
CSL Technical Report SRI-CSL-07-01 • January 19, 2007

Sensor Coordination Using Active Dataspaces

Mohamed Abdelhafez
Steven Cheung

This research is sponsored by the National Science Foundation under grant num-
ber CNS-0434997. The views herein are those of the authors and do not neces-
sarily reflect the views of the sponsoring agency.

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 859-2000 • Facsimile: (650) 859-2844

Sensor Coordination Using Active Dataspaces

Mohamed Abdelhafez Steven Cheung
School of Electrical and Computer Engineering Computer Science Laboratory
Georgia Institute of Technology SRI International
Atlanta, GA 30332-0250 Menlo Park, CA 94025
mohamed.hafez@ece.gatech.edu steven.cheung@sri.com

Abstract
To ease application development for wireless sensor networks, we have developed a
high-level, data-centric programming model, called active dataspace (ADS), and a
prototype implementation of ADS on the TinyOS platform. An ADS is an active
data repository that supports associative data access operations. The ADS model
is based on the tuple space coordination model used in parallel computing, and
extends it to make it applicable for sensor networks. The key elements of ADS
include a construct, called virtual tuple, that enables a sensor node to express its
capability to generate on demand a specified type of tuple, in-network aggregation
primitives to support resource-efficient data accesses, and timeout tags for tuples to
facilitate handling sensor network dynamics. ADS provides a high-level, expressive
programming abstraction for developing a variety of sensor network applications
that are resource efficient, and tackle the “come and go” characteristic of sensor
networks.

Keywords: Wireless sensor networks, programming, data centric, tuple space

2

Chapter 1

Introduction

Programming wireless sensor networks is challenging because of the severe resource
constraints and the dynamic (or “come and go”) nature of these networks. In
particular, the nodes and communication links in sensor networks are significantly
less reliable than their counterparts in conventional computer networks, because
of sensor failure, depletion of the energy reserve, changes in the environment that
affect communication links, and attacks against the network. Also, sensor nodes
may perform duty cycling to conserve energy. To cope with these network changes,
developers for sensor network applications often need to juggle many low-level sensor
coordination tasks, such as monitoring and keeping track of the states of neighbor
nodes, and activating sensor nodes when their services are needed.

To facilitate developing sensor network applications, we have developed a high-
level, data-centric programming model, called active dataspace (ADS), and an initial
implementation of ADS on a typical sensor network platform, TinyOS. An ADS
is an active data repository that provides associative memory operations for data
access. Our work is based on the tuple space coordination model (briefly reviewed
in Chapter 2), and extends it to make it applicable for sensor networks.

The ADS model is designed to tackle the dynamic nature of sensor networks.
In our model, sensors use a shared-memory abstraction to communicate among
themselves—-depositing tuples to an ADS, and retrieving them from an ADS by
specifying values of (some of) the tuple fields. Sensor nodes do not need to know
the identity of the other nodes in order to communicate with them. Moreover, ADS
enables nodes that are active at different times, and nodes for which there is no
stable end-to-end communication path between them, to collaborate. In addition
to the basic tuple space operations, we have designed new constructs in ADS to
support resource conservation and adaptation to network changes. These constructs
include a special type of tuple called virtual tuple—representing the capability of a

3

node to generate a specified type of tuple—to support on-demand tuple generation,
timeout tags for tuples to enable automatic removal of stale data or tuples from
nodes that are no longer reachable, and aggregation primitives to support in-network
processing.

To date, most sensor network applications were developed using node-centric,
event-driven programming models (e.g., nesC/TinyOS). Although these models are
expressive and can develop very resource-efficient applications, they are difficult to
use. Significant progress has been made to ease sensor network application devel-
opment. For example, Hood [11] and abstract regions [10] have proposed high-level
programming primitives to efficiently support in-network aggregation operations.
Programming models specific to certain application classes, such as Cougar [12],
TinyDB [8], and EnviroTrack [1], have been proposed. TinyDB presents a relational-
database-based approach for constructing energy-efficient, periodic data collection
applications. EnviroTrack presents a powerful programming abstraction to facilitate
the construction of an important class of applications—object detection and track-
ing. Directed diffusion [6] and Agilla [3] represent earlier work that is the closest to
ADS. Directed diffusion presents a data-centric routing approach. Moreover, it uses
a reinforcement-based adaptation technique to select the best path for routing data.
Directed diffusion and ADS have similarities; they are both data centric, and have
the ability to match data producers and data consumers based on the attributes
of the data involved. Agilla presents a tuple space-based programming model de-
veloped for handling node mobility. In Agilla, every node maintains a tuple space,
and when two nodes are within communication range, their tuple spaces can merge
to support communication. ADS differs from directed diffusion and Agilla in that
it supports an uncoupling style of communication in which the data producers and
data consumers do not need to be active at the same time, and stable end-to-end
communication paths between the producers and the consumers are not required.
In the macroprogramming approach, one specifies some high-level operations to per-
form. These high-level operations are compiled automatically into low-level tasks,
which are assigned to sensor nodes. Regiment [9] and Kairos [5] are examples of
this approach. A main difference that distinguishes our work from earlier work is
its focus on a high-level, general-purpose programming model that can tackle the
“come and go” nature of sensor networks.

The rest of this paper is structured as follows. Chapter 2 briefly describes the
tuple space model on which our work is based. Chapter 3 presents the design and an
initial implementation of ADS. Chapter 4 uses a few examples to illustrate sensor
network programming using ADS. Chapter 5 discusses future directions.

4

Chapter 2

Tuple Space Model

The ADS model is inspired by the tuple space model. The tuple space coordi-
nation model for parallel programming was first proposed by Gelernter [4], and a
large body of work has been performed on this model, including extensions of its
primitives, implementations on various platforms, integration with different parallel
programming paradigms, and a variety of application programming experiments. In
the tuple space model, processes use four basic operations to interact with a tuple
space, namely, in, rd, out, and eval. The in and rd operations are used to remove
and to read data tuples from the tuple space, respectively. The out and eval op-
erations are used to create data and “active” tuples, respectively. An active tuple
corresponds to a new process, which executes a specified program and becomes a
(passive) data tuple when it terminates.

For example, if a producer process P generates data for a consumer process C,
P executes an out operation, such as, out(“mag-reading”, 3). Then process C uses
an in operation, such as in(“mag-reading”, ?r), to remove the tuple. The variable r
is instantiated with the value 3 when the in operation completes. A tuple matches
an in operation if all its fields can be “unified” with the corresponding fields of
the in operation. (Two fields can be unified if both are actuals/fixed and have the
same value, or if one of them is a formal/variable and they are of the same type.)
Figure 2.1 depicts the interaction between the processes and the tuple space.

The tuple space coordination model is particularly suited for sensor networks
because it supports a time- and identity-uncoupling style of communication. The
sender and the receiver of a tuple do not need to exist at the same time, and do
not need to know each other’s identities. For instance, a sensor S may publish
its magnetometer readings by inserting them into a tuple space, and then go into
hibernation. While S is inactive, another node may become active and retrieve
sensor reading tuples from the tuple space and aggregate these readings for vehicle-

5

tuple

in

P

C

tuple

out TS

Figure 2.1: Components of the tuple space model and their interactions

tracking purposes. Moreover, in many sensor network applications, attributes like
the time, location, and sensor values are the key information needed by the data
consumer. On the other hand, the name of the sensor that produces a sensor report
may be irrelevant. In the tuple space model, the same tuple can be deposited by
any producer and then withdrawn by any consumer, enabling distributed sharing of
data.

The tuple space model supports structured naming, where the tuple name is
formed by the “actual” parameters in the operations, such as “mag-reading” in the
above example. By specifying values for one or more fields, tuple space operations
can generate or refer to tuples with the corresponding names. The data-centric
communication aspect of the tuple space model simplifies the node-naming issues
for sensor networks.

Another advantage of the uncoupling style of communication model is that it is
applicable for intermittently connected networks (e.g., [2]) in which a stable end-to-
end path between the sender and the receiver may not exist. In particular, a node
can deposit data in a tuple space opportunistically. When a data consumer comes
in contact with the tuple space, it may then retrieve the data tuple.

6

Chapter 3

ADS Model and
Implementation

We present the main components of ADS and the operations used by the applications
to interact with ADS. Like the tuple space model, ADS consists of two types of
components—tuple space (TS) node(s) and ADS participant node(s). A TS node in
ADS not only handles tuple storage and maintenance, but also provides aggregation
functions. ADS participant node(s) deposit tuples into or retrieve tuples from the
TS node. The novel features of ADS include operations that facilitate handling the
dynamic nature of sensor networks and help in constructing resource-efficient sensor
network applications.

3.1 Operations

The ADS model supports three main operations of the tuple space model, namely, in,
rd, and out, and their nonblocking variants. In addition to these operations, the ADS
model supports several new operations, namely, outcap, interest, aggregate, and
delete. Briefly, outcap is used for specifying on-demand tuple generation capabilities,
interest is a variant of in and rd for periodic data retrieval, aggregate is for in-
network tuple aggregation, and delete is for removing “control” tuples used in outcap
and interest operations.

3.1.1 in operation

The in operation retrieves a tuple and removes it from the TS. The prototype for
this operation is as follows:

command result_t inop(tuple* tp, uint32_t** point, uint8_t tout)

7

where tp specifies the tuple to search for in the TS, point is an array of pointers to
local variables that would be populated with the data from the retrieved tuple, and
tout specifies the maximum amount of time to wait for a matching tuple.

If no matching tuple in the TS is found before the timeout, this operation termi-
nates. We note that the in operation of the original tuple space model does not have
the timeout feature. A process may wait indefinitely for the in operation to finish if
there is no matching tuple. Because the communication channels in sensor networks
may be unreliable and unpredictable, we added the timeout feature to ADS to ease
sensor network programming. The inp operation is the nonblocking version of the
in operation. If no matching tuple is found in the tuple space, the operation returns
immediately.

3.1.2 rd operation

The rd and rdp operations are similar to the in and inp operations, except that
they are used to read the values of the tuples without removing them from the tuple
space.

3.1.3 out operation

The out operation is used to deposit tuples into the TS. The prototype for the out
operation is as follows:

command result_t outop(tuple* tp, uint8_t tout)

3.1.4 outcap operation

The outcap operation supports on-demand tuple generation. When a node wants to
advertize its tuple generation capabilities, it deposits a special type of tuple, called
virtual tuple, into the TS. A virtual tuple differs from an (ordinary) data tuple in that
it declares the capability of producing a specified type of data. The actual tuples
are produced when there is a matching request from another node. Using virtual
tuples, a producer node can stay idle until it receives a request for data generation,
thus saving energy during the time intervals in which no consumer is interested in
its data. This can be especially useful for event-driven data generation, for which
the producer node does not know a priori when to generate the data. When the TS
node receives an in operation that matches a virtual tuple, the request is forwarded
to the node that deposited the virtual tuple. The producer node then generates the
actual data and sends the corresponding tuple to the TS, which in turn forwards it
to the requesting node. Figure 3.1 summarizes these steps.

8

outcap in

tuple

1 2

5
CP

P C

req
3

4
reply

Figure 3.1: Outcap operation

9

3.1.5 interest operation

The interest operation retrieves tuples that match a specified criterion on a periodic
basis. Using an interest operation, a consumer node can avoid continuously polling
the TS for data retrieval. As a result, using this operation can reduce radio commu-
nication for the consumer, thus increasing its lifetime. In our ADS implementation,
the TS stores the interests from various consumers. Whenever the TS receives a
tuple, it tries to match the tuple with the stored interests. If the TS node finds
a match, it forwards that tuple to the owner of that interest. If a virtual tuple
matches an interest, the interest is forwarded to the owner of the virtual tuple. For
periodic data retrieval, the interest specifies the period at which the consumer wants
the data. The owner of the virtual tuple then schedules its production of the actual
tuples based on the received interest, and performs out operations to send them to
the TS, which in turn forwards them to the consumer node. The prototype for the
interest command is as follows:

sendInterest(tuple* tp, uint32_t** point,

uint8_t timeout, uint8_t period,

uint8_t remove)

where period is used for periodic data retrieval, and remove is a flag indicating
whether to remove the matching tuple from the TS, or keep a copy there for other
nodes to retrieve.

3.1.6 aggregate operation

The aggregate operation is used to obtain aggregate information about a set of tuples
that matches a specified criterion. For example, a set of nodes can find the one that
has the largest node ID by depositing tuples that contain their IDs into the TS, and
calling the aggregate operation to compute the maximum for the ID field among
these tuples. As another example, the aggregate operation may be used to find
the sum of sensor values from different producer nodes. In our design, the TS node
performs the aggregate operations, and sends the aggregate results to the requesting
nodes. This is especially useful when more than one consumer needs the aggregate
information. Instead of replicating the data on all consumer nodes, the aggregate
operation allows the consumers to request the aggregation result, while the tuples
are stored only once in the TS node. Thus, using the aggregate operation may
increase the lifetime of the consumer node, because of reduced radio communication
and reduced processing.

10

3.1.7 delete operation

The delete operation is used to revoke virtual tuples or interests from the TS. This
is useful when a node decides not to serve additional requests for data, for example,
because of low battery, moving out of range, or a change in task assignment. This
operation has two forms—deleteTuples and deleteInterests—which specify the tuples
or interests to remove from the TS.

3.2 Tuple Representation

The basic (data) unit in the ADS model is a tuple. An ADS tuple is an array of
fields, which may have different data types and sizes. Each field of the tuple is
represented by a header and a value. (The value is omitted for formal or null fields.)
As shown in Figure 3.2, the header subfield may be one or two bytes long, with the
two-byte headers used for aggregation purposes. Moreover, the value subfield is of
variable size, depending on the data type of the field.

Our ADS implementation provides methods for applications to initialize and add
fields to tuples, which can then be used in ADS operations. The header for each
field specifies whether that field is a formal, an actual, a null, or a range. For formal
field arguments, one specifies a pointer to a variable that will be populated with
the corresponding value of the matching tuple. Actual fields correspond to a fixed
value, for example, a string “temp” or an integer 3. A null field represents “don’t
care” terms, and can match with any values. In a range field argument, one specifies
the upper bound and the lower bound for the values that can match this field. The
header also specifies the data type of the field, which may be a string or an integer
of various sizes (uint8 t, uint16 t, and uint32 t). The string type is like C strings,
which consist of an array of characters with a special terminating character. The
three integer types occupy one, two, and four bytes of storage, respectively. The
second byte of a header is used only for aggregation operations. The aggregation
operations that are currently supported include sum, average, minimum, maximum,
and count. The aggregation header also has a bit that specifies whether the matching
tuples should have distinct values for that field.

In the current implementation, we limit the tuple size so that a tuple fits in a
TinyOS packet. We made that choice to avoid the overheads associated with packet
fragmentation and reassembly. A tuple is stored as an array of 20 bytes.

11

data type

1 4 6 7

type of field

0 1 2 3 4 5

aggregation type

header headerheadervalue value value header

0 2 3 5 6 7

exclusive, or
half inclusive

string, uint8_t
uint16_t, or
uint32_t

sum, average,
min, max, or
count

distinct not usedtype of range
inclusive,

null, or range
formal, actual,

Figure 3.2: Tuple format (top) and field header format (bottom)

3.3 Tuple Storage

The TS node is responsible for tuple storage and processing. In the implementation,
there are two different storage locations in the TS node; one is for tuples, and the
other is for interests.

In the TS node, tuples are enclosed in a record that contains additional informa-
tion including the timeout, which determines how long this tuple is valid, a unique
ID for each record, the ID of the node that generated this tuple, and flags indicating
whether the tuple is virtual, or whether it has been deleted.

An interest record is similar to a tuple record, except that it has two more
fields, namely, the frequency and the last service time. The frequency determines
how often this interest should be “activated”. The last service time field is used to
ensure fairness among multiple interests that match the same tuples. Whenever an
interest matches a tuple, the last service time field is updated with the current time.
When another tuple arrives that matches the same interest, the last service time
and frequency fields are checked to make sure that this interest does not receive
more tuples than it needs, and also that interests have a fair chance of being served.
The interest record has additional flags; the persistant flag determines if the interest
is to remain active after being served, and the remove flag determines if the tuple
used to serve that interest should be removed from the TS.

3.4 Message Type

There are six ADS message types.

12

• OperationMessage, which is for sending ADS operations from ADS participants
to the TS node. OperationMessage has three fields—tuple, type of operation,
and timeout. Timeout specifies the expiration time for the operation.

• RequestMessage, which is used by the TS node to obtain tuples from the
producer node when a virtual tuple matches a tuple request. RequestMessage
has three fields—tuple, timeout, and frequency. The latter two fields are used
when the request pertains to periodic data retrieval.

• ReplyMessage, which is used by a producer to reply to a RequestMessage
request. This message has two fields—tuple and timeout.

• TSReply, which is used by the TS node to send a tuple requested by a consumer
node. This message has one field—tuple.

• InterestMessage, which is used by a consumer to express an interest to obtain
a specified tuple. The interest message has four fields—tuple, remove flag,
frequency, and timeout. Remove flag indicates if the matching tuple should
be removed from the TS. Frequency specifies the period for periodic tuple
requests. Timeout specifies the expiration time for the interest.

• AggregateMessage, which is used by a node to obtain aggregate information
about a specified set of tuples. AggregateMessage has four fields—tuple, which
specifies the criteria for the matching tuples and the type of aggregation to per-
form; min and max, specifying the minimum and maximum number of match-
ing tuples needed for the request; and remove flag, which indicates whether
the matching tuples should be removed from the TS after the operation.

13

Chapter 4

Examples

We present examples of developing sensor network applications using ADS. The
first example concerns controller nodes sending commands to a set of worker nodes.
It demonstrates a use of the interest operation. The second example involves on-
demand data generation. It demonstrates how virtual tuples may facilitate that kind
of application. The third example is about object localization. It demonstrates using
the aggregate operation for in-network aggregation.

4.1 Controller-Worker Pattern

In this example, one or more controllers send commands to a set of worker (sensor)
nodes in the network. The workers interpret the commands and perform the cor-
responding actions. This sensor coordination pattern may occur in dynamic task
assignments. A controller may be the base station or a cluster head that manages
a set of nodes in its region. Worker nodes may have different capabilities. For
example, they may be equipped with different sensor suites.

In addition to the basic TS operations, such as out, this example demonstrates
a use of the interest operation. Specifically, the nodes that are capable of handling
commands may deposit interest tuples into the TS. The controllers would send
“command” tuples to the TS, which would match them with the interests and
then forward them to the corresponding workers. An example command tuple is
{ControllerID, SensorID, Command code}. The controller IDs and sensor IDs may
be node IDs, or an attribute (e.g., location) that would identify a node or a set of
nodes. The command code specifies the command to be carried out.

To put an interest into the TS, the nesC code for the worker nodes includes the
following lines:

14

ClientTuple ct;

call ADS.initTuple(&ct);

call ADS.addValueField(&ct, BYTE | FORMAL, &controller_id, 0);

call ADS.addValueField(&ct, BYTE, &moteID, 0);

call ADS.addValueField(&ct, BYTE | FORMAL, &command_code, 0);

call ADS.sendInterest(&ct.tp, ct.pointers, TIMEOUT, PERIOD, 0);

A worker node first initializes the interest tuple and then adds three fields to the
interest tuple. The first field is the ID of the controller node. Note that the sensor
does not know which controller node will send the command. Instead, it requests the
controller ID and specifies a local variable “controller id” for storing it. The word
“FORMAL” indicates that the field pertains to a variable. The second field is the
sensor ID, which is the mote ID of the node. The third field is the command code.
The sendInterest operation is used to send the interest tuple, which has the following
arguments: the pointers to the local variables to hold the returned values, a timeout
for this interest, a period specifying how often the node can handle commands, and
a flag indicating whether the matching tuple should be removed from the TS. The
interest would match any tuple that has three single-byte fields with the second field
equaling the mote ID or being a null field.

When the TS receives a command tuple that matches an interest, it forwards the
tuple to the worker node that deposited the interest. The worker node is notified
by means of an event to process the tuple and handle the commands received, say,
using a switch statement on the “command code” variable, which is populated with
the proper value when that event is fired.

To generate and send a command tuple, the code for the controller node includes
the following lines:

ClientTuple ct;

call ADS.initTuple(&ct);

call ADS.addValueField(&ct, BYTE, &moteID, 0);

call ADS.addRangeField(&ct, BYTE, 10, 15, 0, 0);

call ADS.addValueField(&ct, BYTE, &command_code, 0);

call ADS.out(&ct.tp, TIMEOUT);

A controller node initializes the command tuple with three fields: controllerID,
which is set to its mote ID; sensor ID, which is used for specifying the target worker
nodes and is a range from 10 to 15 in this example; and command code, which is
stored in the variable “command code”. For example, if the controller ID is 50 and
the command code is 24, the command tuple is {50, [10-15], 24}.

15

4.2 On-demand Data Generation

Depending on the application, a sensing and reporting task can be periodic or event
driven. In the periodic case, it can be realized by having the producer nodes deposit
tuples into the TS using out operations; the consumer nodes retrieve these tuples
using in or rd operations. If the sensor data is needed only under some conditions or
when certain events occur, it may be more efficient for the producers to use virtual
tuples, which represents the capability to generate the corresponding tuples. When
a consumer sends a request that matches the virtual tuple, the TS forwards the
request to the producer node, which then generates the actual data tuples. This
example concerns using ADS to support on-demand data retrieval applications.

To put a virtual tuple into the TS, a producer may perform the following oper-
ations:

ClientTuple ct;

call ADS.initTuple(&ct);

call ADS.addValueField(&ct, BYTE, &moteID, 0);

call ADS.addValueField(&ct, SHORT, &sensor_data, 0);

call ADS.outcap(&ct.tp, TIMEOUT);

In this code segment, the producer creates a virtual tuple containing two fields,
namely, producer ID and sensor reading. Then the producer uses the outcap op-
eration to deposit the virtual tuple into the TS. Note that the code pertaining to
tuple initialization and field addition is similar to that in the previous example. The
main difference is the use of the outcap operation instead of the out operation. All
ADS operations share the same tuple structure and follow similar steps for tuple
generation and population. This design simplifies the programming model, and thus
makes it easier to develop applications.

To retrieve the data, a consumer may perform the following operations:

ClientTuple ct;

call ADS.initTuple(&ct);

call ADS.addNullField(&ct, BYTE, 0);

call ADS.addValueField(&ct, SHORT | FORMAL, &sensor_data, 0);

call ADS.in(&ct.tp, TIMEOUT);

The consumer creates a request tuple whose first field can match any (byte) value
and whose second field contains a pointer argument for storing the result. When
the TS receives the request tuple, it searches through its database. If the TS finds a
matching virtual tuple, it forwards the request to the producer node corresponding

16

to the virtual tuple. Moreover, when the producer receives the request from the TS,
the requestReceived event fires.

The following code segment shows an example handler for the requestReceived
event. The local variable “sensor data” contains the current sensor reading. The
generated tuple is sent to the TS using the reply operation.

ClientTuple ct;

call ADS.initTuple(&ct);

call ADS.addValueField(&ct, BYTE, &moteID, 0);

call ADS.addValueField(&ct, SHORT, &sensor_data, 0);

call ADS.reply(&ct.tp, TIMEOUT);

4.3 Target Localization

Determining the location of target objects is a common task for object detection and
tracking. In this example, several sensor nodes report their readings, and a node
computes the location of the target based on these readings. The computation used
to calculate the (x, y)-coordinates of the target, derived from [10], is summarized as
follows:

cx =
∑

i Rixi∑
i Ri

cy =
∑

i Riyi∑
i Ri

where Ri is the sensor reading from node i, xi and yi are the (x, y)-coordinates of
node i, and cx and cy are the computed (x, y)-coordinates of the target.

After a producer node gets a sensor reading, it multiplies the value with its
(x, y)-coordinates, and sends a tuple containing these values, a string “Loc”, and
its mote ID to the TS. The following excerpt is from an implementation for the
producer nodes.

17

event result_t SensorADC.dataReady(uint16_t data) {

atomic

{

reading = data;

xreading = x * reading;

yreading = y * reading;

post reportTask();

}

return SUCCESS;

}

task void reportTask() {

//prepare tuple and send it

clientTuple ct1;

call ADS.initTuple(&ct1);

call ADS.addValueField(&ct1, STRING, "Loc", 0);

call ADS.addValueField(&ct1, BYTE, &moteID, 0);

call ADS.addValueField(&ct1, SHORT, &reading, 0);

call ADS.addValueField(&ct1, SHORT, &xreading, 0);

call ADS.addValueField(&ct1, SHORT, &yreading, 0);

call ADS.outop(&ct1.tp, TIMEOUT);

}

The consumer node uses the aggregate operation to obtain the sum of the sensor
readings and the x- and y-coordinate-weighted readings to calculate the centroid.
Specifically, the consumer requests aggregate information for a set of tuples such that
the first field contains a string “Loc”, and the second field (mote IDs) has distinct
values. As an example of using the range construct, the consumer also indicates
that the aggregate computation requires at least four tuples and a maximum of six
tuples. When the TS node sends the aggregate data to the consumer, the event
tupleProcessed is fired and the variables (corresponding to the aggregate sensor
readings) are populated with the received results. The consumer then calculates
the centroid of the readings. Finally, it calls a command (not shown) to report the
calculated location, say, to the base station.

18

task void getTask()

{

clientTuple ct1;

call ADS.initTuple(&ct1);

call ADS.addValueField(&ct1, STRING, "Loc", 0);

call ADS.addNullField (&ct1, BYTE, DISTINCT);

call ADS.addValueField(&ct1, SHORT | FORMAL_MASK, &readings, SUM);

call ADS.addValueField(&ct1, SHORT | FORMAL_MASK, &xreadings, SUM);

call ADS.addValueField(&ct1, SHORT | FORMAL_MASK, &yreadings, SUM);

call ADS.aggregate(&ct1.tp, ct1.pointers, 4, 6, 0);

}

event result_t ADS.tupleProcessed()

{

centroidx = xreadings / readings;

centroidy = yreadings / readings;

post sendTask();

return SUCCESS;

}

We have implemented this example using our ADS prototype, and found that
the application on consumer node(s) requires 12436 bytes in ROM and 555 bytes in
RAM. The application on producer node(s) requires 13444 bytes in ROM and 552
bytes in RAM.

We ran experiments using the TinyOS Simulator (TOSSIM) [7]. The experimen-
tal setup includes four producer nodes, one consumer node, and one TS node. The
producer nodes send their readings to the TS once every five seconds. Moreover, the
sensor reading tuples have a timeout of five seconds. The consumer node requests
the aggregate values of the tuples from the TS once every five seconds. In terms
of message costs per cycle, this results in one message for an out operation from
each producer to the TS node, one message from the consumer for the aggregation
request, and one message from the TS node to the consumer for the result of the
aggregation. In other words, six messages are exchanged in every cycle. Without
using the aggregate construct, the number of messages would be nine per cycle.

To evaluate the overhead of ADS, we implemented a version of the same appli-
cation directly in nesC. For the nesC version, the application for consumers requires
10018 bytes in ROM and 324 bytes in RAM, while the application for producers
requires 12098 bytes in ROM and 356 bytes in RAM. In the nesC version, the pro-

19

ducer nodes send the data directly to the consumer once every five seconds, and the
consumer then computes and broadcasts the result. In this version, the number of
messages is four per cycle.

For this application, the memory overhead for using ADS is about 10-20% in-
crease in ROM and 50-70% increase in RAM. Moreover, the number of messages is
four for the nesC version and six for the ADS version. Also, the ADS version uses
an extra node to act as the TS node. We note that the ADS version can readily be
extended to incorporate duty cycling to reduce energy consumption (see Chapter 5),
and it is nontrivial to adapt the nesC version to perform duty cycling.

20

Chapter 5

Future Directions

We discuss ongoing work and possible extensions to the current ADS implementa-
tion.

5.1 Power Management

Power management is important in sensor network applications because typically
sensor nodes have limited energy reserves, and it may be difficult to perform battery
replacement or recharge, depending on the application environment. The current
implementation of ADS supports simple power management by means of virtual and
interest tuples. This is achieved by having sensor nodes deposit these tuples into
the TS and then going into a low-energy mode. The TS node “wakes up” the nodes
by forwarding matching requests or tuples to them. The current implementation
works only on the Mica2 and Mica2dot platforms, because it uses the duty cycling
commands of the CC1000RadioIntM module.

For applications that involve periodic data generation, the consumer node could
send an interest that indicates the frequency at which data is needed. This interest,
when matched with a virtual tuple from a producer, is forwarded to that producer.
The consumer and the producer then synchronize their duty cycling schedule based
on the requested data generation frequency.

For applications that involve dynamic data collection or event-driven data gen-
eration, we need a different approach because no predetermined schedule can be
used. In that case, the producer can generate a virtual tuple declaring its ability to
produce a specified type of tuple before entering the low-energy mode. When the
TS node receives a request for that tuple, it wakes up and passes the request to the
producer node. The same approach is applicable for consumer nodes, which may
deposit an interest into the TS, and wait for a matching tuple while in a low-energy

21

mode.
In our implementation, a node that performs duty cycling checks for incoming

messages at a slow rate. We need a reliable means to send messages to nodes in
the low-energy mode. To this end, we use the WakeupComm module, in the Drip
package of TinyOS, for providing reliable communication. The WakeupComm mod-
ule has an interface similar to that of GenericComm, the commonly used TinyOS
communication module. Internally, WakeupComm uses a timer to repeatedly send
the same message multiple times. Two main issues arise from the use of this mod-
ule. First, retransmissions are expensive and, therefore, should be avoided whenever
possible. Second, it cannot handle multiple concurrent message transmissions. The
first issue can be addressed by incorporating an acknowledgment mechanism. When
the TS node receives an acknowledgment, it signals the WakeupComm module to
stop retransmitting the message. We plan to address the first issue by using link
layer acknowledgments in TinyOS, which indicates the presence of acknowledgments
by using a flag in the sendDone event of the WakeupComm module. A cost-effective
solution to address the second issue is a task for future work.

5.2 Clustering

The current ADS implementation assumes that all nodes are within the radio range
of the TS node. This design is not scalable. For large sensor networks, we may
deploy the concept of clustering, with each cluster containing a TS node that can
communicate with all the nodes in the cluster. Intercluster communication can
be performed using a hierarchical scheme, with the TS node of the top cluster of
each subtree carrying summarized information about the tuples contained in its
descendant clusters. If a consumer node requests a tuple from its own TS node, and
no matching tuple is found, the TS node forwards the request to its parent cluster.
This process is recursively performed until a matching tuple is found or the root
cluster is reached.

22

Bibliography

[1] T. F. Abdelzaher, B. M. Blum, Q. Cao, D. Evans, J. George, S. George, T. He,
L. Luo, S. H. Son, R. Stoleru, J. A. Stankovic, and A. Wood. EnviroTrack:
An environmental programming model for tracking applications in distributed
sensor networks. In Proceedings of the 24th IEEE International Conference on
Distributed Computing Systems (ICDCS’04), pages 582–589, Mar. 2004.

[2] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott, and
H. Weiss. Delay-tolerant networking: An approach to interplanetary Internet.
IEEE Communications Magazine, pages 128–136, June 2003.

[3] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development and flexible deploy-
ment of adaptive wireless sensor network applications. In Proceedings of the
25th International Conference on Distributed Computing Systems (ICDCS’05),
pages 653–662, Columbus, Ohio, June 2005.

[4] D. Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, Jan. 1985.

[5] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless
sensor networks using Kairos. In Proceedings of the International Conference
on Distributed Computing in Sensor Systems (DCOSS), June 2005.

[6] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable
and robust communication paradigm for sensor networks. In Proceedings of
the 6th Annual International Conference on Mobile Computing and Networking
(MobiCom 2000), pages 56–67, Boston, MA, Aug. 2000.

[7] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable
simulation of entire TinyOS applications. In Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems (SenSys’03), pages 126–
137, New York, NY, USA, 2003. ACM Press.

23

[8] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In Proceedings of the ACM
SIGMOD Conference, San Diego, CA, June 2003.

[9] R. Newton and M. Welsh. Region streams: Functional macroprogramming for
sensor networks. In Proceedings of the First International Workshop on Data
Management for Sensor Networks, Toronto, Canada, Aug. 2004.

[10] M. Welsh and G. Mainland. Programming sensor networks using abstract re-
gions. In Proceedings of the 1st USENIX/ACM Symposium on Networked Sys-
tems Design and Implementation (NSDI’04), San Francisco, CA, Mar. 2004.

[11] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: A neighborhood
abstraction for sensor networks. In Proceedings of the International Conference
on Mobile Systems, Applications, and Services, June 2004.

[12] Y. Yao and J. E. Gehrke. The Cougar approach to in-network query processing
in sensor networks. Sigmod Record, 31(3), Sept. 2002.

24

	Introduction
	Tuple Space Model
	ADS Model and Implementation
	Operations
	in operation
	rd operation
	out operation
	outcap operation
	interest operation
	aggregate operation
	delete operation

	Tuple Representation
	Tuple Storage
	Message Type

	Examples
	Controller-Worker Pattern
	On-demand Data Generation
	Target Localization

	Future Directions
	Power Management
	Clustering

