : waiting, timeToDeadline : iT ′, At S ′〉;φ)

→ (REST

〈O : server | state : executing,maxBudget : iN Z T ,usedOfBudget : 0,

period : iN Z T ′′, timeExecuted : 0, timeToDeadline : iT + iN Z T ′′, At S〉
〈O ′ : server | state : waiting, timeToDeadline : iT ′, At S ′〉;φ′)

if (int : i I const : iB);ECS :=
(int : iT + iN Z T ′′ const : (iT > 0∧ iT ′ ≥ iT + iN Z T ′′));
(int : iN Z T ′′ const : (iT ≤ 0∧ iT ′ ≥ iN Z T ′′))

∧ ALL := · · ·
∧ φ′ := φ ∧ iN Z T > 0∧ iN Z T ′′ > 0∧ inB1∧ iT ′ ≥ iT + iN Z T ′′

∧ sat(φ′)

Rules [tickExecutingSpareCapacity] and [tickExecutingOwnBudget]. These two rules are directly involved with modeling the
timed behavior of the protocol. In both rules the time is increased by 1 unit.

The rule [tickExecutingSpareCapacity] models the situation in which time elapses when a server is executing a spare
capacity.

(REST

〈G : global | time : iT , cq : (deadline : i I1 budget : i I2) CQ, At SG〉
〈O : server | state : executing, timeExecuted : iT ′, timeToDeadline : iT ′′,

At S〉;φ)

→ (deltaServers(REST,1)

〈G : global | time : iT + 1, cq : delta(CQ2,1), At SG〉
〈O : server | state : executing, timeExecuted : iT ′ + 1,

timeToDeadline : iT ′′ − 1, At S〉;φ′)
if (queue : CQ1 CQ2 const : iB);ECS′ :=

usc1((deadline : i I1 budget : i I2) CQ)

∧ ALL := · · ·
∧ inB1 :=mteServer(ALL, O ,1)

∧ inB2 :=mteQueue((deadline : i I1 budget : i I2) CQ,1)

∧ inB3 := noDeadlineMiss(ALL)

∧ inB4 := belowDeadline(2,CQ1)∧ aboveOrEqualDeadline(2,CQ2)

∧ φ′ := φ ∧ iT ≥ 0∧ iT ′ ≥ 0∧ iB ∧ inB1∧ inB2∧ iT ′′ ≥ 1∧
inB3∧ i I1≤ iT ′′ ∧ inB4

∧ sat(φ′)

The function call deltaServers(REST,1) updates attribute timeToDeadline in non-executing servers in REST by decreasing its
value by 1 unit. Analogously, the function call delta(CQ2,1) decreases the value associated to deadline in 1 unit for each
element in the priority queue CQ2. Given a non-empty queue, the function call

290 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
usc1((deadline : iI1 budget : iI2)CQ)

performs case splitting on the first element of the queue: it considers the case in which the budget iI2 is at most 1 and the
case when this quantity is more than 1. In either case, the server continues executing, but with different contents in the
priority queue. Auxiliary functions mteServer and mteQueue generate constraints that simulate the time increment by 1 unit
for servers and values in the priority queue, respectively.

The rule [tickExecutingOwnBudget] models the situation in which time elapses when a server is executing its own budget.

(REST

〈G : global | time : iT , cq : CQ CQ ′, At SG〉
〈O : server | state : executing, timeExecuted : iT ′,

usedOfBudget : iT ′′, timeToDeadline : iT ′′′, At S〉;φ)

→ (delta− servers(REST,1)

〈G : global | time : iT + 1, cq : delta(CQ ′,1), At SG〉
〈O : server | state : executing, timeExecuted : iT ′ + 1,

usedOfBudget : iT ′′ + 1, timeToDeadline : iT ′′′ − 1, At S〉;φ′)
if ALL := · · ·
∧ inB1 :=mteServer(ALL, G,1)

∧ inB2 :=mteQueue(CQ CQ ′,1)

∧ inB3 := noDeadlineMiss(ALL)

∧ inB4 := lessThanFirstDeadline(iT ′′′,CQCQ ′)

∧ inB5 := belowDeadline(2,CQ)∧ aboveOrEqualDeadline(2,CQ ′)

∧ φ′ := φ ∧ iT ≥ 0∧ iT ′ ≥ 0∧ iT ′′ ≥ 0∧ inB1∧ inB2∧ inB3∧ inB4∧ inB5

∧ sat(φ′)

Rule [tickIdle]. Finally, rule [tickIdle] models the increase of time by 1 unit in the entire system.

(REST〈G : global | time : iT , cq : CQ,available : true, At SG〉;φ)

→ (deltaServers(REST,1)

〈G : global | time : iT + 1, cq : delta(CQ2,1),available : true, At SG〉;φ′)
if (queue : CQ1 CQ2 const : iB);ECS′ := usc1(CQ)

∧ ALL := · · ·
∧ inB1 :=mteServer(ALL, G,1)

∧ inB2 := noDeadlineMiss(ALL)

∧ inB3 := belowDeadline(2,CQ1)∧ aboveOrEqualDeadline(2,CQ2)

∧ φ′ := φ ∧ iT ≥ 0∧ iB ∧ inB1∧ inB2∧ inB3

∧ sat(φ′)

7.3. Symbolic detection of missed deadlines

The goal is to verify symbolically the existence of missed deadlines of the CASH algorithm for the infinite set of ini-
tial configurations containing two server objects s0 and s1 with maximum budgets b0 and b1 and periods p0 and p1
as unspecified natural numbers, and such that each server’s maximum budget is strictly smaller than its period, i.e.,
0 ≤ b0 < p0 ∧ 0 ≤ b1 < p1. This infinite set of initial states is specified symbolically by the equational definition (not shown)
of term init. Maude’s search command can then be used, as explained in Section 6, to symbolically check if there is a
reachable state for any ground instance of init that misses the deadline:

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 291
search init =>* (Cnf < g : global | AtS, deadlineMiss : true > ; iB) .
Solution 1 (state 233)
states: 234 rewrites: 60517 in 2865ms cpu (2865ms real) (21118 rewrites/second)
Cnf -->
< s1 : server | maxBudget : X0, period : X1, state : waiting,

usedOfBudget : 0, timeToDeadline : ((X1 - 1) - 1), timeExecuted : 0 >
< s2 : server | maxBudget : X2, period : X3, state : executing,

usedOfBudget : 2, timeToDeadline : ((X3 - 1) - 1), timeExecuted : 2 >
AtS --> time : 2, cq : emptyQueue, available : false
iB --> ((X0 <= 0 ^ X1 <= 0) v (X0 <= X1 ...) ...)

A counterexample is found at (modeling) time 2, after exploring 233 symbolic states in less than 3 seconds. By using
a satisfiability witness of the constraint iB computed by the search command, a concrete counterexample is found by
exploring only 54 ground states. This result compares favorably, in both time and computational resources, with the ground
counterexample found by explicit-state model checking in [52], where more that 52,000 concrete states were explored
before finding a counterexample.

8. Symbolic reachability analysis for PLEXIL modulo integer constraints

This section gives an overview of, and presents a case study about, the analysis of reachability properties for the Plan
Execution Interchange Language (PLEXIL) [26] that can be expressed in rewriting modulo SMT and executed with the help of
the prototype tool in Section 6 and the Maude Model Checker [19]. The symbolic reachability analysis for PLEXIL presented
in this section is able to automatically detect reachability violations on input plans, where the values of external variables
can be left unspecified, for a large subset of the language. More details on the symbolic specification of PLEXIL and the
analysis performed on it can be found at [55]. Moreover, this section assumes some basic knowledge on LTL model checking
in the Maude system [19].

PLEXIL is a synchronous language developed by NASA to support autonomous spacecraft operations. Synchronous lan-
guages were introduced in the 1980s to program reactive systems, i.e., open systems whose behavior is determined by their
continuous reaction to the environment where they are deployed. Given the safety-critical nature of spacecraft operations,
PLEXIL’s operational semantics has been formally defined [23] and several properties of the language, such as determinism
and compositionality, have been mechanically verified [22]. A rewriting logic semantics of PLEXIL has been previously de-
veloped in Maude and has been used, within a formal interactive verification environment [56,24], to validate the intended
semantics of the language against a wide variety of plan examples. The symbolic specification of PLEXIL used in this section
extends and complements the ground rewriting logic semantics of the language with symbolic reachability analysis, a task
that is impossible to achieve with the rewriting logic semantics of the language [24].

PLEXIL programs define reactive systems that interact with an external environment of sensors and actuators. Such
programs are deterministic by assuming a given concrete value for each of the sensors that the reactive system interacts with.
Therefore, to execute by standard rewriting the rewriting logic semantics in [24] (and perform various kinds of reachability
analysis verification in Maude), concrete values of the data in sensors had to be assumed for the reactive interactions. Since,
in general, the possible tuples of such values can be infinite or (assuming finite arithmetic precision) extremely large, the
concrete executions and formal analyses allowed by the concrete rewriting semantics had to be necessarily incomplete. This
is analogous to the incompleteness of simulating and analyzing the CASH algorithm example in Real-Time Maude, versus the
complete analysis by rewriting modulo SMT presented in Section 7. Using rewriting modulo SMT, symbolic analysis based
on the rewriting logic semantics for PLEXIL can symbolically cover all possible values in an external environment [55].

8.1. PLEXIL overview

This section presents an overview of PLEXIL; the reader is referred to [26] for a detailed description of the language.
A PLEXIL program, called a plan, is a tree of nodes representing a hierarchical decomposition of tasks. Interior nodes,

called list nodes, provide control structure and naming scope for local variables. The primitive actions of a plan are specified
in the leaf nodes. Leaf nodes can be assignment nodes, which assign values to local variables, command nodes, which call
external commands, or empty nodes, which do nothing. PLEXIL plans interact with a functional layer that provides the
interface with the external environment. This functional layer executes the external commands and communicates the
status and result of their execution to the plan through external variables.

Nodes have an execution state, which can be inactive, waiting, executing, failing, iterationend, finishing, or finished, and an
execution outcome, which can be unknown, skipped, success, or failure. They can declare local variables that are accessible
to the node in which they are declared and all its descendants. In contrast to local variables, the execution state and
outcome of a node are visible to all nodes in the plan. Assignment nodes also have a priority, which can help in solving race
conditions. The internal state of a node consists of the current values of its execution state, execution outcome, and local
variables.

Each node is equipped with a set of gate conditions and check conditions that govern the execution of a plan. Gate
conditions provide control flow mechanisms that react to external events. In particular, the start condition specifies when

292 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
Fig. 1. Atomic transitions for list nodes in state executing.

AssignWithConflict: {
Integer x = 0;
Invariant: x >= 0;
NodeList:
NonNeg: {
Start: Lookup(S) >= 0;
Assignment: x := 1;

}
NonPos: {
Start: Lookup(S) <= 0;
Assignment: x := 2;

}
}

Fig. 2. A PLEXIL plan with a parallel assignment having a potential race condition.

a node starts its execution, the end condition specifies when a node ends its execution, the repeat condition specifies when
a node can repeat its execution, and the skip condition specifies when the execution of a node can be skipped. Check
conditions are used to signal abnormal execution states of a node and they can be either pre-condition, post-condition, or
invariant conditions. The language includes Boolean, integer, and floating-point arithmetic, and string expressions. It also
includes lookup expressions that read the value of external variables provided to the plan through the executive. Expressions
appear in conditions, assignments, and arguments of commands. Each of the basic types is extended by a special value
unknown that can result, for example, when a lookup fails.

The execution of a plan in PLEXIL is driven by external events from the environment that trigger changes in the gate
conditions. All nodes affected by a change in a gate condition synchronously respond to the event by modifying their internal
state. These internal modifications may trigger more changes in gate conditions that in turn are synchronously processed
until quiescence is reached for all nodes involved. External events are considered in the order in which they are received.
An external event and all its cascading effects are processed before the next event is considered. This behavior is known as
run-to-completion semantics.

The atomic relation describes the execution of an individual node in terms of state transitions triggered by changes in
the environment. The micro relation describes the synchronous reduction of the atomic relation with respect to the maximal
redexes strategy, i.e., the synchronous application of the atomic relation to the maximal set of nodes of a plan. The remaining
three relations are the quiescence relation, the macro relation, and the execution relation that describe, respectively, the reduc-
tion of the micro relation until normalization, the interaction of a plan with the external environment upon one external
event, and the n-iteration of the macro relation corresponding to n time steps. Fig. 1 depicts the transition diagram defining
PLEXIL’s atomic transitions for lists in state executing. According to this diagram, when a list node is in state executing, the
only way for it to reach state finishing is whenever the invariant of its ancestor node and its own invariant, together with
its end condition, are all true. In any other case, this node’s execution fails.

Since local variables declared in a node are shared by its children nodes, it may be possible that two nodes attempt
to synchronously write the same variable. The priority mechanism included in the semantics of PLEXIL can be used by
programmers to deal with this problem. Unfortunately, priorities are optional and, in practice, race conditions may occur
during the execution of a PLEXIL program. For instance, consider the plan AssignWithConflict in Fig. 2. This plan has one list
node and two assignment nodes, NonNeg and NonPos. It declares a local integer memory x and interacts with the external
environment via the integer variable S. Note that depending on the value of S, the assignment nodes NonNeg and NonPos
may or may not start execution, and a race condition can happen on x when the value of S is 0. With the symbolic semantics
presented in this section, the race condition on x can be automatically detected.

8.2. Symbolic detection of race conditions

In the symbolic rewriting logic semantics of PLEXIL R, a symbolic state is a pair (t ;ϕ) in which the term t ∈
T�(X0)Configuration represents the symbolic state of execution of a plan and the formula ϕ ∈ QF� (X0) is a constraint on t .
0

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 293
In this rewriting logic semantics, the built-in terms range over the sorts Int for integer numbers and Bool for Boolean val-
ues, and are used to specify values of external variables under the control of the environment that can be left unspecified.
Similar to the CASH specification in Section 7, a state t has sort Configuration, representing multisets of objects, in which
multiset union is denoted by juxtaposition (i.e., by the empty syntax). An object has sort Object and has the form 〈 _ : _ | _ 〉,
where the first argument is an object identifier having sort Oid, the second argument a class identifier having sort Cid, and
the third argument is a multiset of attributes having sort AttrSet, where attribute union is denoted by comma. A node in a
PLEXIL plan is represented by an object.

As mentioned above, detection of race conditions on local memories and violation of node invariants are important in
PLEXIL. As such, predicates for checking these predicates are already available from the symbolic rewriting logic semantics.
In particular, states predicates inv and race-free are offered to the user; both predicates take as input the identifier of a
node in a plan and check if the corresponding condition holds for that node in a given symbolic state. For this purpose, the
operator _ |= _ from the Maude Model Checker is used to equationally define the semantics of the relevant state predicates,
where the first argument is a symbolic state (t ;ϕ) and the second argument is a predicate π being defined on that state,
associating a Kripke structure to the initial reachability model of the PLEXIL specification (see [19] for more details). For
example, the following equation defines the satisfiability of predicate inv w.r.t. a symbolic state:(〈O : C | inv :B,AtS〉 Cnf ; B ′

) |= inv(O)

= unsat(B ′ ∧ ¬B).

Here, the variable O has sort Oid, the variable C has sort Cid, the variables B, B ′ have sort Bool, the variable AtS has sort
AttrSet, and the variable Cnf has sort Configuration. The function unsat is used to check for the unsatisfiability of a given
constraint. In this case, the invariant condition of a node O, represented here by the built-in variable B, yields an invariant
violation whenever the conjunction of the state’s constraint B′ and the negation of B is unsatisfiable: that is, whenever a
state is reachable in which the negation of the invariant B holds.

Recall the plan AssignWithConflict in Fig. 2, which has a potential race condition for the local memory x. Let init be a
configuration of objects representing an initial configuration for AssignWithConflict in which all nodes in the plan are in
state inactive. Consider the following safety verification requirements, where the symbol � represents the ‘always’ modal
operator in LTL:

TR, (init ; true) |=�race-free(x.AssignWithConflict), (6)

TR, (init ; S ≥ 1) |=�race-free(x.AssignWithConflict), (7)

TR, (init ; S ≥ 1) |=�inv(AssignWithConflict). (8)

In these verification tasks, variable S ranges over the built-in sort Int and represents the variable S under the control
of the environment in the plan AssignWithConflict, in Fig. 2. Property (6) asserts that all reachable states from init are free
from race conditions on memory x whenever S has no initial constraints. Property (7) asserts that all reachable states from
init are free from race conditions on memory x whenever S is assumed to be at least 1. Property (8) asserts that the
invariant condition of node AssignWithConflict holds in all reachable states from init whenever S is assumed to be at least 1.
Note that these properties are symbolic reachability requirements because of the nature of the external variable S. Also, the
constrained terms defining the initial states in these properties represent, in each case, infinitely many initial states.

By using Maude’s LTL Model Checker, Property (6) can be disproved, and properties (7) and (8) can be proved automati-
cally.

reduce in ASSIGNWITHCONFLICT :
verify-lite((init ; true), [] race-free(x . AssignWithConflict)) .

rewrites: 2590 in 525ms cpu (1629ms real) (4929 rewrites/second)
result Bool: false

reduce in ASSIGNWITHCONFLICT :
verify-lite((init ; S >= 1), [] race-free(x . AssignWithConflict)) .

rewrites: 2846 in 575ms cpu (614ms real) (4947 rewrites/second)
result Bool: true

reduce in ASSIGNWITHCONFLICT :
verify-lite((init ; S >= 1), [] inv(AssignWithConflict)) .

rewrites: 3191 in 576ms cpu (702ms real) (5534 rewrites/second)
result Bool: true

The function verify-lite is a wrapper to Maude’s LTL Model Checker function modelCheck. This mapping outputs either true
or false, depending on the output of the model checker function, ignoring the details of a counterexample, if any (see [55]
for more details).

294 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
9. Related work and concluding remarks

The idea of combining term rewriting/narrowing techniques and constrained data structures is an active area of research,
especially since the advent of modern theorem provers and model checkers with highly efficient decision procedures in the
form of SMT solvers. The overall aim of these techniques is to advance applicability of methods in symbolic verification
where the constraints are expressed in some logic that has an efficient decision procedure. In particular, the work presented
here has strong similarities with the narrowing-based symbolic analysis of rewrite theories initiated in [48] and extended
in [8]. There are also some similarities with symbolic reachability analysis based on (tree) automata (see, e.g., [32] and
references there). In comparison with the tree automata methods, a considerably richer set of infinite states and properties
of such states can be expressed. This is because sets of states — and therefore properties to be verified — which are
describable by regular tree languages roughly correspond in our setting to symbolic states of the form u; �, where u is a
linear term. Instead, in rewriting modulo SMT richer sets of states (and properties) can be specified by pairs u; ϕ , where u
is an arbitrary, not necessarily linear, term, ϕ a decidable built-in formula, and the ground instances of u are understood
modulo the equations E . Then, rewriting modulo axioms B1 is combined with SMT solving to explore reachable sets of
states. This greater expressiveness makes unnecessary the use of over-approximations of sets of states by regular languages
needed in tree automata methods. The main difference in comparison with narrowing-based methods is the replacement of
narrowing modulo axioms by rewriting modulo axioms and SMT solving, the decidability advantages of SMT for constraint
solving, and the greater efficiency of matching modulo axioms B over unification modulo B .

Besides the just-mentioned narrowing-based model checking of infinite-state systems, the present work has also impor-
tant similarities with SMT-based model checking approaches such as, for example, those by A. Podelski [54], G. Delzano and
A. Podelski [21], T. Rybina and A. Voronkov [60], the work by S. Ghilardi, S. Ranise, and various other researchers around
the MTMC SMT-based model checker [34,35] and, more recently, the IC3- and SMT-based model checking techniques [18],
and the constrained Horn-clause-based approach for model checking timed systems by Hojjat et al. in [37]. In comparison
with that body of work, what is indeed common is the use of SMT solving to handle symbolically infinite sets of states, but
there are some notable differences having to do with both the structure that is possible for states, and support for open
systems. Specifically, in [54,21,60] the state must always be an n-tuple of data and control elements, with associated state
variables −→x = x1, . . . , xn , and state changes are specified by guarded (simultaneous) assignment commands of the form
φ ⇒−→x ′ := −→t , where −→t = t1, . . . , tn is a sequence of �-terms with variables in −→x , φ is a �-formula, and (�, T) is a
decidable theory. Such guarded assignments are just conditional rewrite rules of the form 〈x1, . . . , xn〉 → 〈t1, . . . , tn〉 if φ.
Such rules can have internal non-determinism, depending on which rule is chosen, but the systems so specified are closed,
i.e., they do not have any external non-determinism. Furthermore, the state structure must necessarily be a tuple. The work
in [34,35] allows greater flexibility in this regard: the state structure is also fixed, namely, it must be an array, but this
makes it easy to specify parametric systems. Also, rather than assuming a specific format for state transitions, such as that
of guarded assignments, transitions can be defined by �-formulas with (�, T) a decidable theory. This allows for a possibil-
ity of transitions that, when viewed as conditional rewrite rules, can have extra variables in their right-hand sides and can
model an open system. In a similar way, the work in [37] assumes a fixed state structure consisting of an array of processes
and a shared global state. By contrast, in the approach presented in this paper the state structure is completely general
and user-definable and can obey structural axioms also specified by the user; and support for openness is a key part of the
semantic framework.

In spite of the above-mentioned differences, there is great commonality in the type of advanced techniques used in
SMT-based model checking to speed up and often attain convergence of the reachability analysis process, since all of them
— including state subsumption, backwards reachability, k-induction, interpolants, and the combination of IC3 with SMT —
can also be applied to rewriting modulo SMT. The current reflection-based prototype described in Section 6 does not yet
support any of these techniques. They should certainly be added to a future implementation.

Finally, SMT-based reachability analysis has been used in software testing in tools such as KLEE [16] for symbolic execu-
tion and constraint solving, finding possible inputs that will cause a program to crash and outputting these as test cases, and
SMT-CBMC [3] and Corral [42] for bounded model checking where unbounded types are represented by built-in variables
and the syntax of expressions is restricted so that it can be efficiently decided by SMT solving. See [17] for a comprehensive
account of symbolic techniques for reachability analysis in software testing, including SMT-based ones.

The work by C. Kirchner, H. Kirchner, and M. Rusinowitch on deduction with symbolic constraints [39] is a pioneering
work where the notions of constraints, rewrite rule with symbolic constraints, simplification with these rules, and applica-
tions to equational superposition theorem proving based on such notions were proposed. These ideas have had an important
influence in several areas, such as, for example, subsequent work on superposition theorem proving with constraints, see,
e.g., [31]; and in the constrained rewriting approach by H. Kirchner and C. Ringeissen to the combination of symbolic
constraint solvers [38]. In a similar vein, M. Ayala-Rincón [5] investigated, in the setting of many-sorted equational logic,
the expressiveness of conditional equational systems whose conditions may use built-in predicates. This class of equational
theories is important because the combination of equational and built-in premises yield a type of clauses which is more
expressive than purely conditional equations.

Rewriting notions like sufficient completeness, confluence, termination, and critical pairs have also been investigated for
rewriting modulo built-ins. There is the work of A. Bouhoula and F. Jacquemard [13], who studied the problem of suffi-
cient completeness for conditional and constrained term rewrite systems, and propose a solution based on tree grammars

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 295
and narrowing. S. Falke and D. Kapur [28] studied the problem of termination of rewriting with constrained built-ins. In
particular, they extended the dependency pair framework to handle termination of equational specifications with semantic
data structures and evaluation strategies in the Maude functional sublanguage. The same authors used the idea of com-
bining rewriting induction and linear arithmetic over constrained terms [29]. Their aim is to obtain equational decision
procedures that can handle semantic data types represented by the constrained built-ins. The main difference between
their work and rewriting modulo SMT presented in this paper is that the notion of symbolic rewriting modulo decidable
constraints is completely different. According to Definition 14 in [29], a symbolic rewrite step u; φ �R v; φ with a rule
l → r if ϕ in their sense requires a matching substitution θ such that φ ⇒ (ϕθ) is TE0 -valid. This is a universal notion of
symbolic rewriting with constraints completely different from our existential notion in Definition 7, which is based instead
on constrain satisfiability. This difference is understandable by observing that the goal in [29] is to prove universal formulas
about equational specifications by inductive theorem proving, whereas our goal is very different, namely, to prove existential
reachability formulas about a concurrent system specified by a rewrite theory. More recently, C. Kop and N. Nishida [40]
have proposed a way to unify the ideas regarding equational rewriting with logical constraints and have proposed in [41]
an inductive method of proving properties of programs in an imperative language by their notion of symbolic rewriting
modulo decidable constraints. The main difference with our approach is that, as in [29], their notion of symbolic rewriting
is universal, and therefore completely different from our existential notion in Definition 7; furthermore, in [41] termination
of the rewrite theory is required for inductive reasoning, whereas no termination is required at all in our setting. Again,
all this is understandable given their focus on inductive theorem proving of universal formulas. One similarity between the
work in [41] and our work is that, to handle input–output in an imperative language, they allow, as we do, extra variables
in the right-hand sides of rewrite rules. In general, while approaches such as in [39,5,12,27–29,38,40] address symbolic
reasoning for equational theorem proving purposes, or apply these techniques to imperative program analysis and verification,
even allowing sometimes extra variables in the right-hand sides of equations, e.g., [65,64,41], theses approaches are quite
different from ours because of their predominant focus on equational reasoning for proving, often inductively, universal
formulas, and/or on applications to, typically sequential, programming languages.

Last but not least, recently, A. Arusoaie et al. [4] have proposed a language-independent symbolic execution framework,
within the K framework [44], for languages endowed with a formal operational semantics based on term rewriting. There,
the built-in subtheories are the datatypes of a programming language and symbolic analysis is performed on constrained
terms (called patterns); unification is also implemented by matching for a restricted class of rewrite rules and uses SMT
solvers to check constraints. This work is also related to our approach. A more detailed comparison of how both approaches
are applied to analyzing conventional programs based on their rewriting semantics is an interesting task for future research.

This paper has presented rewrite theories modulo built-ins and has shown how they can be used for symbolically mod-
eling and analyzing concurrent open systems, where nondeterministic values from the environment can be represented by
built-in terms [55,57]. In particular, the main contributions of this paper can be summarized as follows: (1) it presents
rewriting modulo SMT as a new symbolic technique combining the powers of rewriting, SMT solving, and model checking;
(2) this combined power can be applied to model and analyze systems outside the scope of each individual technique; (3)
in particular, it is ideally suited to model and analyze the challenging case of open systems; and (4) because of its reflective
reduction to standard rewriting, current algorithms and tools for model checking closed systems can be reused in this new
symbolic setting without requiring any changes to their implementation.

Under reasonable assumptions, including decidability of E+0 , a rewrite theory modulo is executable by term rewriting
modulo SMT. This feature makes it possible to use, for symbolic analysis, state-of-the-art tools already available for Maude,
such as its space search commands, with no change whatsoever required to use such tools. In this paper, it has been proved
that the symbolic rewrite relation is sound and complete with respect to its ground counterpart. Furthermore, the paper
has presented an overview of the prototype that offers support for rewriting modulo SMT in Maude and two case studies.
These case studies regard the symbolic analysis of the CASH scheduling algorithm and the PLEXIL synchronous language
illustrating the use of these techniques.

Future work on a mature implementation on extending the idea of rewriting modulo SMT with other symbolic constraint
solving techniques such as narrowing modulo should be pursued. Furthermore, the generalization of rewrite theories modulo
a built-in subtheory with equations for the non-built-ins should also be investigated. Finally, the extension to other symbolic
LTL model checking properties, together with state space reduction techniques, should be considered, taking into account
the rich experience already available on model checking of temporal logic properties in SMT-based model checkers, e.g.,
[54,21,33,34]. Further applications to Real-Time Maude, PLEXIL, and other languages should also be pursued.

Acknowledgements

The authors would like to thank S. Eker for fruitful discussions on these ideas and their implementation in Maude,
and the anonymous referees for their very helpful comments that helped us improve the paper. This work was partially
supported by NSF Grant CNS 13-19109. The first author would like to thank the National Institute of Aerospace for a short
visit supported by the Assurance of Flight Critical System’s project of NASA’s Aviation Safety Program at Langley Research
Center under Research Cooperative Agreement No. NNL09AA00A.

296 C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297
References

[1] E. Althaus, E. Kruglov, C. Weidenbach, Superposition modulo linear arithmetic SUP(LA), in: 7th International Symposium on Frontiers of Combining
Systems, in: Lect. Notes Comput. Sci., vol. 5749, Springer, 2009, pp. 84–99.

[2] R. Alur, D.L. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (2) (1994) 183–235.
[3] A. Armando, J. Mantovani, L. Platania, Bounded model checking of software using SMT solvers instead of SAT solvers, Int. J. Softw. Tools Technol. Transf.

11 (1) (2009) 69–83.
[4] A. Arusoaie, D. Lucanu, V. Rusu, A generic framework for symbolic execution, in: 6th International Conference on Software Language Engineering, in:

Lect. Notes Comput. Sci., vol. 8225, Springer, 2013, pp. 281–301.
[5] M. Ayala-Rincón, Expressiveness of Conditional Equational Systems with Built-in Predicates, PhD thesis, Universität Kaiserslauten, 1993.
[6] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.
[7] F. Baader, K. Schulz, Unification in the union of disjoint equational theories: combining decision procedures, J. Symb. Comput. 21 (1996) 211–243.
[8] K. Bae, S. Escobar, J. Meseguer, Abstract logical model checking of infinite-state systems using narrowing, in: 24th International Conference on Rewriting

Techniques and Applications, in: Leibniz International Proceedings in Informatics, vol. 21, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013,
pp. 81–96.

[9] K. Bae, C. Rocha, A note on symbolic reachability analysis modulo integer constraints for the CASH algorithm, available at http://maude.cs.uiuc.edu/
cases/scash, 2012.

[10] M.P. Bonacina, C. Lynch, L.M. de Moura, On deciding satisfiability by theorem proving with speculative inferences, J. Autom. Reason. 47 (2) (2011)
161–189.

[11] A. Boudet, Combining unification algorithms, J. Symb. Comput. 16 (6) (1993) 597–626.
[12] A. Bouhoula, F. Jacquemard, Automated induction with constrained tree automata, in: 4th International Joint Conference on Automated Reasoning, in:

Lect. Notes Comput. Sci., vol. 5195, Springer, 2008, pp. 539–554.
[13] A. Bouhoula, F. Jacquemard, Sufficient completeness verification for conditional and constrained TRS, J. Appl. Log. 10 (1) (2012) 127–143, Special issue

on Automated Specification and Verification of Web Systems.
[14] R. Bruni, J. Meseguer, Semantic foundations for generalized rewrite theories, Theor. Comput. Sci. 360 (1–3) (2006) 386–414.
[15] M. Caccamo, G.C. Buttazzo, L. Sha, Capacity sharing for overrun control, in: IEEE 34th Real-Time Systems Symposium, IEEE Computer Society, 2000,

pp. 295–304.
[16] C. Cadar, D. Dunbar, D.R. Engler, KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs, in: 8th USENIX

Symposium on Operating Systems Design and Implementation, USENIX Association, 2008, pp. 209–224.
[17] C. Cadar, K. Sen, Symbolic execution for software testing: three decades later, Commun. ACM 56 (2) (Feb. 2013) 82–90.
[18] A. Cimatti, A. Griggio, Software model checking via IC3, in: 24th International Conference on Computer Aided Verification, in: Lect. Notes Comput. Sci.,

vol. 7358, Springer, 2012, pp. 277–293.
[19] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C.L. Talcott, All About Maude – A High-Performance Logical Framework, How to

Specify, Program and Verify Systems in Rewriting Logic, Lect. Notes Comput. Sci., vol. 4350, Springer, 2007.
[20] M. Clavel, J. Meseguer, M. Palomino, Reflection in membership equational logic, many-sorted equational logic, horn logic with equality, and rewriting

logic, Theor. Comput. Sci. 373 (1–2) (2007) 70–91.
[21] G. Delzanno, A. Podelski, Constraint-based deductive model checking, Int. J. Softw. Tools Technol. Transf. 3 (3) (2001) 250–270.
[22] G. Dowek, C. Muñoz, C. Păsăreanu, A formal analysis framework for PLEXIL, in: 3rd Workshop on Planning and Plan Execution for Real-World Systems,

September 2007, pp. 45–51.
[23] G. Dowek, C. Muñoz, C. Păsăreanu, A Small-Step Semantics of PLEXIL, Technical Report 2008-11, National Institute of Aerospace, Hampton, VA, 2008.
[24] G. Dowek, C.A. Muñoz, C. Rocha, Rewriting logic semantics of a plan execution language, in: 6th Workshop on Structural Operational Semantics, in:

Electron. Proc. Theor. Comput. Sci., vol. 18, 2009, pp. 77–91.
[25] F. Durán, S. Lucas, C. Marché, J. Meseguer, X. Urbain, Proving operational termination of membership equational programs, High.-Order Symb. Comput.

21 (1–2) (2008) 59–88.
[26] T. Estlin, A. Jónsson, C. Păsăreanu, R. Simmons, K. Tso, V. Verma, Plan Execution Interchange Language (PLEXIL), Technical Memorandum

TM-2006-213483, NASA, 2006.
[27] S. Falke, D. Kapur, Dependency pairs for rewriting with built-in numbers and semantic data structures, in: 19th International Conference on Rewriting

Techniques and Applications, in: Lect. Notes Comput. Sci., vol. 5117, Springer, Berlin, Heidelberg, 2008, pp. 94–109.
[28] S. Falke, D. Kapur, Operational termination of conditional rewriting with built-in numbers and semantic data structures, Electron. Notes Theor. Comput.

Sci. 237 (2009) 75–90.
[29] S. Falke, D. Kapur, Rewriting induction + linear arithmetic = decision procedure, in: 6th International Joint Conference on Automated Reasoning, in:

Lect. Notes Comput. Sci., vol. 7364, Springer, 2012, pp. 241–255.
[30] M. Ganai, A. Gupta, Accelerating high-level bounded model checking, in: 2006 IEEE/ACM International Conference on Computer Aided Design, Nov.

2006, pp. 794–801.
[31] H. Ganzinger, R. Nieuwenhuis, Constraints and theorem proving, in: Constraints in Computational Logics: Theory and Applications, International Sum-

mer School, in: Lect. Notes Comput. Sci., vol. 2002, Springer, 1999, pp. 159–201.
[32] T. Genet, T. Le Gall, A. Legay, V. Murat, A completion algorithm for lattice tree automata, in: 18th International Conference on Implementation and

Application of Automata, in: Lect. Notes Comput. Sci., vol. 7982, Springer, 2013, pp. 134–145.
[33] S. Ghilardi, E. Nicolini, S. Ranise, D. Zucchelli, Combination methods for satisfiability and model-checking of infinite-state systems, in: 21st International

Conference on Automated Deduction, in: Lect. Notes Comput. Sci., vol. 4603, Springer, 2007, pp. 362–378.
[34] S. Ghilardi, E. Nicolini, S. Ranise, D. Zucchelli, Towards SMT model checking of array-based systems, in: 4th International Joint Conference on Automated

Reasoning, in: Lect. Notes Comput. Sci., vol. 5195, Springer, 2008, pp. 67–82.
[35] S. Ghilardi, S. Ranise, MCMT: a model checker modulo theories, in: 5th International Joint Conference on Automated Reasoning, in: Lect. Notes Comput.

Sci., vol. 6173, Springer, 2010, pp. 22–29.
[36] J.A. Goguen, J. Meseguer, Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations, Theor.

Comput. Sci. 105 (2) (1992) 217–273.
[37] H. Hojjat, P. Rümmer, P. Subotic, W. Yi, Horn clauses for communicating timed systems, in: N. Bjørner, F. Fioravanti, A. Rybalchenko, V. Senni (Eds.), 1st

Workshop on Horn Clauses for Verification and Synthesis, in: Electron. Proc. Theor. Comput. Sci., vol. 169, 2014, pp. 39–52.
[38] H. Kirchner, C. Ringeissen, Combining symbolic constraint solvers on algebraic domains, J. Symb. Comput. 18 (2) (1994) 113–155.
[39] K. Kirchner, H. Kirchner, M. Rusinowitch, Deduction with symbolic constraints, Rev. Intell. Artif. 4 (3) (1990) 9–52.
[40] C. Kop, N. Nishida, Term rewriting with logical constraints, in: 9th International Symposium on Frontiers of Combining Systems, in: Lect. Notes Comput.

Sci., vol. 8152, Springer, 2013, pp. 343–358.
[41] C. Kop, N. Nishida, Automatic constrained rewriting induction towards verifying procedural programs, in: 12th Asian Symposium on Programming

Languages and Systems, in: Lect. Notes Comput. Sci., vol. 8858, Springer, 2014, pp. 334–353.

http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F66726F636F732F416C74686175734B573039s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F66726F636F732F416C74686175734B573039s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib616C757239347468656F7279s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib61726D616E646F32303039626F756E646564s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib61726D616E646F32303039626F756E646564s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib617275736F6169652D736D7432303133s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib617275736F6169652D736D7432303133s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6179616C612D706864s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6E69706B6F773938s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6261616465722D736368756C7As1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6261653133s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6261653133s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6261653133s1
http://maude.cs.uiuc.edu/cases/scash
http://maude.cs.uiuc.edu/cases/scash
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A6A6F75726E616C732F6A61722F426F6E6163696E614C4D3131s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A6A6F75726E616C732F6A61722F426F6E6163696E614C4D3131s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A6A6F75726E616C732F6A73632F426F756465743933s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib626F75686F756C612D6374613038s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib626F75686F756C612D6374613038s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib626F75686F756C612D7363637472733132s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib626F75686F756C612D7363637472733132s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6272756E693036s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F727473732F43616363616D6F42533030s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F727473732F43616363616D6F42533030s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6B6C6565s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6B6C6565s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib63616461722D7365737774657374696E6732303133s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib63696D617474692D69633332303132s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib63696D617474692D69633332303132s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6D617564652D626F6F6Bs1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6D617564652D626F6F6Bs1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib636C6176656C3037s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib636C6176656C3037s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A6A6F75726E616C732F737474742F44656C7A616E6E6F503031s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib444D503037494341505357s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib444D503037494341505357s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib444D503038s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib726F6368612D736F733039s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib726F6368612D736F733039s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib647572616E2D686F73633038s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib647572616E2D686F73633038s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib706C6578696C2D74723036s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib706C6578696C2D74723036s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib66616C6B652D7274613038s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib66616C6B652D7274613038s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib66616C6B652D7465723039s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib66616C6B652D7465723039s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib66616C6B652D6465633132s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib66616C6B652D6465633132s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib67616E616932303036616363656C65726174696E67s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib67616E616932303036616363656C65726174696E67s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F63636C2F47616E7A696E6765724E3939s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F63636C2F47616E7A696E6765724E3939s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib67656E65742D7461636F6D706C32303133s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib67656E65742D7461636F6D706C32303133s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F636164652F4768696C617264694E525A3037s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F636164652F4768696C617264694E525A3037s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F636164652F4768696C617264694E525A3038s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F636164652F4768696C617264694E525A3038s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F636164652F4768696C61726469523130s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F636164652F4768696C61726469523130s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib676F6775656E2D7463733932s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib676F6775656E2D7463733932s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib686F6A6A61742D686F726E32303134s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib686F6A6A61742D686F726E32303134s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6B697263686E65723934s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib4B697263686E6572527573696E6F77697463683930s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6B6F702D636F6E733133s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6B6F702D636F6E733133s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6B6F702D617574636F6E7372657732303134s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6B6F702D617574636F6E7372657732303134s1

C. Rocha et al. / Journal of Logical and Algebraic Methods in Programming 86 (2017) 269–297 297
[42] A. Lal, S. Qadeer, S. Lahiri, Corral: A Solver for Reachability Modulo Theories, Technical Report MSR-TR-2012-9, Microsoft Research, January 2012.
[43] K.G. Larsen, P. Pettersson, W. Yi, UPPAAL in a nutshell, Int. J. Softw. Tools Technol. Transf. 1 (1–2) (1997) 134–152.
[44] D. Lucanu, T.-F. Serbanuta, G. Rosu, K framework distilled, in: 9th International Workshop on Rewriting Logic and Its Applications, in: Lect. Notes

Comput. Sci., vol. 7571, Springer, 2012, pp. 31–53.
[45] S. Lucas, J. Meseguer, Operational termination of membership equational programs: the order-sorted way, Electron. Notes Theor. Comput. Sci. 238 (3)

(2009) 207–225.
[46] J. Meseguer, Conditional rewriting logic as a unified model of concurrency, Theor. Comput. Sci. 96 (1) (1992) 73–155.
[47] J. Meseguer, Membership algebra as a logical framework for equational specification, in: 12th International Workshop on Recent Trends in Algebraic

Development Techniques, in: Lect. Notes Comput. Sci., vol. 1376, Springer, 1997, pp. 18–61.
[48] J. Meseguer, P. Thati, Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols, High.-Order Symb.

Comput. 20 (1–2) (2007) 123–160.
[49] A. Milicevic, H. Kugler, Model checking using SMT and theory of lists, in: NASA 3rd International Symposium on Formal Methods, in: Lect. Notes

Comput. Sci., vol. 6617, Springer, 2011, pp. 282–297.
[50] G. Nelson, D.C. Oppen, Simplification by cooperating decision procedures, ACM Trans. Program. Lang. Syst. 1 (2) (1979) 245–257.
[51] R. Nieuwenhuis, A. Oliveras, C. Tinelli, Solving SAT and SAT modulo theories: from an abstract Davis–Putnam–Logemann–Loveland procedure to

DPLL(T), J. ACM 53 (6) (2006) 937–977.
[52] P.C. Ölveczky, M. Caccamo, Formal simulation and analysis of the CASH scheduling algorithm in Real-Time Maude, in: L. Baresi, R. Heckel (Eds.), 9th

International Conference on Fundamental Approaches to Software Engineering, in: Lect. Notes Comput. Sci., vol. 3922, Springer, 2006, pp. 357–372.
[53] S. Owre, J. Rushby, N. Shankar, PVS: a prototype verification system, in: 11th International Conference on Automated Deduction, in: Lect. Notes Artif.

Intell., vol. 607, Springer-Verlag, Saratoga, NY, June 1992, pp. 748–752.
[54] A. Podelski, Model checking as constraint solving, in: 7th International Symposium on Static Analysis, in: Lect. Notes Comput. Sci., vol. 1824, Springer,

2000, pp. 22–37.
[55] C. Rocha, Symbolic Reachability Analysis for Rewrite Theories, PhD thesis, University of Illinois at Urbana-Champaign, 2012.
[56] C. Rocha, H. Cadavid, C.A. Muñoz, R. Siminiceanu, A formal interactive verification environment for the Plan Execution Interchange Language, in: 9th

International Conference on Integrated Formal Methods, in: Lect. Notes Comput. Sci., vol. 7321, Springer, 2012, pp. 343–357.
[57] C. Rocha, J. Meseguer, C. Muñoz, Rewriting Modulo SMT, Technical Memorandum NASA/TM-2013-218033, NASA Langley Research Center, Hampton,

VA, August 2013.
[58] C. Rocha, J. Meseguer, C. Muñoz, Rewriting modulo SMT and open system analysis, in: 10th International Workshop on Rewriting Logic and Its Appli-

cations, in: Lect. Notes Comput. Sci., vol. 8663, Springer International Publishing, 2014, pp. 247–262.
[59] G. Roşu, A. Ştefănescu, Matching logic: a new program verification approach, in: 33rd International Conference on Software Engineering, ACM, New

York, NY, USA, 2011, pp. 868–871.
[60] T. Rybina, A. Voronkov, A logical reconstruction of reachability, in: 5th International Andrei Ershov Memorial Conference on Perspectives of Systems

Informatics, in: Lect. Notes Comput. Sci., vol. 2890, Springer, 2003, pp. 222–237.
[61] T. Sakata, N. Nishida, T. Sakabe, On proving termination of constrained term rewrite systems by eliminating edges from dependency graphs, in: 20th

International Workshop on Functional and Constraint Logic Programming, in: Lect. Notes Comput. Sci., vol. 6816, Springer, 2011, pp. 138–155.
[62] P. Thati, J. Meseguer, Complete symbolic reachability analysis using back-and-forth narrowing, Theor. Comput. Sci. 366 (1–2) (2006) 163–179.
[63] M. Veanes, N. Bjørner, A. Raschke, An SMT approach to bounded reachability analysis of model programs, in: 28th IFIP WG 6.1 International Conference

on Formal Techniques for Networked and Distributed Systems, Springer, 2008, pp. 53–68.
[64] G. Vidal, Closed symbolic execution for verifying program termination, in: IEEE 12th International Working Conference on Source Code Analysis and

Manipulation, Sept 2012, pp. 34–43.
[65] G. Vidal, Symbolic execution as a basis for termination analysis, Sci. Comput. Program. 102 (2015) 142–157.
[66] P. Viry, Equational rules for rewriting logic, Theor. Comput. Sci. 285 (2002) 487–517.
[67] D. Walter, S. Little, C. Myers, Bounded model checking of analog and mixed-signal circuits using an SMT solver, in: 5th International Symposium on

Automated Technology for Verification and Analysis, Springer, Berlin, Heidelberg, 2007, pp. 66–81.
[68] S. Yovine, KRONOS: a verification tool for real-time systems, Int. J. Softw. Tools Technol. Transf. 1 (1) (1997) 123–133.

http://refhub.elsevier.com/S2352-2208(16)30119-5/bib636F7272616Cs1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A6A6F75726E616C732F737474742F4C617273656E50593937s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6C7563616E752D6B32303132s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6C7563616E752D6B32303132s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6C7563617332303039s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6C7563617332303039s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib756E69666965642D746373s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6D657365677565723937s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6D657365677565723937s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6D657365677565723037s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6D657365677565723037s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6D696C696365766963323031316D6F64656Cs1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib6D696C696365766963323031316D6F64656Cs1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A6A6F75726E616C732F746F706C61732F4E656C736F6E4F3739s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A6A6F75726E616C732F6A61636D2F4E69657577656E687569734F543036s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A6A6F75726E616C732F6A61636D2F4E69657577656E687569734F543036s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib70657465722D63617368s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib70657465722D63617368s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib5056533932s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib5056533932s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F7361732F506F64656C736B693030s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F7361732F506F64656C736B693030s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib726F6368612D706864s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib726F6368612D69666D3132s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib726F6368612D69666D3132s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib524D4D323031334E415341s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib524D4D323031334E415341s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib726F6368612D77726C613134s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib726F6368612D77726C613134s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib726F73752D6D61746368696E673131s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib726F73752D6D61746368696E673131s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F657273686F762F527962696E61563033s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A636F6E662F657273686F762F527962696E61563033s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib73616B6174612D7465723131s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib73616B6174612D7465723131s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib74686174692D7463733036s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib7665616E657332303038736D74s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib7665616E657332303038736D74s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib766964616C2D636C6F73656432303132s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib766964616C2D636C6F73656432303132s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib766964616C2D73796D6578656332303135s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib766972792D746373s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib77616C74657232303037626F756E646564s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib77616C74657232303037626F756E646564s1
http://refhub.elsevier.com/S2352-2208(16)30119-5/bib44424C503A6A6F75726E616C732F737474742F596F76696E653937s1

	Rewriting modulo SMT and open system analysis
	1 Introduction
	2 Preliminaries
	3 Built-in subtheories
	4 Rewriting modulo a built-in subtheory
	5 Symbolic rewriting modulo a built-in subtheory
	5.1 Computing with R°
	5.2 Symbolic reachability analysis

	6 Reﬂective implementation of R°
	7 Analysis of the CASH algorithm
	7.1 Symbolic states
	7.2 Symbolic transitions
	7.3 Symbolic detection of missed deadlines

	8 Symbolic reachability analysis for PLEXIL modulo integer constraints
	8.1 PLEXIL overview
	8.2 Symbolic detection of race conditions

	9 Related work and concluding remarks
	Acknowledgements
	References

