Symbolic Systems Technology Group

Using formal systems and logic to understand

- How things work
- Why things don't work
-

Team (alphabetical order)

- Grit Denker
 - Daniel Elenius
 - Rukman Senyake
 - Ashish Gehani
- Steven Eker
- Ian Mason
- Anupama Panikkar (SV)
- Andy Poggio
- Malabika Sarker (Oklahoma)
- Mark Oliver Stehr
 - Minyoung Kim

Projects (in no particular order)

- Maude Development
- Cyber-physical Systems (CPS)
- Circuit Analysis w Superresolved Infrared Optics (CASIO)
- Content Based Mobile Edge Networks (CBMEN)
- Biology

A smattering of each

Maude Development (Steven Eker)

w Meseguer@UIUC

Distributed/Concurrent Maude (NSF)

many optimizations

- new stack based execution engine
- concurrent search
- concurrent objects (eventually)

Unification (NSA)

- Unification is the problem of finding a substitution such that
 - t1 = u1 ... tn = un (in an equational theory)
- Free theory easy/finite
- Generally may be infinite, undecidable
- AC, ACU doable but challenging
- Key application narrowing
 - rewriting with unification rather than matching
 - backwards narrowing -- finds all initial states leading to target pattern
 - Maude NPA (crypto protocol attacks)
 - Document Logic (business process risks)

Some Maude Applications

 Border Gateway Protocol Analysis (Anduo Wang, Boon Tau Loo, Andre Scedrov UPenn)

Internet Routing Systems

Share connectivity information across ASes

- Modeling Regulations for Clinical Trials (Andre Scedrov (UPenn), Vivek Nigam (Munich),
 - FDA regulations Requirements implicit in trial protocol Runtime monitoring Adaptive plan generation Post trial inspection

Cyber-physical Systems Projects NCPS (NSF), Fractionated (ONR), CYPRESS (NSF) (PDL,MOS, MK, IAM, AP, GD, ...)

http://ncps.csl.sri.com

Challenges and Objective

- Networked Cyber-Physical Systems (NCPS) consist of networked hard- and software components embedded in the physical world and interacting with it through sensors and actuators.
- Increasingly large numbers of *heterogeneous* and potentially *resource-constrained* and *unreliable* components
- Need to work in challenging environments with unreliable/intermittent connectivity
- Need to operate in the entire spectrum between autonomy and cooperation
- **Objective:** General principles and tools for building robust, effective NCPS using individual cyber-physical devices as building blocks.

NCPS Approach and Contributions

- Partially ordered knowledge-sharing model for loosely coupled distributed computing
- Implemented in new application framework for NCPS
- Distributed logic for declarative control
- Simulation case study:
 - distributed surveillance, collaborating team of mobile robots

Partially ordered knowledge sharing

- Builds on DTN work,,minimal assumptions on network connectivity (can be very unreliable)
- Locally each cyber-node uses an event-based model with local time and may have attached cyber-physical devices
- Communication via knowlegde sharing rather than message passing
- Partial order allows the network to replace obsolete or subsumed knowledge
- Global consistency is not enforced (impossible in disruptive environments)
- Avoids strong non-implementable primitives, e.g. transactions

Distributed Logic

- Key Problem
 - Traditional logics are not designed for distributed reasoning
 - Logics are traditionally closed systems, i.e. not interactive
- Knowledge is transparently shared
 - Knowledge = Facts + Goals
 - Facts can represent observations
 - Goals can represent control objectives
- Distributed logical framework
 - Integrates forward and backward reasoning
 - Partial order is essential part of the distributed logic

Distributed derivation

Cyber-Application Framework Architecture

- Cyber-framework implements partially ordered knowledge-sharing model
- Logical framework is implemented as a cyber-application
- Applications cannot distinguish between simulation and reality

Principles and Foundations for Fractionated NCPS

- **Problem:** Current models are too abstract by not taking into account fundamental physical limitations and hence are not efficiently implementable or scalable
- Once explicitly represented, physical limitations can be overcome to some degree (e.g. probabilistically)
- Diversification, redundancy, and randomization can offset many physical limitations
- Distribution is a source of redundancy and diversification and can be turned from an obstacle into an advantage

STEM: A Stochastic Task Execution Model for Fractionated Software

- Fractionated software system composed of nodes with partial connectivity (many, small components -- fracments).
- A goal is posted which is comprised of numerous subgoals
- Stochastically, a free node will take on a new subgoal (if capable)
- Correctness? Measure goal accomplishment quality,
 - e.g. at least 90% subgoal coverage at 95% confidence level

CYPRESS

Cyber-Physical RESilience and Sustainability

Dependability Techniques for Instrumented Cyber-Physical Spaces

Grit Denker, Nikil Dutt, Minyoung Kim, Sharad Mehrotra, Mark-Oliver Stehr, Carolyn Talcott, Nalini Venkatasubramanian Leila Jalali, Zhijing Qin, Ronen Vaisenberg, Xiujuan Yi, Liyan Zhang

Goals & Approach

- Principles / techniques for infrastructure and data resilience
- Formal models and cross-layer tuning
- Middleware services
- Pervasive space testbed

Instrumented UCI Campus

CASIO: Circuit Analysis w Superresolved Infrared Optics (DARPA) ESD,PSD,CSL,AI, Princeton, Berkeley,

The CASIO challenge (DARPA hard^2)

V+

- Identify potential malicious regions in an ASIC
- Chip must work after analysis
- Aim for 45 nm resolution (currently 150ish)

transistor

source

drain

Poly gate

ENCODERS: Content Based Mobile Edge Network (DARPA) (MOS and many others, in negotiation)

CBMEN ENCODERS

Edge Networking with Content-Oriented Declarative Enhanced Routing and Storage

- Declarative/Intentional Content-Based Networking:
 - Vision of network as a distributed cache of content: users/applications state <u>what</u> content is needed, without constraining <u>how</u> to obtain it !
 - Enable <u>fine-grained</u> expression of warfighters' needs: transition from syntactic (name matching) to <u>semantic</u> networking (predicate resolution)
 - Unified <u>symmetric</u> paradigm where requesters <u>and</u> originators of content express intent (i.e. query and scope)
 - Multidimensional awareness: users, groups, location, mobility, organization, social network, content/interest

Disruption-Tolerant and Attack-Resilient Foundation:

- -Push and pull dissemination for increased robustness
- -Opportunistic caching and proactive replication
- -Polymorphic network layer (morphs like a Chameleon)
- -Spreading trust/responsibility through network coding
- -Decentralized multiauthority security for high availability
- -Fine-grained access control and metadata/query privacy

Impact: Focus on the Mission not on the Network !

- -Warfighter gets the right information at the right time
- -Eliminate content flooding and information overload (for users and network) through fine-grained queries, efficient algorithms and context/interest modeling
- -Zero configuration: self-organizing combination of structured (distributed hashing) and unstructured (information diffusion) approaches

Iterated Pipelined Rapid Prototyping and Integration

Translating Research into Prototypes SUNS-Tech PI: JJ. Garcia-Luna-Aceves (affiliated with UCSC and PARC)	Prototype Integration, Enhancement, and Evaluation	Integration into CBMEN System	
Automatic Incremental Routing	SRI International	SET Corp.	
Disruption Tolerant Networking	Computer Science Laboratory	(an SAIC Company)	
Network Coding for Caching	PI: Mark-Oliver Stehr	PI: David Anhalt	
Network obdailing for oddrilling			Tasks
			1. Naming
GPC			2. Distribution
PI: Mario Gerla	Declarative Networking	Information Management	3. Managing
(affiliated with UCLA)	Efficient Matching Technology	for Networking	4. Convinc
	Disruption-Tolerant Networking	Dynamic Traffic Shaping	4. Securing
	MANET and Mesh Routing	Interest Modeling	5. Assessment
Content-Based Networking in Tactical MANETs	Cross-Layer Optimization	Virtual Interest Groups	6. Integration
MANET and Inter-MANET Routing	Decentralized	Traffic Monitoring	
Network Coding for Distribution	Attribute-Based Encryption	Agent Based Simulation	
Situation-Aware Trust	Evaluation under Encryption	Systems Engineering	
Dynamic	Campus-Wide Wireless Testbed		77111
Attribute-Based Encryption	Policy-Based Networking		SRI
			nternational

Biology

Pathway LogicCombining Pathways and CheminformaticsBioMarkers

Pathway Logic (PL)

http:pl.csl.sri.com

Executable models of cellular processes (Maude + Petri Nets)

- Queryable formal knowledge base (DKB) of experimental findings
- Executable network of reaction rules (inferred from DKB)
- Model ~ initial state (experimental setup) + relevant rules
- Analysis using the PL Assistant (PLA)
 - Find subnets (proofs, executions)
 - Find pathways (proofs, executions)
 - In silico knocks
 - Comparing networks
 - Following connections

Combining Cheminformatics Methods and Pathway Analysis NIH STTR with Collaborative Drug Design (CDD)

- Looking for TB drug candidates
- Phase I: Predicted 30 candidate drugs, tested 20, 3 had activity
- Phase II submitted.

Point-Of-Care Biological Assays for Determining Absorbed Ionizing Radiation Dose (Biodosimetry) (BARDA)

David Cooper PI -- PSD, BSD, ESD, CSL

- **Objective**: Biomarkers of irradiation for triage
- **Metric**: find panel of proteins that can distinguish >=6gy from <6gy in mouse
- Experiments:
 - Mouse subjected to irradiation at different levels
 - Human (cancer patients undergoing radiotherapy)
- Data: Mass Spectra, Elisa of plasma samples
- Computational analysis:
 - Univariate statistics, multivariate linear classifiers, SVM

The end! (The beginning?)