
Property-Directed k-Induction
Dejan Jovanović
SRI International

dejan.jovanovic@sri.com

Bruno Dutertre
SRI International

bruno.dutertre@sri.com

Abstract—IC3 and k-induction are commonly used in au-
tomated analysis of infinite-state systems. We present a re-
formulation of IC3 that separates reachability checking from
induction reasoning. This makes the algorithm more modular,
and allows us to integrate IC3 and k-induction. We call this
new method property-directed k-induction (PD-KIND). We show
that k-induction is more powerful than regular induction, and
that, modulo assumptions on the interpolation method, PD-KIND
is more powerful than k-induction. Moreover, with k-induction
as the invariant generation back-end of IC3, the new method
can produce more concise invariants. We have implemented the
method in the SALLY model checker. We present empirical results
to support its effectiveness.

I. INTRODUCTION

IC3 and k-induction are two commonly used methods in
automated analysis of infinite-state systems. IC3 was origi-
nally developed for finite systems [7], [20], but it was soon
adapted to the infinite-state case by relying on SMT solvers as
reasoning engines [22], [9], [24], [10]. These IC3 variants have
been successfully used in analysis of software. Similarly, k-
induction was initially introduced in the finite-state setting [31]
and was then extended to infinite-state systems [15], with
similar success in software verification [16].

At its core, IC3 is based on induction. To show that a
property is invariant, IC3 tries to incrementally construct
an inductive strengthening of the property. Surprisingly, the
relative power of k-induction and induction-based methods,
with respect to the capability to construct a strengthening,
has not been studied in detail.1 It is folklore knowledge that
k-induction can be stronger than induction, but this has, to
the best of our knowledge, never been formally accounted
for. In this paper, we show that k-induction can be strictly
more powerful than regular induction, making a case for an
IC3-style method that is based on k-induction. The additional
reasoning power is particularly important when one works
within an expressive logical theory such as the theory of arrays
[21], [23]).

Although additional deductive power is desirable, we are
also concerned with practical effectiveness. With this in mind,
we start with IC3, a practically effective algorithm, and break
it into its constituents: satisfiability checking, reachability
checking, and generation of inductive invariants. Isolating

The research presented in this paper has been supported by NASA Co-
operative Agreements NNX14AI05A and NNA10DE73C, by DARPA under
agreement number FA8750-16-C-0043, and by NSF grant 1528153.

1Some IC3 variants, such as PDR [22], are not guaranteed to terminate
even if the property is already inductive.

these functionally independent modules allows us to replace
the inductive core with k-induction, producing a method that
is a natural combination of IC3 and k-induction. This method
is effective in practice, and can be shown to be at least as
powerful as k-induction, provided the interpolation procedure
satisfies a natural property that we call finite-covering.

To summarize, the main contributions of the paper are as
follows. We show that k-induction can be more powerful, and
more concise, than regular induction (Section III). We de-
compose IC3 into functionally relevant parts (Section IV) and
adopt k-induction as the core reasoning step (Section IV-C).
We isolate a fundamental property of interpolation (Sec-
tion IV-A) that allows us to prove the new method more
powerful than k-induction. We provide experimental evidence
that the new method is effective in practice (Section V).

II. BACKGROUND

We assume a finite set of typed variables ~x called state
variables. To each variable x ∈ ~x, we associate its primed
version x′ of the same type. We call any quantifier-free
formula F (~x) over the state variables a state formula, and any
quantifier-free formula T (~x, ~x′) a state-transition formula. A
state s is a type-consistent interpretation of ~x that assigns to
each variable x ∈ ~x a value s(x) over its domain. A state
formula F (~x) holds in a state s (written s � F) if the formula
evaluates to true under the state’s assignment.

A state-transition system is a pair S = 〈I, T 〉, where I(~x)
is a state formula describing the initial states and T (~x, ~x′) is
a state-transition formula describing the system’s evolution. A
state s′ is a successor of a state s in S if the formula T (~x, ~x′)
evaluates to true when we interpret each x ∈ ~x as s(x) and
each x′ ∈ ~x′ as s′(x). A state s is k-reachable if there exists a
sequence of states σ = 〈s0, . . . sk〉 such that, s = sk, the state
s0 satisfies I , and each si+1 is a successor of si. We call σ a
concrete trace of the system. We also say that a state formula
F is reachable in k steps if there is a k-reachable state s such
that s � F .

Given a state formula P (the property), we want to deter-
mine whether all the reachable states of S satisfy P . If this is
the case, P is an invariant of S, which we denote by S � P .
We also write S �ba P to denote that P is true in all k-
reachable states for a ≤ k ≤ b. If P is not invariant, there is
a concrete trace, called a counter-example, that reaches ¬P .

Definition II.1 (F-Induction). Given a set F of state formulas
such that P ∈ F , P is F-inductive2 with respect to S if

I(~x)⇒ F(~x) , (init)
F(~x) ∧ T (~x, ~x′)⇒ P (~x′) . (cons)

If F = {P}, we say that P is inductive.

If P is inductive then it is also invariant. Since invariants are
in general not inductive, a common approach to prove that P is
invariant is to find a strengthening of P . Such a strengthening
is a set of formulas F such that P ∈ F and F is inductive.
If such a strengthening exists, then P is invariant.

Definition II.2 (Fk-Induction). Given a set F of state for-
mulas such that P ∈ F , P is Fk-inductive with respect to S
if

I(~x0) ∧
l−1∧
i=0

T (~xi, ~xi+1)⇒ F(~xl) , for 0 ≤ l < k , (k-init)

k−1∧
i=0

(F(~xi) ∧ T (~xi, ~xi+1))⇒ P (~xk) . (k-cons)

When F = {P}, we say that P is k-inductive.

A property that is inductive is 1-inductive by definition. It is
also k-inductive for any k. In the other direction, if a property
P is k-inductive and the logical theory underlying the system
admits quantifier elimination, then we can construct an induc-
tive strengthening of P by eliminating quantifiers.3 For such
theories, induction and k-induction have the same deductive
power but k-induction may give more succinct strengthenings.
If the base theory does not admit quantifier elimination then
k-induction can be more powerful than induction.4

III. RELATIVE POWER OF INDUCTION AND k-INDUCTION

We present examples that illustrate the deductive power of
k-induction in relation to induction. To simplify the presen-
tation, we describe transition systems as programs. We use
the quantifier-free fragment of the extensional theory of ar-
rays [27], denoted by Tarr, and an extension of Tarr with array
constants [13], denoted by T c

arr. The theory Tarr is axiomatized
as WRITE(a, i, v)[i] = v, i 6= j ⇒ WRITE(a, i, v)[j] = a[j],
and a[i] 6= b[i]⇒ a 6= b. The extended theory T c

arr is obtained
by adding a construct c(v) that represents the constant array
with value v, and the axiom c(v)[i] = v.

The quantifier-free fragments of both theories are decid-
able [32], [13] and are very useful in practice. For example,
one can model integer sets in the theory T c

arr as arrays
that map integers to Booleans, and define set operations as
x ∈ a ≡ a[x], ∅ ≡ c(false), a ∪ {x} ≡ WRITE(a, x, true).

2This is the same idea as induction relative to F used in [7].

3If P is k-inductive then P ∧ ◦P ∧ ◦ ◦ P ∧ . . .∧
k−1︷ ︸︸ ︷
◦ ◦ · · · ◦P is inductive,

where ◦ stands for “next state”.
4We postulate that, for theories such as pure Boolean logic or linear

arithmetic, k-induction is exponentially more succinct than induction. Proving
this postulate would entail new complexity results on quantifier elimination
(e.g., [33]) and would require a much more sophisticated analysis.

1 int i, j;
2 map<int,int> a; // int -> int
3
4 // I: write 0 at a[0]
5 i = j = 0;
6 a[0] = 0;
7
8 // T: write 0 at a[i] from a[j]
9 while (true) {

10 j = rand() % (i+1);
11 i = (i+1) % N;
12 a[i] = a[j];
13 }

Fig. 1. Writing 0 to array a in a circular fashion, resetting every N steps.

Although their quantifier-free fragments are decidable, the
full array theories are not decidable [8] and therefore do not
admit quantifier elimination.5 This makes them good candi-
dates for relating the powers of induction and k-induction.

Example III.1. The program in Figure 1 sets the elements
a[0], . . . , a[N−1] to 0 in a circular fashion. This program can
be encoded as a transition system in theory Tarr, with initial
states defined by lines 5-6, and transition relation defined by
lines 10-12. Now, consider the property P ≡ (a[0] = 0).
This property is clearly an invariant of the system. One can
show that it is (N + 1)-inductive: Any sequence of N + 1
states must include a transition that resets i to 0. From then
on, all transitions increment i to an integer no more than
N − 1, pick a j between 0 and i, and copy a[j] into a[i].
If P holds at all states in this sequence, and if i = N − 1
in the last state of this sequence, then a[0], . . . , a[N − 1] are
all 0 in this state. If i 6= N − 1 in the last state then the
next transition keeps a[0] unchanged. These observations are
enough to conclude that P is (N +1)-inductive. On the other
hand, P is not k-inductive for any k ≤ N . Moreover, any
inductive strengthening of P must have size at least N , such
as for example P ∧

∧N−1
k=1 (a[k] = 0 ∨ i < k).

Lemma III.1. There exists a sequence of state-transition
systems SN and a property P , such that for any N the
property P is N -inductive in SN , but the shortest inductive
strengthening of P has a size larger than N .

The relationship between induction and k-induction is
explored in [5], where the authors show that induction is
as powerful as k-induction for theories that admit “feasible
interpolation.” Feasible interpolation ensures that the inductive
strengthening is polynomial in the size of the proof. This
is in line with Lemma III.1, since the proof itself can be
exponential, resulting in potential blowup of the invariant.

Example III.2. Consider the program in Figure 2. This
program sets the elements a[0], . . . , a[i], . . . to 0 in rounds of
N steps. Variable c counts the number of steps in the current
round and variable J stores the indices of the elements of a
that have been written to. The program can be encoded as
a transition system in theory T c

arr, with initial states defined

5For example, ∃i . a[i] = 0 does not have a quantifier-free equivalent.

1 int c, i, j;
2 set<int> J; // int -> bool
3 map<int, int> a; // int -> int
4
5 // I: write 0 at a[0]
6 c = 0;
7 a[0] = 0;
8 J.insert(0)
9

10 // T: write 0 at a[i] from a[j]
11 while (true) {
12 c = (c+1) % N;
13 if (c == 0) {
14 J.clear();
15 i = 0;
16 a[i] = 0;
17 } else {
18 i = rand();
19 j = J.pick_rand();
20 a[i] = a[j];
21 }
22 J.insert(i)
23 }

Fig. 2. Writing 0 to array a while keeping a set J of written-to indices,
resetting every N steps.

by lines 6-8, and transition relation expressed by lines 12-22.
As previously, let the property be P ≡ (a[0] = 0) then P is
invariant. By the pigeon-hole principle, P is (N+1)-inductive:
Any sequence of N +1 states must include a “reset” that sets
i = 0 and J = {0}. From this reset point, all transitions sets
some a[i] to 0 and adds i to J . However, there is no inductive
strengthening P ′ of P . For P ′ to be inductive, it would need
to ensure that for all j ∈ J we have a[j] = 0 but this can not
be expressed in the quantifier-free fragment of theory T c

arr.

Lemma III.2. There exists a state-transition system S and a
property P , such that the property P is k-inductive for k > 1
but there is no inductive strengthening of P .

The additional power of k-induction comes with a com-
putational price: checking whether a property is k-inductive
requires k+1 satisfiability checks and a potentially expensive
unrolling of the transition relation. The method we propose
in this paper alleviates this issue by using an incremental
approach that minimizes the need for unrolling.

IV. ALGORITHM

We reason about transition systems in the satisfiability mod-
ulo theories (SMT) framework [2]. Specifically, we assume
that the transition system is described in a theory where
quantifier-free satisfiability is decidable.

A. Satisfiability Checking

Given a state formula F , we denote with T [F]k the un-
rolling of T to length k where F holds in the intermediate
states. For k > 1, T [F]k(~x, ~x′) is then defined as

T (~x, ~w1) ∧
k−1∧
i=1

(F (~wi) ∧ T (~wi, ~wi+1)) ∧ T (~wk−1, ~x
′)

where ~w are the state variables in the intermediate states. For
k = 0 and k = 1, we set T 0[F](~x, ~x′) ≡ (~x = ~x′) and

T 1[F](~x, ~x′) ≡ T (~x, ~x′). When F ≡ true, we omit it and
simply write T k.

A basic step in our algorithms is to check the satisfiability
of formulas of the form

A(~x) ∧ T [B]k(~x, ~w, ~y) ∧ C(~y) , (1)

where A, B, and C are state formulas. We denote by
CHECK-SAT(A, T [B]k, C) an (SMT-based) procedure that
checks satisfiability of formula (1), and returns a model if
the formula is satisfiable. In addition, we require two artifacts
from the SMT solver: interpolants and generalizations.

Definition IV.1 (Interpolant). If the formula (1) is unsatisfi-
able, a formula J(~y) is a state interpolant if

1) A(~x) ∧ T [B]k(~x, ~w, ~y)⇒ J(~y), and
2) J(~y) and C(~y) are inconsistent.

Definition IV.2 (Generalization). If the formula (1) is satisfi-
able, we call a formula G(~x) a state generalization if

1) A(~x) and G(~x) are consistent, and
2) G(~x)⇒ ∃~w, ~y . T [B]k(~x, ~w, ~y) ∧ C(~y).

Interpolation provides forward learning. An interpolant
over-approximates the set of states reachable from A via
T [B]k and is enough to refute C. Generalization is the
dual and provides backward learning. A generalization G is
consistent with A and under-approximates the set of states that
can reach C via T [B]k.

Our notion of a state interpolant is more specific than
the one usually considered in general interpolation, and our
definition can be easily satisfied: formula ¬C is always an
interpolant (so interpolants exists in our case even if the
underlying theory does not support general interpolation).
Similarly, one can construct a generalization G from a model
v of formula (1) by substitution (i.e., the formula (A ∧
T [B]k)[~w/v(~w), ~y/v(~y)] is a trivial generalization). Although
correct, trivial interpolants and generalizations are not ideal
for practical applications. In particular, they do not satisfy the
following property.

Definition IV.3 (Finite Cover Property). An interpolation
(resp. generalization) procedure has the finite cover property
(is finite-covering) when, for a fixed T [B]k and A (resp C), it
can only produce a finite number of distinct interpolants (resp.
generalizations).

Interpolation is a well-studied topic [28], [12] and it is
available in several SMT solvers. Effective generalization in
SMT was introduced in [24] (as model-based projection) for
specific use in a PDR engine. There are known generalization
methods for the theories of linear arithmetic [24], arrays [23],
and algebraic data-types [6]. These methods have the finite
cover property. On the other hand, most interpolation proce-
dures are proof-based and do not ensure finite covering.

Both interpolation and generalization approximate quantifier
elimination. For theories that admit quantifier elimination, one
can construct precise interpolants by eliminating ~x and ~w from
A ∧ T [B]k and precise generalizations by eliminating ~w and

~y from T [B]k ∧ B. Such precise procedures have the finite
cover property, and it is not unreasonable to expect the same
from interpolation and generalization. This is the case for pure
SAT problems. In SAT, interpolants can always be expressed
as clauses, while generalizations can be expressed as prime
implicants, both of which guarantee the finite cover property.6

The finite-cover property for interpolants is an incremental
form of the related notion of uniform interpolation [30]:
uniform interpolation requires a single interpolant instead of
a finite set.

Example IV.1. Consider the system S = 〈I, T 〉 defined as
I ≡ (x = 0), T ≡ (x′ = x + 1) where x is a real-valued
variable. Let P be the formula 0 ≤ x ∨ x ≥ 1. To check
whether P is inductive, we can ask the following satisfiability
query to the SMT solver

A1︷ ︸︸ ︷
(0 ≤ x ∨ x ≥ 1)∧

T 1︷ ︸︸ ︷
(x′ = x+ 1)∧

B1≡¬A1︷ ︸︸ ︷
¬(0 ≤ x′ ∨ x′ ≥ 1) .

This formula is satisfiable in a model x 7→ −0.5, x′ 7→ 0.5.
We can generalize this model to G ≡ (−1 < x < 0); any state
that satisfies G is a counterexample to induction of P . We can
then check whether G intersects with the initial states and
whether G is reachable in one step, by making two separate
queries

A2︷ ︸︸ ︷
(x = 0)∧

T 0︷ ︸︸ ︷
(x′ = x)∧

B2︷ ︸︸ ︷
(−1 < x′ < 0) ,

(x = 0)︸ ︷︷ ︸
A3

∧ (x′ = x+ 1)︸ ︷︷ ︸
T 1

∧ (−1 < x′ < 0)︸ ︷︷ ︸
B3

.

Both queries are unsatisfiable. From the first query, we can
get an interpolant J0(x′) ≡ (x′ ≥ 0) that refutes G in the
initial states. From the second query, we can get an interpolant
J1(x

′) ≡ (x′ ≥ 1) that refutes G after one transition.
Although P itself is not inductive, the two interpolants give
us a strengthening: the formula P ′ ≡ P ∧ (J0(x) ∨ J1(x)) is
inductive.

B. Reachability

Problem IV.1 (k-reachability). Given a state formula F that
is not reachable in fewer then k steps, check whether F is
reachable in k steps.

The reachability problem can be solved by bounded model
checking [3], but we discuss an alternative method that does
not require unrolling the transition relation. We introduce the
concept of k-interpolation as a way to learn from failures of
k-reachability.

Definition IV.4 (k-interpolant). Given a system S and state
formula F that is unreachable in ≤ k steps (system is k-
inconsistent with F), a state formula J is a state k-interpolant
for F if

S �k0 J , J and F are inconsistent .

6For arithmetic theories, finite-covering interpolants can be generated using
model-based procedures such as MCSat [14].

As with regular interpolation, the formula ¬F itself is a
trivial k-interpolant. We can also construct a k-interpolant by
calling a standard interpolation procedure k + 1 times: If S
and F are k-inconsistent, then I(~x) ∧ T i(~x, ~w, ~x′) ∧ F (~x′) is
unsatisfiable for 0 ≤ i ≤ k. From these inconsistencies we can
obtain interpolants J0,. . . , Jk, and the formula J ≡ (J0∨ . . .∨
Jk) is a k-interpolant for F . Moreover, if the interpolation
procedure has the finite-cover property then so does the k-
interpolation procedure.

To check k-reachability, we adopt the incremental depth-
first reachability method of IC3, which relies on local rea-
soning. The procedure maintains a sequence R0, R1, . . . of
reachability frames. Frame Ri is a set of state formulas that
over-approximates the set of states reachable in i steps or less.
This implies that S �i0 Ri. Unlike IC3/PDR, we do not require
the frames to be monotonic; we may have Ri+1 6⊆ Ri.7

This setup allows us to build k-interpolants efficiently
provided an extra local condition holds. If k = 0, we just
take the interpolant of I ∧ T 0 ∧ F . If k > 0 and the formula
F is not reachable in up to k steps, and if, in addition, F is
not reachable in one step from Rk−1, then both I ∧ T 0 ∧ F
and Rk−1 ∧ T ∧ F are inconsistent. We can then obtain
interpolants J1 and J2 for these two formulas and (J1 ∨ J2)
is a k-interpolant for F . This k-interpolant, which we denote
by EXPLAIN(S, k, F), is potentially more concise than the
one described before and it is obtained by local reasoning
only. Although EXPLAIN has an additional precondition, our
algorithm ensures that this holds whenever EXPLAIN is called.

Lemma IV.1. Starting from a fixed finite frame sequence
R0,R1, . . ., if the only formulas we add to the frames are
obtained through the EXPLAIN procedure, and the interpola-
tion procedure is finite-covering, then the EXPLAIN procedure
is also finite-covering.

Algorithm 1 Check k-reachability of F .
Require: S �i0 Ri for 0 ≤ i ≤ k, S �k−1

0 ¬F .
Ensure: S �i0 Ri for 0 ≤ i ≤ k. If not reachable, Rk−1 ∧ T ∧ F

is unsatisfiable.
1 function REACHABLE(S, k, F)
2 if k = 0 then return CHECK-SAT(I, T 0, F)

3 loop
4 if CHECK-SAT(Rk−1, T, F) then
5 G← GENERALIZE(Rk−1, T, F)
6 if REACHABLE(S, k − 1, G) then
7 return true
8 else
9 E ← EXPLAIN(S, k − 1, G)

10 Rk−1 ←Rk−1 ∪ {E}
11 else return false

Finally, our reachability routine REACHABLE(S, k, F) per-
forms a step-wise search for a concrete trace by using a
depth-first search strategy. It tries to reach the initial states

7From an implementation perspective, this gives flexibility in garbage
collection. We can remove any subset of formulas from any frameRi without
compromising correctness.

backwards. To reach F at frame k, we check first whether
F can be reached in one transition from the previous frame
Rk−1. If no such transition is possible, then F is not reachable.
Otherwise, we get a state s that satisfies Rk−1 and from which
F is reachable in one step. The generalization procedure gives
us a formula G that generalizes s: every state that satisfies G
has a successor that satisfies F . We then recursively check
whether G is reachable. The recursive call will either find a
path from the initial states to G, in which case F is reachable,
or determine that G is not reachable, in which case we can
learn an explanation E of the reachability failure and eliminate
G. Learning E eliminates G as a potential step backward, and
we continue.

Lemma IV.2. Algorithm 1 solves the k-reachability problem.
If F is not reachable then, upon completion, either k = 0 and
F is inconsistent with I , or k > 0 and F is not reachable in
one step from Rk−1. In addition, if the interpolation or the
generalization procedure is finite-covering, then the procedure
always terminates.

We use a variant of the REACHABLE procedure to check
whether F is reachable in steps k1 to k2. We denote this
by (r, l) = REACHABLE(S, k1, k2, F). This extension of the
REACHABLE procedure is a straightforward loop from k1 to
k2, and has the same precondition as the single check version
(on k1). In the return value, r denotes the reachability result
(true/false), and, if r is true, l is the length of the shortest trace
that can reach F . The postcondition (and hence Lemma IV.2)
of the iterative extension is also the same (on k2).

C. Property-Directed k-Induction

We now present the main procedure of PD-KIND. This
procedure checks whether a property P is invariant for a
system S = 〈I, T 〉. It does so by iteratively trying to construct
a k-inductive strengthening of P for some k > 0. The overall
idea behind the procedure is simple. Assume a set of formulas
FABS that is a strengthening of P and is valid in S for up to n
steps. In other words, FABS is an over-approximation of states
reachable in n steps or less. Then, the set FABS satisfies (k-init)
for all 1 ≤ k ≤ n+1. We can pick any such k and try to show
that FABS is k-inductive by checking whether it also satisfies
(k-cons). Each iteration of the procedure PD-KIND does this
check. The core of our algorithm is procedure PUSH that either
finds a counter-example to P or produces a new strengthening
GABS ⊆ FABS. This new set GABS satisfies (k-cons) with respect
to FABS. The set GABS is then Fk

ABS-inductive. If GABS = FABS,
we can conclude that P is invariant. Otherwise, we know that
GABS is valid (at least) up to index n + 1. Procedure PUSH
actually returns an integer np such that GABS is valid up to
np. This index np is the length of the shortest trace of S that
reaches ¬FABS; it is guaranteed to be at least n+1 but it may
be larger. At this point, we repeat the loop with GABS as our
current strengthening and np as our new index.

In addition to the set of formulas FABS, procedure PD-
KIND associates with each each FABS ∈ FABS information
about a potential counter-example to P that the formula FABS

Algorithm 2 Main PD-KIND procedure.
Require: S = 〈I, T 〉 and I ⇒ P

1 function PD-KIND(S, P)
2 n← 0
3 F ← {(P,¬P)}
4 loop
5 pick k-induction depth 1 ≤ k ≤ n+ 1
6 〈F ,G, np〉 ← PUSH(S,F , P, n, k)
7 if P marked invalid then return invalid
8 if F = G then return valid
9 n← np

10 F ← G

eliminates. The set FABS and this additional information is
represented in the form of an induction frame. Let F denote
the set of all state formulas in our theory.

Definition IV.5 (Induction Frame). A set of tuples F ⊂ F×F
is an induction frame at index n if (P,¬P) ∈ F and the
following holds for all (FABS, FCEX) ∈ F:

1) FABS is valid up to n steps and refutes FCEX, and
2) FCEX-states can be extended to a counter-example to P .

If I ⇒ P , then the set F = {(P,¬P)} is an induction
frame at index 0. Given an induction frame F , we denote
by FABS the strengthening represented by F , i.e., FABS =
{FABS | (FABS, FCEX) ∈ F}. With this in mind, the procedure
PD-KIND is presented in Algorithm 2.

D. The PUSH Procedure

The core of the PD-KIND algorithm is the PUSH procedure
(Algorithm 3). This procedure takes as input an induction
frame F at index n, and tries to push formulas of the frame
using k-induction where 1 ≤ k ≤ n + 1. Figure 3 illustrates
the formulas and frame indices over which PUSH operates.

Since F is an induction frame at n, we know that FABS is
valid up to index n. In each iteration, the procedure picks one
yet unprocessed (FABS, FCEX) from F . Both FABS and ¬FCEX

hold up to index n in S.
First, the procedure checks whether FABS is Fk

ABS-inductive
(lines 9-12). If so, then we know that FABS is valid at least up
to position n+ 1. We call this a successful push and we add
(FABS, FCEX) to the set of pushed obligations G, and continue
with the next obligation. If the k-induction check fails, then
we have a model (counterexample to induction) mCTI. This is
a trace of length k + 1 in which FABS holds for the first k
states but FABS is false in the last state.

The procedure does not use mCTI yet. Instead, it checks
whether the counterexample formula FCEX is reachable from
FABS (lines 15-24). If the query at line 15 is satisfiable, it
has a model mCEX. Like mCTI, this model is a trace of length
k + 1; it starts with k states that satisfy FABS and ends with
a state that satisfies FCEX (thus, from the first state of mCEX

we can reach ¬P). At this point, we generalize mCEX to a
formula GCEX. From any state that satisfies GCEX, one can
reach ¬P . Formula GCEX is then a potential counterexample
for P . We check whether GCEX is reachable from the initial

k︷ ︸︸ ︷
valid FABS FABS · · · FABS FABS · · · FABS F ?

ABS

S s0 s1 · · · sn−k · · · sn sn+1 · · · sn+d · · ·

reachable ���GCEX ���GCEX · · · ���GCEX G?
CEX k F ?

CEX d ¬P ?

���GCTI ���GCTI · · · ���GCTI G?
CTI k CTI?

Fig. 3. Illustration of the formulas and frame indices over which PUSH operates.

states of S. Because we know that FCEX is not n-reachable,
GCEX can’t be reached in less than n − k + 1 steps. So we
check reachability of GCEX at positions n − k + 1 . . .n. If
GCEX is reachable, then so is ¬P and we mark P as invalid.
Otherwise, we call the EXPLAIN procedure, which returns a
new fact GABS that eliminates GCEX. The new fact GABS is
true up to position n, and refutes GCEX, so we can add the
new induction obligation (GABS, GCEX) to F , strengthening F ,
and try again with a potential counter-example eliminated.

In the remaining case, we have a counterexample mCTI to
the k-inductiveness of FABS. Since the query at line 15 is not
satisfiable and FABS ⇒ ¬FCEX, we know that ¬FCEX is Fk

ABS

inductive. We first apply generalization to mCTI to construct a
formula GCTI. From any state that satisfies GCTI, we can reach
¬FABS in k steps. If GCTI is reachable in S then ¬FABS is also
reachable, so FABS can’t be part of a valid strengthening of P .
This check is performed at line 28; as previously, it is enough
to check reachability of GCTI at positions n− k+1, . . . , n. If
GCTI is reachable, we can’t push FABS. Instead, we replace the
triple (FABS, FCEX) by the weaker obligation (¬FCEX, FCEX).
This new obligation can be immediately pushed to G. On
the other hand, if GCTI is not reachable then we strengthen
FABS with a new fact GABS learned from procedure EXPLAIN.
This eliminates the counterexample to k-induction and the
procedure continues.

At lines 30-31 of the procedure, we know that ¬FABS is
reachable in S and that this requires at least n+1 transitions.
It is useful to make this more precise by computing the actual
length of the shortest path to ¬FABS (line 30). This length is
stored in variable np (if it’s smaller than np’s current value).

After the loop terminates, PUSH returns the set of success-
fully pushed induction obligations G, the modified set F of k-
induction assumptions for G, and the shortest refutation length
np for any FABS ∈ FABS that was not successfully pushed.
The procedure does not only add to the original set F , it
also actively modifies it (line 37). Unlike existing IC3-based
procedures where frames are explored in succession, keeping
track of np allows us to perform “jumps” that move to deeper
frames faster. This is because FABS is valid up to position
np − 1 ≥ n, and the facts in GABS are valid up to position
np ≥ n+ 1.8

Assuming that PD-KIND terminates, it is not hard to show
that it returns the correct result. If PD-KIND terminates with
P marked invalid, then we have found a counter-example

8We have observed significant frame jumps in practice although this is
problem-specific.

Algorithm 3 Push F with k-induction.
Require: F is a valid frame for P at position n, 1 ≤ k ≤ n + 1,

(P,¬P) ∈ F .
Ensure: F is a valid frame for P at position np − 1 ≥ n, G ⊆ F

is Fk-inductive, and P marked invalid or (P,¬P, 0) ∈ Fp.
1 function PUSH(S, F , P , n, k)
2 push elements of F to Q . Q is a priority queue.
3 G ← {} . Pushed facts, i.e. GABS is Fk

ABS-inductive.
4 np ← n+ k . Keeps track of the shortest CTI position.
5 while P not marked invalid, Q not empty do
6 pop (FABS, FCEX) from Q
7

8 . Is FABS Fk
ABS-inductive?

9 (satCTI,mCTI)← CHECK-SAT(FABS, T [FABS]
k,¬FABS)

10 if not satCTI then
11 G ← G ∪ {(FABS, FCEX)} . GABS is Fk

ABS-inductive.
12 continue
13

14 . Is FCEX reachable?
15 (satCEX,mCEX)← CHECK-SAT(FABS, T [FABS]

k, FCEX)
16 if satCEX then
17 GCEX ← GENERALIZE(mCEX, T

k, FCEX)
18 if REACHABLE(S, n− k + 1, n,GCEX) then
19 mark P invalid . I GCEX k FCEX ¬P .
20 else
21 GABS ← EXPLAIN(S, n,GCEX)
22 F ← F ∪ {(GABS, GCEX)} . Eliminate CEX.
23 push (GABS, GCEX), (FABS, FCEX) to Q
24 continue
25

26 . Analyze the induction failure.
27 GCTI ← GENERALIZE(mCTI, T

k,¬FABS)
28 (rCTI, nCTI)← REACHABLE(S, n− k + 1, n,GCTI)
29 if rCTI then . I nCTI GCTI k ¬FABS.
30 (rCTI, nCTI)← REACHABLE(S, n+1, nCTI+k,¬FABS)
31 np ← min(np, nCTI)
32 F ← F ∪ {(¬FCEX, FCEX)}
33 G ← G ∪ {(¬FCEX, FCEX)}
34 else . I 6 ≤n GCTI k ¬FABS.
35 GABS ← EXPLAIN(S, n,GCTI) . GABS ⇒ ¬GCTI.
36 GABS ← FABS ∧GABS . GABS ⇒ ¬FCEX.
37 F ← F ∪ {(GABS, FCEX)} \ {(FABS, FCEX)}
38 push (GABS, FCEX) to Q.
39

40 return 〈F ,G, np〉

to the property. On the other hand, if PD-KIND terminates
when the inductive frames become equal, i.e. F = G, then
FABS is a k-inductive strengthening of P and P is therefore
valid. In general, for infinite domains, even termination of
the PUSH procedure is not guaranteed. But, a finite-covering
interpolation procedure ensures termination: the number of
new facts that PUSH can learn is finite, and this bounds both
the number of possible refinement steps, and the number of
new counter-examples that can be found in line 15.

The PD-KIND procedure, as presented, has the freedom to
choose the induction depth k in each iteration (line 5). We
call a strategy for picking the depth increasing if it guarantees
that, for every k, PD-KIND eventually picks induction depths
k′ larger than k.

Lemma IV.3. If the interpolation procedure is finite-covering,
then the PUSH procedure terminates. If the property P is k-
inductive for some k > 0, and PD-KIND uses an increasing
strategy for k, then the PD-KIND procedure terminates.

Proof. (Sketch) If the property P is k inductive, then PD-KIND
will eventually pick only depths k′ ≥ k. For any such k′ no
counterexamples can be found at line 15, because any mCEX

could be extended to a counter-example of P , violating the
assumption that P is k-inductive. If no new counter-examples
can be found then, as PD-KIND goes from frame to frame,
the only new facts that can be added to the frame are either
obtained from refinement on line 35, where existing facts
are replaced with stronger facts, or line 36, where facts are
weakened to a counter-example refutation. Since we know
that no new counter-examples can be found, the latter can
only happen a finite number of times. Therefore, the size of
the frame can not increase indefinitely, and will eventually
converge to a state where F = G.

V. EXPERIMENTAL EVALUATION

We have implemented PD-KIND in the SALLY model-
checker.9 The implementation of the procedure itself is rather
small (1.2 Kloc of C++) and follows the presentation of the
paper. As our back-end SMT solver we combine YICES2 [17],
[18] and MATHSAT5 [11]. YICES2 is used for all satisfiability
queries and for generalization, while MATHSAT5 is used for
interpolation. We use two solvers because YICES2 supports
model-based generalization (but not interpolation), and MATH-
SAT5 supports interpolation (but not generalization at the time
we started implementing SALLY). This combination incurs
some overhead as we solve every unsatisfiable problem twice,
once with YICES2 to know that the problem is unsatisfiable
and once with MATHSAT5 to get an interpolant.10 The default
strategy for picking the parameter k in PUSH is to increment
by one in each iteration.

We have evaluated the new procedure on a range of
existing and new benchmarks. Several of our benchmarks are
related to fault-tolerant algorithms (oral-messages

9SALLY is open source and available at http://sri-csl.github.io/sally/.
10On the other hand, with no burden of proof-production, YICES2 is much

faster on satisfiable queries.

[25], tte-synchro and tta-startup [19],
unified-approx [29], azadmanesh-kieckhafer
[1], approximate-agreement [26], and hacms problem
sets). We also used benchmarks from software model checking
(cav12 [9], ctigar [4]). The lustre benchmarks are
from the benchmark suite of the KIND model-checker,
and cons are simple concurrent programs. Some of the
benchmarks were obtained from an existing repository 11.
Since our tool does not yet handle integer reasoning properly,
we converted all the integer variables to the real type. All
problems are flat transition systems and we translated them to
the input languages of other tools in a straightforward manner.
The software benchmarks come from a public repository
and were already encoded in SMTLIB2 as flat transition
systems.12

To put the results in context, we compare PD-KIND with
other state-of-the-art, infinite-state model checkers, namely,
Z3 [22], NUXMV [10], and SPACER [24]. The results are
presented in Table 4. Each solver was run with a timeout
of 20 minutes. Each column of the table corresponds to a
different model-checking engine, and each row corresponds
to a different problem set. For each problem set and tool
combination we report the number of problems that the tool
has solved, how many of the solved problems were valid and
invalid properties, and the total time (in seconds) that the tool
took to solve those problems.

The evaluation shows that the new method is effective and
robust on real-world problems: on all problem sets, PD-KIND
either solves the most problems or is very close to the best
engine. PD-KIND is good at both proving properties correct
and finding counter-examples. When proving invariants, PD-
KIND benefits from k-induction and can in some cases prove
the properties using a substantially smaller strengthening than
the inductive engines. Moreover, PD-KIND is the only engine
that can prove all properties that are already k-inductive. On
the other hand, PD-KIND is also effective as a bug-finder due
to the longer steps of k-induction. As an example of this,
in one of the hacms examples, PD-KIND finds a counter-
example of length 60 already at frame 15. The comparison is
not exhaustive or definitive: we have not included tools such
as KIND, and we used all the model checkers with default
options. It is likely that they could be tuned to perform better
on the particular benchmarks we have chosen. For reference,
we include additional experimental data in the appendix.

VI. CONCLUSION

The k-induction principle is a popular method for prov-
ing safety of infinite-state systems. We have shown that k-
induction can be more powerful than regular induction for
expressive theories such as the theory of arrays. With this
in mind, we proposed PD-KIND, a reformulation of the IC3
method that allows us to integrate k-induction into the method.
We have implemented the new procedure in the SALLY tool,

11https://es-static.fbk.eu/people/griggio/vtsa2015/
12All benchmarks can be downloaded from http://csl.sri.com/∼dejan/

sally-benchmarks.tar.gz.

Fig. 4. Experimental evaluation. Each row corresponds to a different problem set. Each column corresponds to a different engine. Each table entry shows
the number of problems that the engine solved, how many of those were valid and invalid, and the total time it took for the solved instances.

Z3 SPACER NUXMV PD-KIND

problem set solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s)

approximate-agreement (9) 9 8/1 213 7 6/1 1150 9 8/1 2174 9 8/1 164
azadmanesh-kieckhafer (20) 20 17/3 3404 20 17/3 4678 20 17/3 294 20 17/3 192
cav12 (99) 69 48/21 2102 71 49/22 3529 72 50/22 7443 71 49/22 4990
conc (6) 4 4/0 128 4 4/0 655 6 6/0 421 4 4/0 270
ctigar (110) 64 44/20 1683 72 52/20 4249 76 56/20 1342 77 57/20 2823
hacms (5) 1 1/0 11 1 1/0 4 4 3/1 388 5 3/2 1661
lustre (790) 757 421/336 1888 763 427/336 2263 760 424/336 7660 774 438/336 3494
oral-messages (9) 9 7/2 16 9 7/2 44 9 7/2 161 9 7/2 2
tta-startup (3) 1 1/0 9 1 1/0 8 1 1/0 17 1 1/0 8
tte-synchro (6) 6 3/3 969 6 3/3 445 5 2/3 405 6 3/3 21
unified-approx (11) 8 5/3 2928 11 8/3 589 11 8/3 139 11 8/3 217

and the experimental evaluation shows that our prototype
is effective at solving real-world problems. In addition, the
new method is more powerful then k-induction, which is
a novel and theoretically pleasing property: if the property
being checked is k-inductive (for some k), then (modulo a
requirement on the interpolation procedure) the method always
terminates. It can also prove properties that are not k-inductive.
When limiting the induction depth k = 1, the method can
be seen as an effective instance of the IC3/PDR class of
algorithms.

REFERENCES

[1] M. H. Azadmanesh and R. M. Kieckhafer. Exploiting omissive faults in
synchronous approximate agreement. IEEE Transactions on Computers,
49(10):1031–1042, 2000.

[2] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability
modulo theories. Handbook of satisfiability, 185:825–885, 2009.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. Tools and Algorithms for the Construction and Analysis
of Systems, pages 193–207, 1999.

[4] J. Birgmeier, A. R. Bradley, and G. Weissenbacher. Counterexample to
induction-guided abstraction-refinement (CTIGAR). In Computer Aided
Verification, pages 831–848, 2014.

[5] N. Bjørner, A. Gurfinkel, K. McMillan, and A. Rybalchenko. Horn
clause solvers for program verification. In Fields of Logic and Compu-
tation II, pages 24–51. 2015.

[6] N. Bjørner and M. Janota. Playing with quantified satisfaction. Logic
for Programming, Artificial Intelligence and Reasoning, 2015.

[7] A. R. Bradley. SAT-based model checking without unrolling. In
Verification, Model Checking, and Abstract Interpretation, pages 70–87,
2011.

[8] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about
arrays? In Verification, Model Checking, and Abstract Interpretation,
pages 427–442, 2006.

[9] A. Cimatti and A. Griggio. Software model checking via IC3. In
Computer Aided Verification, pages 277–293, 2012.

[10] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. IC3 modulo theories
via implicit predicate abstraction. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 46–61. 2014.

[11] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The
MathSAT5 SMT solver. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 93–107. 2013.

[12] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient generation of Craig
interpolants in satisfiability modulo theories. ACM Transactions on
Computational Logic, 12(1):7, 2010.

[13] L. De Moura and N. Bjørner. Generalized, efficient array decision
procedures. In Formal Methods in Computer-Aided Design, pages 45–
52, 2009.

[14] L. De Moura and D. Jovanović. A model-constructing satisfiability
calculus. In Verification, Model Checking, and Abstract Interpretation,
pages 1–12, 2013.

[15] L. De Moura, H. Rueß, and M. Sorea. Bounded model checking and
induction: From refutation to verification. Lecture notes in computer
science, pages 14–26, 2003.

[16] A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer. Software
verification using k-induction. In Static Analysis, pages 351–368. 2011.

[17] B. Dutertre. Yices 2.2. In Computer Aided Verification, pages 737–744,
2014.

[18] B. Dutertre. Solving exists/forall problems with Yices. In SMT
Workshop, 2015.

[19] B. Dutertre, A. Easwaran, B. Hall, and W. Steiner. Model-based analysis
of timed-triggered ethernet. In Digital Avionics Systems Conference,
pages 9D2–1, 2012.

[20] N. Een, A. Mishchenko, and R. Brayton. Efficient implementation of
property directed reachability. In Formal Methods in Computer-Aided
Design, pages 125–134, 2011.

[21] S. Ghilardi and S. Ranise. MCMT: A model checker modulo theories.
In Automated Reasoning, pages 22–29. 2010.

[22] K. Hoder and N. Bjørner. Generalized property directed reachability. In
Theory and Applications of Satisfiability Testing, pages 157–171. 2012.

[23] A. Komuravelli, N. Bjørner, A. Gurfinkel, and K. L. McMillan. Com-
positional verification of procedural programs using horn clauses over
integers and arrays. In Formal Methods in Computer-Aided Design,
pages 89–96, 2015.

[24] A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-based model checking
for recursive programs. In Computer Aided Verification, pages 17–34,
2014.

[25] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–
401, 1982.

[26] N. A. Lynch. Distributed algorithms. 1996.
[27] J. McCarthy. Towards a mathematical science of computation. In

Program Verification, pages 35–56. 1993.
[28] K. L. McMillan. An interpolating theorem prover. Theoretical Computer

Science, 345(1):101–121, 2005.
[29] P. Miner, A. Geser, L. Pike, and J. Maddalon. A unified fault-tolerance

protocol. In FORMATS/FTRTFT, pages 167–182, 2004.
[30] A. M. Pitts. On an interpretation of second order quantification in first

order intuitionistic propositional logic. The Journal of Symbolic Logic,
57(01):33–52, 1992.

[31] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties
using induction and a SAT-solver. In Formal Methods in Computer-
Aided Design, pages 127–144, 2000.

[32] A. Stump, C. W. Barrett, and D. L. Dill. A decision procedure for an
extensional theory of arrays. In In 16th IEEE Symposium on Logic in
Computer Science, 2001.

[33] V. Weispfenning. The complexity of linear problems in fields. Journal
of Symbolic Computation, 5(1):3–27, 1988.

APPENDIX

A. Additional Experimental Results

Table 5 reports the results with addition of the PD-KIND
method where the k-induction depth is restricted to 1, i.e. we
always pick k = 1. This variant, that we refer to as PD-KIND1,
can be seen as an instance of the IC3/PDR class of algorithms
in the same codebase.

Figure 6 presents a more detailed comparison of PD-KIND
with the other engines. Figure 7 compares basic k-induction
with other engines on the same set of benchmarks.

B. Relative Power of Induction and k-Induction: Proofs

Lemma III.1. There exists a sequence of state-transition
systems SN and a property P , such that for any N the
property P is N -inductive in SN , but the shortest inductive
strengthening of P has a size larger than N .

Proof. We rely on Example III.1 to prove the statement. Let
Q be the smallest inductive invariant of the system Sexp that
implies P , meaning it is in the theory Tarr, quantifier-free, and
only contains variables a, i, and j. In order to be inductive,
the formula Q must allow all states reachable in Sexp and not
allow any states that could transition into a state that falsifies
P .

We show that such a formula Q must contain at least N
index terms (terms that are used to index an array, including
i, j, and any constants). Assume the opposite, i.e., that Q
contains less than N index terms, and consider a state s1 that
interprets i as N − 1 and a[0], . . . , a[N − 1] as 0. Since Q
contains less than N index terms, there is at least one value
k ∈ {0, 1, . . . , N − 1} that is not mapped to any index term
of Q in state s1. We can construct a state s2 equivalent to
s1 everywhere except for the interpretation of a[k], where it
assigns 1. It is easy to show by induction on the structure
of Q that the interpretation of Q doesn’t change, i.e., that
s2 � Q. But, from ss, the system can transition into a state
where a[0] = 1, falsifying P . This shows that Q can not be the
invariant we are looking for and, by contradiction, it follows
that Q must have at least N index terms.

The size of the k-inductive invariant P is constant while,
from above, the size of Q must be at least N , thus proving
the statement.

Lemma III.2. There exists a state-transition system S and a
property P , such that the property P is k-inductive for k > 1
but there is no inductive strengthening of P .

Proof. We rely on Example III.2 to prove the statement. Let
Q be an inductive invariant of system Spow that implies P .
Formula Q is in theory T c

arr, quantifier-free, and only contains
variables a, J , i, and j. In order to be inductive, Q must allow
all models reachable in Sexp and not allow any models that
could transition into a state that falsifies P .

Let’s assume that such a formula Q exists. We will construct
states s1, s2, and s3 such that
• s1 and s2 are reachable in Spow and therefore satisfy any
Q;

• Q can not distinguish between s2 and s3;
• s3 has a successor state that falsifies P .

This implies that there is no inductive strengthening of P .
Consider a state s1 that assigns c to 1, i and j to 0, a to

λx . x, and J to {0}, as sketched in Figure 8. This model
is reachable in Spow (e.g., from initial states, by writing to
a[0]). Let V be the set containing the interpretation (in s1) of
all the constants and index terms of Q. The set V is finite, so
we can pick an integer k larger than any element of V . We
now define the states s2 and s3 to be the same as s1, except
as follows.

s2(a)[k] = 0 , s2(J) = {0, k} , s3(J) = {0, k} .

The state s2 is also a reachable state of Spow (e.g., from
initial states, by writing to a[k], then to a[0] again). This
means that s2 satisfies Q. The state s3, on the other hand,
can transition into a state where the property does not hold
and should therefore not satisfy Q. But, we will show that Q
can not distinguish states s2 and s3. We do so by proving the
following by induction on the structure of Q:

1) All integer terms, Boolean terms, and Boolean arrays
evaluate to the same value in s2 and s3.

2) All integer-array terms t obtained from a (using zero or
more WRITE applications) evaluate to the same value in
s2 and s3, except at index k where s2(b)[k] = 0 and
s3(b)[k] = k.

3) All integer-array terms not obtained from a, i.e. all
arrays obtained from constant arrays, evaluate to the
same value in s2 and s3.

The induction is a routing exercise that considers all term
constructors available, and is based on the intuition that terms
in Q can only “see” the array elements at indices in V and
the index k is beyond reach. The more delicate cases are array
equalities of the form t1 = t2. If both t1 and t2 are Boolean
arrays, it follows from (1) above that t1 and t2 have the same
interpretation in s1 and s2, and hence the same holds for the
equality too. If t1 and t2 are integer arrays, then we distinguish
the following cases.

1) If t1 and t2 are both obtained from constant arrays then,
by (3) above, they have the same interpretation in s1
and s2, and hence the same holds for the equality too.

2) If t1 and t2 are both obtained from a, by (2) above the
equality can not depend on index k and therefore the
equality has the same interpretation in s1 and s2.

3) If t1 is obtained from a and t2 is obtained from constant
arrays, then the equality must evaluate to false in both
s1 and s2. This is because t1 contains an infinite number
of values, while t2 can only contains a finite number of
values.

The state s3 can transition into a state that falsifies P , e.g.,
by picking i = 0, j = k ∈ J , and then writing k into a[0].
This means that Q can not be the invariant we are looking for
and thus proves the statement.

Fig. 5. Experimental evaluation. Each row corresponds to a different problem set. Each column corresponds to a different engine. Each table entry shows
the number of problems that the engine solved, how many of those were valid and invalid, and the total time it took for the solved instances.

Z3 SPACER NUXMV PD-KIND∞ PD-KIND1

problem set solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s)

approximate-agreement (9) 9 8/1 213 7 6/1 1150 9 8/1 2174 9 8/1 164 9 8/1 155
azadmanesh-kieckhafer (20) 20 17/3 3404 20 17/3 4678 20 17/3 294 20 17/3 192 20 17/3 107
cav12 (99) 69 48/21 2102 71 49/22 3529 72 50/22 7443 71 49/22 4990 74 50/24 6404
conc (6) 4 4/0 128 4 4/0 655 6 6/0 421 4 4/0 270 5 5/0 164
ctigar (110) 64 44/20 1683 72 52/20 4249 76 56/20 1342 77 57/20 2823 73 53/20 4920
hacms (5) 1 1/0 11 1 1/0 4 4 3/1 388 5 3/2 1661 1 1/0 2
lustre (790) 757 421/336 1888 763 427/336 2263 760 424/336 7660 774 438/336 3494 769 431/338 2019
oral-messages (9) 9 7/2 16 9 7/2 44 9 7/2 161 9 7/2 2 9 7/2 74
tta-startup (3) 1 1/0 9 1 1/0 8 1 1/0 17 1 1/0 8 2 1/1 742
tte-synchro (6) 6 3/3 969 6 3/3 445 5 2/3 405 6 3/3 21 6 3/3 60
unified-approx (11) 8 5/3 2928 11 8/3 589 11 8/3 139 11 8/3 217 11 8/3 158

C. k-reachability: Proofs

Lemma IV.1. Starting from a fixed finite frame sequence
R0,R1, . . ., if the only formulas we add to the frames are
obtained through the EXPLAIN procedure, and the interpola-
tion procedure is finite-covering, then the EXPLAIN procedure
is also finite-covering.

Proof. Let us assume that the interpolation is finite-covering.
If the only way to add new formulas to the reachability frames
is through the EXPLAIN procedure then, we can show by
induction on k that the number of possible Rk sets is finite.
This holds for k = 0, since we never add formulas to R0. For
k > 0, since there are finitely many possible Rk−1 sets, and
EXPLAIN interpolates from I and Rk−1, then there are finitely
many possible k-interpolants that we add to Rk, showing the
case.

Lemma IV.2. Algorithm 1 solves the k-reachability problem.
If F is not reachable then, upon completion, either k = 0 and
F is inconsistent with I , or k > 0 and F is not reachable in
one step from Rk−1. In addition, if the interpolation or the
generalization procedure is finite-covering, then the procedure
always terminates.

Proof. There are two parts of the statement, correctness and
termination, each of which can be proved by induction.
Correctness follows directly by following the annotations in
the procedure description. For termination we consider the two
cases. If the generalization procedure is finite-covering, then
there is only a finite number of previous step generalizations
G that we need to eliminate by recursive calls. Each of those
calls terminate and therefore the procedure itself terminates.
If the k-interpolation procedure behind EXPLAIN is finite-
covering then, similarly, we can only learn a finite number
of explanations, which again implies termination.

Fig. 6. Scatterplot comparison of PD-KIND∞ with Z3, SPACER, NUXMV, and PD-KIND1. Each point represents the time the two solver took to solve a
problem. Red points represent invalid benchmarks, green points represent valid benchmarks.

Fig. 7. Scatterplot comparison of k-induction with PD-KIND∞, PD-KIND1, Z3, SPACER, and NUXMV. Each point represents the time the two solver took to
solve a problem. Red points represent invalid benchmarks, green points represent valid benchmarks.

Fig. 8. States s1, s2, s3
indices in V︷ ︸︸ ︷ k

indices in V︷ ︸︸ ︷ k

s1 · · · -3 -2 -1 0 1 2 3 · · · k · · · · · · f f t f f · · · f · · · {0}
s2 · · · -3 -2 -1 0 1 2 3 · · · 0 · · · · · · f f t f f · · · t · · · {0, k}
s3 · · · -3 -2 -1 0 1 2 3 · · · k · · · · · · f f t f f · · · t · · · {0, k}

interpretation of a interpretation of J

