FAULT TOLERANCE FROM A CELLULAR BIOLOGY PERSPECTIVE

Carolyn Talcott SRI International 15 August 2009

Background

Immune system scenario

How it works

BACKGROUND

WHAT ARE WE TALKING ABOUT?

- What are faults?
 - stress conditions
 - invaders
 - misbehaving parts

- What is tolerance?
 - persist/survive
 - concquer/evade
 - repair/replace/destroy

BIO TOLERANCE EXAMPLES

Persistent state of microbes

- Some fraction non-deterministically `go to sleep' (and wake up on schedule), thus providing a fraction of the community that will survive many attacks (by not reacting).
- Disintegrating invaders
- Error detection/Proof reading,
- Correction/DNA repair
- Apoptosis -- destroy the faulty (or unneeded) component and make a new one.

BIOLOGICAL SYSTEMS

- Systems of systems of ... systems
- Including information and physical systems
 - (the ultimate CPS :-)
- Multiple levels of organization / abstraction
- Cross layer / system communication is crucial

BIOLOGICAL ORG-CHART

- Organism (microbe, celegans, ... rat ... human)
 - internal processes
 - community -- cooperation/competition
- Organ (brain, heart, liver ...)
 - intra organ (neuron patterns, pump, digest)
- Organ-organ communication/coordination
 Cell
 - intra-cellular (transcriptional, signaling, metabolic processes)
 - cell system / cell-communication
- Protein

COORDINATION OF CIRCADIAN TIMING

S. M. Reppert & D. R. Weaver Nature Vol 18 2002

INFLAMATORY REFLEX

Kevin J Tracey Nature Vol 420 2002

THE ERBB NETWORK

CASE STUDY THE IMMUNE SYSTEM

IMMUNE SYSTEM OVERVIEW

Job is protecting the organism from foreign entities

- Distributed
- Adaptive
- Risk/benefit trades
- Security mechanisms

Caveat smattering of observations -- not definitive

ANCESTRY

Where do immune system elements come from?

ROLES

Phagocyte (P) -- eater
Antigen Presenting Cells (APC)

sample of inside / surroundings

Killer (K) -- by signal or poison
Coordination (C) -- activate, signal
Tagging

PLAYERS : CELLS

General purpose

- Macrophage (P, APC)
 - garbage collection / eating invaders / signal
- Dendritic Cell (APC)
 - carries sample with pathogen to show T cells
- Neutrophils (P aggressive)
 - circulating in blood looking for infection sites
- Natural Killer Cells (K) -- drill holes in target
- Pathogen specific
 - B cells -- antibody factory (APC) -- mature in bone marrow
- T cells: -- mature in thymus,
 - (C) T helper (Th)
 - (K) CytoToxic Lymphocytes (CTL)

PLAYERS : PROTEINS

Complement system -- rapid response

opsonize or kill pathogens

• Antibodies -- each antibody binds specific target

Major histocompatibility complexes (MHC)

present bug bits (and other peptides)

Cytokines/Chemokines

signals, attractants

SCENARIO IMMUNE SYSTEM DYNAMICS

Figure 10-2 Immunobiology, 7ed. (© Garland Science 2008)

HOW DOES THE IMMUNE SYSTEM WORK?

TWO LEVEL ARCHITECTURE

Innate Immune System (IIS) border guards, troops on patrol early defense, non specific • alert and control adaptive IS Adaptive Immune System (AIS) highly specific aggressive needs control / safety mechanisms Basic interaction mechanism is pattern matching (binding) many patterns, combinations Location is important

PRESENTATION

- MHCs are used by cells to display peptides (protein fragments) on their surface
- MHCI samples/presents internal protein fragments
 - CTLs scan MHCI -- looking for cells that have virus inside
- MHCII samples/presents environment protein fragments
 - Helper T Cells use MHCII as signal to activate troops

HOW DO MHC'S DISTINGUISH?

WHY PRESENTATION?

- Some cells recognize invaders `raw' -- Mph, NK,
- Some just attack when active
- Some need more information/restraint
- Presentation provides
 - Provenance
 - MHCI guarantees peptide from inside cell,
 - MHCII guarantees from environment
 - Presenter and receiver must authenticate
 - MHCI focus CTL (expensive) on infected cells (groups of viruses). Antibodies (plentiful, cheap) take care of single free viruses

A FIRST LINE OF DEFENSE

- A collection of proteins that, when activated form complexes on cell surfaces
 - attract phagocytes
 - drill holes and kill
- Why don't they kill self cells? 3 level protection mechanism
 - DAF on surface accelerates breakdown of CS complex
 - Surface proteins can clip complex elements inactivate
 - CD59 (aka protectin) kicks complex off surface before hole drilled
 - Bio caveat DAF/CD59 name protein classes.
 - May differ in detail across organisms
 - DAF of foreign cells may not be effective against host CS (transplant problems).

DIVERSITY

- There is a unique antibody type for each organic compound
- Each B Cell (and its progeny) produces exactly one type.
- Similarly for T Cells and T Cell receptors.
- How can this be? It would take all of the genes and more.

DIVERSITY

- Solution: Edit the DNA!
- Immature B and T cells have genes with multiple instances of several modules.
- These genes are edited in a series of clip/rejoin operations to mix 'n match

DIVERSITY -- BUT

- Not all combinations are desired.
 - Competence tests -- does the resulting gene produce functioning proteins? Many cells die because mix n match fails at this level
 - Tolerance tests
 - TCRs must recognize presentation mechanism and not recognize self
 - ow it commits suicide

SECURE ACTIVATION

Innate system components, non specific, always alert

- Macrophage, DC activated by generic pathogen recognition
- Adaptive components are specific and aggressive, should not be activated if not needed
 - TCell 2key match
 - peptide and presenter, and co-stimulation
 - B Cell has 2 phase activation:
 - recognize and present its pathogen
 - connect with Tc that has seen the same pathogen

Figure 2-23 Immunobiology, 7ed. (© Garland Science 2008)

RELIABLE TRANPORT/DELIVERY

- Cells circulate / patrol / move from birth place to job site
- Need to exit vessels at the right spot and right time.
- Content/Interest driven addressing (aka zipcode)
 - cell expresses Selector Ligand
 - exit point expresses selector when interested (infection present)
 - if cell is attracted it expresses a hook (receptor) that grabs an intercellular adhesion molecule at the exit
 - attractants could be cytokines, bug bits (C5a, f-met)

TRANSPORT SYSTEM

IMMUNE SYSTEM LOGIC?

Key attributes

- hierarchical organization: proteins, cells, locations
- component state,
- space
- time/delay
- Key mechanism: pattern matching
- Diversity:
 - Multiple roles
 - Specialists ready for (almost) any need
 - counter attack, signal

IMMUNE SYSTEM LOGIC? 11

Activities:

- eating, circulating, forming modules/complexes,
- listening/expressing interest,
- advertising
- replicating
- differentiating/refining specialty
- continuous renewal of supply
- supply reduction: cells dying, proteins degrading
 - junk elimination: wrong, not needed, worn out,
 - dangerous: self attack, virus nursery (tumors...)

IMMUNE SYSTEM LOGIC? III

Control/safety mechanisms
battle alert system

initiate/continue response
3 key activation of T cells
2 phase activation of B cells
competence/tolerance tests
protection -- degrade, dislodge attacker

CONCLUDING QUESTION

What is the mathematics of immune system control?

- There are many trade offs, effects to balance
- Need rapid response and adaptation
- A very open system!

PATHWAY LOGIC TEAM

- Keith Laderoute
- Patrick Lincoln
- Carolyn Talcott
- Steven Eker
- Merrill Knapp
 Aneil Malavaparu
- Ian Mason
- Sylvan Pinsky
- Andy Poggio
- Malabika Sarker Mark-Oliver Stehr
- Frederic Vigneault

Biology Computer Science Student