Challenges for Sensornet Programming

NSF NeTS NOSS PI Meeting
Steven Cheung
October 17, 2005
Zhao-Guibas taxonomy

Sensornet software design methodologies & platforms

- Node-level platforms
 - TinyOS
 - nesC
 - TinyGALS
 - Maté
 - VM*
 - SNACK
 - Gratis
 - Simulators
 - TOSSIM
 - Prowler
 - RMASE

- State-centric platforms / collaboration group
 - Geographically constrained
 - Geocasting
 - GEAR
 - EnviroTrack
 - Topology-based
 - Hood
 - Abstract region
 - Publish-subscribe
 - Directed diffusion
 - Agilla
 - Acquaintance
 - RoamHBA (coordinating mobile agents)
Zhao-Guibas taxonomy ++

Sensornet software design methodologies & platforms

Node-level platforms

State-centric platforms / collaboration group

Macroprogramming

- TinyDB
- Cougar
- Regiment
- Kairos
Observations

• Time and location information are important for sensor network applications, but identities of nodes that generate data are not
• Significant progress has been made in sensornet programming, especially for some applications (e.g., querying sensors for data)
• Apparent tradeoffs among abstraction level, expressiveness, and efficiency of programming platforms
• → domain-specific programming platforms?
Challenges

• Scalability
 – How well does the program perform for a large (say 10k-node) sensor net?
 – Support for heterogeneous sensor net

• Dynamics of sensor networks
 – Nodes that “come and go”
 – How to develop robust programs?

• Tradeoffs among resource usage, reliability, system lifetime, security, costs, ...
 – TinyDB (adjusting sampling frequency based on system lifetime) and abstract region (accuracy vs resource usage)

• Quality of service