
Sensor Coordination using Role-
based Programming

Steven Cheung

NSF NeTS NOSS Informational Meeting
October 18, 2005



Motivating example: Object detection, tracking, 
and classification†

Notation:

Magnetometer

Acoustic sensor

GPS module

Camera

Sensor node

Infrared sensor

Aggregator

† Example based on Dutta et al’s IPSN’05 paper



Characteristics of the scenario

• Collaborative processing
– Multiple nodes interact with each other to perform 

in-network processing



In-network aggregation

Notation:

ai = acoustic sensor
output from node i(m1) (a3,m3)

mi = magnetometer 
output from node i

(a5,m5)

(m8)

Photo
@ loc (x,y)



Characteristics of the scenario

• Collaborative processing
– Multiple nodes interact with each other to perform in-

network processing 

• Heterogeneity
– Nodes may have different capabilities



Why use heterogeneous sensor networks?

• Scalability
– Hierarchical sensor networks
– Resourceful nodes as cluster heads

• Cost and size constraints
– Some components may be expensive, and it may not be 

necessary for all nodes be equipped with all components
– Number of different components may be more than a 

node can handle



Characteristics of the scenario

• Collaborative processing
– Multiple nodes interact with each other to perform in-

network processing 

• Heterogeneity
– Nodes may have different capabilities

• Dynamics of sensor networks
– Nodes, sensors, and actuators may be unavailable, 

e.g., hibernation to conserve energy
– Network connectivity may change over time



Goal: High-level programming abstraction

Applications

Focus of this project

Hibernation

Deploying new or
additional sensors
Intermittent end-to-end
connectivityScalability

Locality

Aggregation

Optimizing CPU
& memory use

Security

Naming

Sensor nodes



Our approach

• Role-based
– Nodes play different (sets of) roles based on their 

attributes
– Roles correspond to functions performed by nodes (e.g., 

providing magnetometer readings)
– Attributes include hardware configuration (e.g., sensors, 

processing power, and storage capacity), geographic 
location, energy reserve, and mobility

• Example roles
– Temperature sensor
– Alarm
– Data store
– Basestation



Role advertisement

• Role update
– Source node id (for distinguishing different role instances)
– Sequence number
– For each role:

• Role name
• Service coverage
• Time validity

• Service coverage
– Specify the set of nodes to serve
– E.g., nodes within a specified area

• Time validity
– Specify the time window during which the source will 

provide services pertaining to the role



Role-based communication (1)

• Multicast
– E.g., When nodes with the infrared sensor role detects a 

“high” reading, they send a message to nodes that play 
the acoustic sensor and/or the magnetometer roles and 
are within two hops away to activate them



Role-based communication (2)

• Anycast
– E.g., When a node with the aggregator role detects a 

vehicle (based on sensor reports received), it sends a 
request to a node that plays the camera role

Service coverage
for C1

C1 Servic

C2

e coverage
for C2



Role-based communication (3)

• “Come and go” nodes 
– E.g., When an instance of the camera role decides to go 

into hibernation, it may send a role advertisement to 
notify the change to other nodes.

C1

C2

C2 no longer
available



Role management interface

• addRole(roleID, area, validity, targetRole)
– Add role specification for the specified role, service area, 

service duration, and target role(s) to serve

• removeRole(roleID)
– Remove role specification corresponding to the roleID

• publishRoleAdv(area, validity)
– Send a role advertisement update to other nodes specified 

in the area constraint (e.g., within a specified number of 
hops from the node). The validity constraint specifies the 
time interval during which this update is valid.



Summary and status

• Role-based programming abstraction that 
facilitates sensor coordination with the emphasis 
on addressing sensor network dynamics and node 
heterogeneity

• In the process of developing a role-based sensor 
coordination middleware, called scorp, on the 
nesC/TinyOS platform

• Future work:
– Evaluation of effectiveness and efficiency
– Performance optimization
– Scalability
– Security



Sensornet Programming Challenges

• Scalability
– How well does the program perform for a large (say 10k-

node) sensor net?
– Support for heterogeneous sensor net

• Dynamics of sensor networks
– Nodes that “come and go”
– How to develop robust programs?

• Tradeoffs among resource usage, reliability, 
system lifetime, security, costs, …
– TinyDB (adjusting sampling frequency based on system 

lifetime) and abstract region (accuracy vs resource usage)

• Quality of service


	Sensor Coordination using Role-based Programming
	Motivating example: Object detection, tracking, and classification†
	Characteristics of the scenario
	In-network aggregation
	Characteristics of the scenario
	Why use heterogeneous sensor networks?
	Characteristics of the scenario
	Goal: High-level programming abstraction
	Our approach
	Role advertisement
	Role-based communication (1)
	Role-based communication (2)
	Role-based communication (3)
	Role management interface
	Summary and status
	Sensornet Programming Challenges

