
Sensor Coordination using Active 
Dataspaces

Steven Cheung

NSF NOSS PI Meeting
October 18, 2004



Outline

• Motivation/Problem
– Characteristics of sensor networks
– Techniques for building sensor network applications
– Why sensor network programming hard?
– Need: High-level programming abstraction

• Our approach
– Active dataspace (ADS)
– Features of ADS
– Tuples on demand

• Example scenario
– Vehicle detection: Setup
– Event sequence: Bootstrapping
– Event sequence: Detection phase



Characteristics of sensor networks

• Resource constraints
– Energy reserve
– Computation power
– Memory

• Unpredictable communication links
– Intermittent connectivity
– Asymmetric links and radio directionality

• Node failure
– Exposed to harsh environment and attacks
– Battery depletion

• Possibly large number of nodes
• Possibly difficult deployment environment



Techniques for building sensor network 
applications

• General resource conservation
– In-network processing
– Localized algorithms
– Hibernation (e.g., sentry service)

• Optimizations for key communication patterns
– Tree-based aggregation scheme (many-1)
– Firecracker protocol (1-many)

• Adaptive protocols
– Protocols that adaptively optimize communication based 

on local information and feedback (e.g., directed diffusion 
and PARC’s CB-LRTA*)

• Exploiting redundancy and broadcast medium



Why sensor network programming hard?

Hibernation

Deploying new or
additional sensors

Intermittent end-to-end
connectivity

Scalability

Locality Data aggregation

Limited CPU power
and memory

Attacks

Applications

Sensor nodes



Need: High-level programming abstraction

Applications

Focus of this project

Hibernation

Deploying new or
additional sensors
Intermittent end-to-end
connectivityScalability

Locality

Aggregation

Optimizing CPU
& memory use

Security

Naming

Sensor nodes



Active dataspace (ADS)

• ADS is an active data repository that provides 
associative operations for data access

• Inspired by the tuple space model [Gelernter 85], 
developed for parallel computing

• Every data tuple (or record) contains a list of fields
• Basic TS operations:

– in is used to remove tuples from TS
– rd to read tuples
– out to create data tuples
– eval to create “active” tuples



Features of ADS

• Data-centric model
• Time-uncoupling: Data consumers and producers 

do not need to be active at the same time
• Identity-uncoupling: Endpoints do not need to 

know each other’s identities
• Stable network paths between endpoints need not 

exist
• Virtual tuples support data generation on demand
• Tuple set operator and cardinality constraint to 

facilitate in-network aggregation
• Search constraint for specifying the scope and 

preferences for tuple selection to exploit locality



Tuples on demand

• Motivation: To enable sensor nodes to conserve 
energy and other resources during time intervals 
in which their work is not needed

• A virtual tuple represents the capability of a node 
to generate a certain type of tuple specified by the 
virtual tuple

• When a tuple request matches a virtual tuple, the 
corresponding node will be contacted to produce 
the data on demand

• Use of virtual tuple is transparent to data 
consumers



Vehicle detection: Setup

• Sensors deployed in a region for vehicle detection
• 2 types of sensor nodes
• Type 1 (Sensors A, B, and C) :

– Low-cost to operate
– less accurate
– has a shorter range
– cannot classify vehicles

• Type 2 (Sensor X):
– Expensive to use
– more accurate
– have a longer range
– can distinguish different classes of vehicles



Event sequence: Bootstrapping

A B

C
X

• Sensors put virtual
tuples in ADS, which
represent their
detection capabilities

• Sensor X hibernates
• Sensors A, B, & C
take turn being active
(i.e., the sentry)

outv(type1,?,{A,B,C})

outv(type2,?,X)



Event sequence: Detection phase (1)

A B

C

X

outv(type1,?,{A,B,C})
outv(type2,?,X)

1. A detects a vehicle
2. A requests other

type1 sensor data
3. ADS matches the

request with B’s and
C’s virtual tuples

4. B and C produce
sensor reading tuples

5. A confirms detection
with B’s and C’s input

in(type1,?,≠A)

out(type1,+ve)

2

3

4



Event sequence: Detection phase (2)

A B

C

X

outv(type1,?,{A,B,C})

outv(type2,?,X)

1. A requests type2
sensor data

2. ADS matches the
request with X’s
virtual tuple

3. X is awaken for
vehicle detection

in(type2,?,≠A)

2

1

3



Expected results

• High-level programming model and language to 
ease sensor network programming for a wide 
range of application domains

• Architecture and techniques to implement a 
resource-efficient, adaptive, and trustworthy ADS 
system


	Sensor Coordination using Active Dataspaces
	Outline
	Characteristics of sensor networks
	Techniques for building sensor network applications
	Why sensor network programming hard?
	Need: High-level programming abstraction
	Active dataspace (ADS)
	Features of ADS
	Tuples on demand
	Vehicle detection: Setup
	Event sequence: Bootstrapping
	Event sequence: Detection phase (1)
	Event sequence: Detection phase (2)
	Expected results

