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Abstract. The generation of counterexamples is frequently touted as
one of the primary advantages of model checking as a verification tech-
nique. However, the generation of trace-like counterexamples is limited to
a small fragment of branching-time temporal logic. When model checking
does succeed in verifying a property, there is typically no independently
checkable witness that can be used as evidence for the verified property.
We present a definition of witnesses, and, dually, counterexamples, for
computation-tree logic (CTL), and describe a model checking algorithm
that is based on the generation of evidence. Our model checking algo-
rithm is local in the sense that it explores only the reachable states. It
partitions the given initial set of states into those that do, and those
that do not satisfy the given property, with a corresponding witness and
counterexample that is independently verifiable. We have built a model
checker based on these ideas that works quite efficiently despite the over-
head of generating evidence.

1 Introduction

Model checking verifies a temporal property of a system by exploring its com-
putation graph in explicit or symbolic terms. As a verification technique, state-
space exploration has several advantages. Properties can be verified by visiting
only the reachable states in the system. Counterexamples in the form of compu-
tation traces can be generated when a property fails to hold. There is no need
to strengthen the properties being verified as is often the case with deductive
verification. Various reduction and approximation techniques can be used to re-
duce the size of the explored state space. However, the above advantages are
not always realizable in practice. Only a limited class of properties have trace
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counterexamples. In practice, few temporal properties are checked solely by ex-
ploring the reachable state space. When model checking succeeds, there is often
no witness that independently justifies the relationship between the model and
the property.

We present an approach to symbolic model checking CTL (Computation-
Tree Logic) formulas that overcomes these limitations. The algorithm explores
the reachable state space and generates a witness for those states where the prop-
erty holds and a counterexample where the property fails. These witnesses and
counterexamples can be independently verified. The key to our approach is the
use of symbolic witnesses and counterexamples that are constructed as trees over
sets of states. Our model checking algorithm works by induction on the structure
of the given CTL formula. Each temporal connective is evaluated by means of
a forward unfolding of the state space followed by a fixpoint computation. The
witness or counterexample can then be computed using the combination of the
fixpoint set and the unfolded sequence of computation states. The correctness
of the witness or counterexample can be independently verified. We have imple-
mented a model checker based on witness/counterexample construction and have
compared it with the standard fixpoint approach that does not yield witnesses or
counterexamples. The efficiency of this model checker compares favorably with
the more conventional methods despite the overhead of collecting and generating
evidence.

Our model checking approach generates a directed unfolding of the symbolic
state graph according to the temporal property being verified. The actual form
of this unfolding for each temporal operator can be systematically derived from
its fixpoint definition. The fixpoints can then be computed relative to the state
sets generated in the unfolding phase. We do not actually compute the set of
reachable states but only a subset of it that is relevant to evaluating the temporal
property on the set of initial states.

The remainder of this paper is organized as follows. The syntax and semantics
of CTL are covered in Section 2 along with an overview of our approach to
generating counterexamples and witnesses during model checking. The details
of the model checking algorithm are given in Section 3. A characterization of the
witnesses and counterexamples is given in Section 4 along with the correctness
argument for the model checking algorithm. We close with some observations in
Section 5, a comparison to the related work in Section 6, and some concluding
remarks in Section 7.

2 Preliminaries

Let AP be a set of atomic propositions, and p, p̄ ∈ AP (p̄ stands for the negation
of p). The formulas of the CTL logic in negation normal form are inductively
defined as follows:

ϕ := p | p̄ | ϕ1 ∨ϕ2 | ϕ1 ∧ϕ2 | EXϕ | EFϕ | EGϕ | E[ϕ1 Uϕ2] | E[ϕ1 Rϕ2] |
AXϕ | AFϕ | AGϕ | A[ϕ1 Uϕ2] | A[ϕ1 Rϕ2]



3

The semantics of a CTL formula is defined with respect to a Kripke structure.
A Kripke structure is a tuple M = 〈AP,S,N〉 where AP is a finite set of atomic
propositions, S is a finite set of states which we take as1 2AP, the power-set
of AP, and N ∈ 2S×S is the transition relation. For (s, s′) ∈ N, we also write
s′ ∈ s, and if S ⊆ S, then N(S) is

⋃
s∈S N(s). The converse transition relation

Ñ is defined by Ñ(s, s′) ⇐⇒ N(s′, s). We assume that the transition relation
N is total, that is, every state has a successor. A path π is an infinite sequence
of states π = (s0, s1, . . .) such that si+1 ∈ si for all i ≥ 0.

Intuitively, the formula EXϕ holds in a state s of M iff there exists a successor
s′ of s such that ϕ is true in s′. The formula EGϕ will be true at a state s if there
is a path starting at s such that ϕ holds at each state on the path. An existential
until formula E[ϕ1 Uϕ2] holds in some state s iff on some path starting from
s, ϕ1 holds until ϕ2 holds. Similarly, a universal until formula A[ϕ1 Uϕ2] holds
in s if this conditions holds for all paths from s. The release operator R is the
logical dual of U. It requires that ϕ2 holds along the path up to and including
the first state where ϕ1 holds. However, ϕ1 is not required to hold eventually.
The full semantics of CTL is described in Appendix A.

Given a set S ⊆ S and the transition relation N, we define three predicate
transformers post(N)(S), pre(N)(S), and p̃re(N)(S) from 2S to 2S as follows.

post(N)(S) := N(S)

pre(N)(S) := Ñ(S)
p̃re(N)(S) := {s ∈ S | N(s) ⊆ S}

The postcondition function post(N)(S) computes for a given set S of states,
the set of states that can be reached in one step from some state in S. The
preimage function pre(N)(S) returns the set of states that can reach S in a
single step. The precondition function p̃re(N)(S) returns the set of those states
that have no successors outside of S.

The propositional µ-calculus [Koz83] provides a least fixpoint operator (µ)
and a greatest fixpoint operator (ν), which make it possible to characterize
the temporal operators of CTL. Clarke and Emerson [CE81] give the following
fixpoint characterizations of the nontrivial CTL operators.

AFϕ = µZ.ϕ∨AXZ

EFϕ = µZ.ϕ∨EXZ

AGϕ = νZ. ϕ∧AXZ

EGϕ = νZ. ϕ∧EXZ

A[ϕ1 Uϕ2] = µZ.ϕ2 ∨ (ϕ1 ∧AXZ)
E[ϕ1 Uϕ2] = µZ.ϕ2 ∨ (ϕ1 ∧EXZ)
A[ϕ1 Rϕ2] = νZ. ϕ2 ∧ (ϕ1 ∨AXZ)
E[ϕ1 Rϕ2] = νZ. ϕ2 ∧ (ϕ1 ∨EXZ)

1 We are assuming that the states are represented using a binary encoding whose
Boolean variables are in AP.
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Symbolic model checking [BCM+92,McM93,CGP99] establishes the satisfac-
tion of a temporal property ϕ over a Kripke model M with respect to a set of
initial states I. Given a set of initial states I, the notation M, I |= ϕ is inter-
preted as ∀s ∈ I.M, s |= ϕ. For example, to verify M, I |= AFp, we represent the
set of initial states I as a binary decision diagram (BDD) [[I]] over the Boolean
variables in AP. The next state relation N can also be represented as a BDD
[[N]] over primed and unprimed versions of the Boolean variables in AP. The
states in S satisfying the formula AFp, written as [[AFp]], can then be computed
as a BDD given by [[AFp]]k for the least k such that [[AFp]]k = [[AFp]]k+1, where
[[AFp]]0 = [[p]] and [[AFp]]i+1 = p̃re(N)([[AFp]]i). We can then check whether
the BDD [[I]] ∧ ¬[[AFp]] is satisfiable. If so, we have a counterexample, and if
not, we have M, I |= AFp. Similar fixpoint model-checking algorithms can be
given for the other temporal operators based on the fixpoint definitions with the
predicate transformers pre(N)(S) or p̃re(N)(S) above.

Our model-checking algorithm also employs fixpoints over predicate trans-
formers while computing information from which witnesses or counterexamples
can be easily extracted. It can be seen as a refinement of the above näıve compu-
tation of the fixpoint. Taking the example of AFp, the bad states ¬[[AFp]] can
be computed as the greatest fixpoint νZ. [[¬p]] ∧ pre(N)(Z). Let R be given by
µZ. [[I]]∨ post(N)(Z) which is the set of states reachable from initial state set I.
It can be shown that [[I]]∧ νZ. [[¬p]]∧ pre(N)(Z) is satisfiable iff [[I]]∧ νZ. [[¬p]]∧
R ∧ pre(N)(Z) is satisfiable. We have thus narrowed the starting point of the
fixpoint iteration from [[¬p]] to [[¬p]] ∧ R, but we can do even better. Let W
represent the set of states given by νZ. [[¬p]] ∧R ∧ pre(N)(Z). The set I ∧W is
equivalent to I ∧ νZ.R− ∧ pre(N)(Z), where R− is a subset of [[¬p]] ∧ R given
by µZ. ([[¬p]] ∧ [[I]]) ∨ ([[¬p]] ∧ post(N)(Z)).

The model checking of AFp thus consists of a phase where R− is computed in
a forward iteration using post(N), followed by a backward iteration phase where
W is computed relative to R− using pre(N). The iterative computation of R−

can be carried out as V0 = I, Vi+1 = post(N)(R−i − V<i), and R−i = Vi ∧ [[¬p]],
where V<i =

⋃
j<i Vj and X−Y is defined as X∧¬Y . The iterative computation

of W is given by Wm for the least m such that Wm+1 = Wm, where W0 = R−

and Wi+1 = pre(N)(Wi) ∩ Wi. The resulting algorithm has two advantages.
The greatest fixpoint computation of W takes place over a set of states that
is smaller than all states or even all reachable states. Computing the greatest
fixpoint from a smaller initial set may not guarantee smaller BDDs, but this
does indeed appear to be the case on nontrivial examples. If I ∩W is nonempty,
a counterexample trace can be constructed by picking a computation sequence
s0, . . . , sk from R−0 ∧W, . . . , R

−
k ∧W . If R−0 ∧W is empty, then the property is

verified. The witness for this is given by the sequence of state sets G0, . . . , Gm,
where Gi = V −Wi, for i ≤ m. It can be shown that if R−0 ∧W is empty, then W
must be empty, so V −Wm = V . It is clear that this is a valid witness for AFp
since it can be shown that G0 ⊆ [[p]], [[I]] ⊆ Gm, and Gi+1 ⊆ p̃re(N)(Gi) ∪Gi.
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WMC(ϕ, I,N) = case ϕ of

p : PMC(p, I,N)

p̄ : PMC(p̄, I,N)

EXϕ : EXMC(ϕ, I,N, ∅, ∅)
EFϕ : EFMC(ϕ, I,N, ∅, ∅)
EGϕ : EGMC(ϕ, I,N, ∅, ∅)

E[ϕ1 Uϕ2] : EUMC(ϕ1, ϕ2, I,N, ∅, ∅, ∅)
E[ϕ1 Rϕ2] : ERMC(ϕ1, ϕ2, I,N, ∅, ∅, ∅)

AXϕ : AXMC(ϕ, I,N, ∅, ∅)
AFϕ : AFMC(ϕ, I,N, ∅, ∅)
AGϕ : AGMC(ϕ, I,N, ∅, ∅)

A[ϕ1 Uϕ2] : AUMC(ϕ1, ϕ2, I,N, ∅, ∅, ∅)
A[ϕ1 Rϕ2] : ARMC(ϕ1, ϕ2, I,N, ∅, ∅, ∅)

Fig. 1. Model Checking CTL.

3 A Model-Checking Algorithm

As above, let M = 〈AP,S,N〉 be a Kripke structure, where AP is a finite set of
atomic propositions, S a finite set of states, and N the (total) transition relation.
The top level of the algorithm WMC is shown in Figure 1. It invokes individual
operations corresponding to the top-level connective. The cases corresponding
to the propositional connectives have been elided. We discuss the special cases
of the CTL operators EG and AG. The model-checking algorithm for the entire
CTL logic can be found in Appendix B. The model checker takes as input a
CTL formula ϕ, and a set of initial states I. The output O is a pair of lists
〈[U0, . . . , Uk], [W0, . . . ,Wm]〉. Each Ui is of the form 〈Si, Bi, O′i, O′′i 〉, where S0 =
I, Bi is the subset of Si violating ϕ, and O′i and O′′i are the outputs corresponding
to the immediate subformulas of ϕ with respect to Si. In the case of unary CTL
connectives, the field O′′i will be empty, which is represented as . We will refer
to the fields of Ui as Ui.S, Ui.B, Ui.O′, and Ui.O

′′, respectively. Each Wi is a
set of states representing the stages in a fixpoint computation.

The EGMC algorithm for EGϕ is displayed in Figure 2. When we write ~W ,
we mean a list of elements of the form [W0, . . .], and ~Wm implies that the list
~W is of length m + 1, that is, of the form [W0, . . . ,Wm]. The notation [X; ~W ]
represents the list obtained by adding element X to the front of the list of ~W .

In addition to the formula ϕ and the set of initial states I, EGMC takes as
input, two sets of states, V and V +. The set V collects the visited states, while
V + ⊆ V contains those states that satisfy the subformula ϕ. Initially, both V
and V + are empty. First, the subformula ϕ is processed over the given set of
initial states I (Figure 2, line (2)). This yields the output O′ whose components
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EGMC(ϕ, I,N, V, V +) = (1)

let O′ = WMC(ϕ, I,N); (2)

〈 ~U ′, ~W ′〉 = O′; (3)

I ′ = I − (V ∪ U ′0.B) (4)

in (if I ′ = ∅ (5)

then (6)

let ~Wm = pre(N)∧(V +) (7)

in S = 〈[〈I, I −Wm, O
′, 〉], ~W 〉 (8)

else (9)

let 〈~U, ~Wm〉 = EGMC(ϕ, post(N)(I ′),N, V ∪ I, V + ∪ I ′,N) (10)

in 〈[〈I, I −Wm, O
′, 〉; ~U ], ~W 〉 (11)

endif) (12)

Fig. 2. Model Checking EGϕ.

are the lists ~U ′ and ~W ′ (line (3)). Since U ′0.B consists of the states in I where
ϕ fails to hold, the set I − (V ∪ U ′0.B) are the new states where ϕ holds. This
set is labelled I ′ (line (4)). The set I ′ could also be computed as I ′ is I −U ′0.B,
where O′ of the form 〈 ~U ′, ~W ′〉 is WMC(ϕ, I−V,N). If I ′ is empty, the algorithm
terminates (lines (5) to (8)). The output returned in line (8) consists of the list ~W
of length m+1 recording the stages in the computation of νZ. V +∧pre(N)(Z) as
generated by pre(N)∧(V +) (in line (7)) which is defined to return the list ~Wm,
whereW0 = V +,Wi+1 = Wi∩pre(N)(Wi), andWm = pre(N)(Wm). The U part
of the output in this base case is the singleton list [〈I, I−Wm, O

′, 〉]. Otherwise
EGMC is invoked recursively on a new set of initial states post(N)(I ′), and
updated values for V and V + (line (10)). The resulting output 〈~U, ~Wm〉 is used to
construct the output in line (11) where the tuple 〈I, I−Wm, O

′, 〉 has been added
to the front of ~U . The algorithm always terminates since we never reexamine a
previously visited state, and the state space is finite.

Example 1. Given the Kripke model in Figure 3, it is easy to see that the formula
EGp is not satisfied in the initial state 0. The recursive invocations of EGMC
yield the entries in the following table.

Step I V V + I ′

0 {0} ∅ ∅ {0}
1 {1, 2} {0} {0} {1}
2 {2} {0, 1, 2} {0, 1} ∅

The sequences O′i (i = 0, 1, 2) contain information about the satisfiability of the
subformula p during the three computation steps.

O′0 = 〈[〈{0}, ∅, , 〉], [∅]〉
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Fig. 3. Model Checking EGp – Example.

O′1 = 〈[〈{1, 2}, {2}, , 〉], [{2}]〉
O′2 = 〈[〈{2}, {2}, , 〉], [{2}]〉

The final value of V + is {0, 1} and ~W is a list of subsets of V + computed by
pre(N)∧(V +) to be [{0, 1}, {0}, ∅]. Here W , given by W2, is empty since each of
the three states eventually reaches state 2, where p does not hold, along every
path. Finally, the algorithm returns the pair 〈~U0, ~W 〉, where ~U0 is

[〈{0}, {0} , O′0, 〉, 〈{1, 2}, {1, 2}, O′1, 〉, 〈{2}, {2}, O′2, 〉].

Since 0 ∈ U0.B, the formula EGp does not hold of the state 0 in the given Kripke
model. A counterexample is produced as [C0, C1, C2], where Ci = V −Wi, which
yields [{2}, {1, 2}, {0, 1, 2}]. Note that Ci+1 ⊆ Ci ∪ p̃re(N)(Ci) for i < 2, and
[[I]] ⊆ C2.

Figure 4 illustrates the AGMC algorithm for the case AGϕ. This algorithm
is similar to its existential counterpart EGMC. The main difference is that the
set of good states is computed using the precondition transformer p̃re instead of
pre, as is the case for the EG operator. These basic algorithms can be optimized
in small ways. For example, when V = V + in line (7), the fixpoint computation of
~Wm is redundant. Such specialized optimizations are not covered in this paper.

4 Witnesses and Counterexamples

We address the problem of characterizing the witnesses and counterexamples
generated by the model-checking algorithm, restricting our discussion to the
CTL operators EG and AG.

Given a Kripke structure M = 〈AP,S,N〉, a CTL formula ϕ, and a set of
initial states I, the model-checking algorithm presented in the previous chapter
returns output O as a pair of sequences 〈~Uk, ~Wm〉, where each Ui has the form
〈S,B,O′, O′′〉. The values corresponding to these fields of Ui are abbreviated as
Si, Bi, O′i, and O′′i , respectively. The set S0 is the set of initial states I, and the
set Bi consists of those states in Si that violate the property ϕ.

Informally, a witness w for a formula EGϕ with respect to a state s0 is
a sequence of the form [〈s0, w0〉, . . . , 〈sn, wn〉], where sn = si for some i < n,
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AGMC(ϕ, I,N, V, V +) = (1)

let O′ = WMC(ϕ, I,N); (2)

〈 ~U ′, ~W ′〉 = O′; (3)

I ′ = I − (V ∪ U ′0.B) (4)

in (if I ′ = ∅ (5)

then (6)

let ~Wm = p̃re
∧

(N)(V +) (7)

in S = 〈[〈I, I −Wm, O
′, 〉], ~W 〉 (8)

else (9)

let 〈~U, ~Wm〉 = AGMC(ϕ, post(N)(I ′),N, V ∪ I, V + ∪ I ′) (10)

in 〈[〈I, I −Wm, O
′, 〉; ~U ], ~W 〉 (11)

endif) (12)

Fig. 4. Model Checking AGϕ.

N(si, si+1) holds for i < n, and wi is a witness for ϕ with respect to si for i ≤ n.
However, this kind of witness, for a specific state s0 is not really useful for our
purpose even though it can be easily constructed from the output O returned
by EGMC(ϕ, I,N, ∅, ∅). We need a witness that carries the justification that
M, I |= EGϕ. More generally, each execution of the model checker partitions
I into states I+, where the property holds, and states I−, where the property
fails. We need a witness w for M, I+ |= EGϕ, and a counterexample c for
M, I− 6|= EGϕ.

We first describe the form and characterization of a witness for a formula
EGϕ independent of its construction. We write w ` M, G |= EGϕ to indicate
that w is a witness for the judgement that the states in G satisfy EGϕ. The
witness w is a pair 〈 ~Xm, ~wk〉 of lists of lengths m and k, respectively, where

1. There exist G0, . . . , Gk such that wi `M, Gi |= ϕ, for i ≤ k
2. X0 ⊆

⋃k
i=0Gi

3. Xi+1 ⊆ Xi, for i < m
4. Xm ⊆ pre(N)(Xm)
5. G ⊆ Xm

It should be intuitively clear that this is a valid witness for M, G ` EGϕ since
G ⊆ Xm and for any state s ∈ Xm, we have that s ∈ [[ϕ]] and N(s)∩G 6= ∅, i.e.,
there is a state s′ ∈ N(s) such that s′ ∈ G. In other words, from any state in
Xm, we can find an infinite path consisting of states from within Xm. The above
conditions can be expressed in CTL itself so that it is easy to extract a CTL
proof structure from the witness. Clauses 2 and 3 in the above definition can
be eliminated in favor of the condition that Xm ⊆

⋃k
i=0Gi, but we retain the

intermediate states Xi for the sake of uniformity with the other CTL operators.
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We now have to show that the output O returned by EGMC(ϕ, I,N, ∅, ∅)
can be used to construct a witness meeting the above conditions. The top-
level operation for constructing a witness for a formula ϕ and output O from
WMC(ϕ, I,N) has the form witness(ϕ,O). The operation WEG(ϕ,N, O) con-
structs a generic witness w for EGϕ as 〈 ~Wm, ~wk〉, where wi = witness(ϕ,O′i)
for i ≤ k.

The notation c `M, C 6|= EGϕ indicates that c is a counterexample demon-
strating that for every s ∈ C, M, s 6|= EGϕ. A counterexample c justifying
M, C 6|= EGϕ has the form 〈 ~Xm,~ck〉, where

1. There exist state sets C0, . . . , Ck such that ci `M, Ci 6|= ϕ, for i ≤ k
2. X0 =

⋃k
i=0 Ci

3. Xi+1 ⊆ Xi ∪ p̃re(N)(Xi), for i < m
4. C ⊆ Xm

Note that a counterexample for EGϕ must be a witness for AF¬ϕ. The condi-
tions on c ensure that every computation originating from a state s in Xi must
eventually reach a state in X0, where X0 ⊆ [[¬ϕ]].

Once again, given O = EGMC(ϕ, I,N, ∅, ∅), we can construct a counterex-
ample c meeting the above conditions. The top-level operation for constructing
counterexamples for a formula ϕ from O = WMC(ϕ, I,N) is counter(ϕ,O). The
operation CEG(ϕ,N, O) constructs the counterexample c as 〈[V −W0, . . . , V −
Wm],~ck〉, where V =

⋃k
i=0 Si, and ci = counter(ϕ,O′i) for i ≤ k.

A witness w such that w `M, G |= AGϕ has the form 〈 ~Xm, ~wk〉, where

1. There exist G0, . . . , Gk such that wi `M, Gi |= ϕ, for i ≤ k
2. X0 ⊆

⋃k
i=0Gi

3. Xi+1 ⊆ Xi, for i < m
4. Xm ⊆ p̃re(N)(Xm)
5. G ⊆ Xm

These conditions ensure that G ⊆ [[ϕ]] and for any states s, s′ such that s ∈ G
and s′ ∈ N(s), we have s′ ∈ G. In other words, G is a stable property of M that
entails ϕ.

As in the case of EGϕ, a suitable witness w is constructed from the output
O = AGMC(ϕ, I,N, ∅, ∅) by WAG(ϕ,O) as 〈 ~Wm, ~wk〉, where wi = witness(ϕ,O′i)
for i ≤ k.

A counterexample c, where c `M, C 6|= AGϕ, has the form 〈 ~Xm,~ck〉, where

1. There exist state sets C0, . . . , Ck such that ci `M, Ci 6|= ϕ, for i ≤ k
2. X0 =

⋃k
i=0 Ci

3. Xi+1 ⊆ Xi ∪ pre(N)(Xi), for i < m
4. C ⊆ Xm

These conditions ensure that any state s ∈ Xi must have a computation path
leading to a state s′ ∈ X0 and X0 ⊆ [[¬ϕ]].



10

A counterexample c meeting the above conditions is constructed from O =
AGMC(ϕ, I,N, ∅, ∅) by CAG(ϕ,O) as 〈[V −W0, . . . , V −Wm],~ck〉, where V =⋃k
i=0 Si, and ci = counter(ϕ,O′i) for i ≤ k.

We can verify the following theorem from the full characterization of CTL
witnesses and counterexamples. The proof is by induction on the structure of
the formula. The informal argument for the case of EGϕ and AGϕ has already
been sketched. The remaining cases are similar.

Theorem 1 (Witness Validity). If w ` M, G |= ϕ then M, G |= ϕ, and if
c `M, C 6|= ϕ, then M, C 6|= ϕ.

We can also establish that our model-checking algorithm yields valid wit-
nesses and counterexamples. The following theorem is also proved by induction
on the structure of ϕ by showing for each case of the definition of WMC that w
is a valid witness and c is a valid counterexample. In each case, the sets G and
C are constructed from output O so as to partition V and hence I.

Theorem 2 (Correctness). Let O be WMC(ϕ, I,N), then there exist disjoint
sets G and C such that I ⊆ G ∪ C, a witness w = Witness(ϕ,N, O), and a
counterexample c = Counter(ϕ,N, O), such that w `M, G |= ϕ and c `M, C 6|=
ϕ.

5 Experiments

We have implemented our algorithm in Common Lisp using the Eindhoven BDD
package [Jan93] as a C library. We have conducted preliminary experiments that
suggest that our local model-checking algorithm constructs BDDs of smaller size
and thus performs more efficiently in time and space than a model checker using
the same BDD package but based on the standard fixpoint definitions of the
CTL operators [BCM+92]. The performance comparison is given in Figures 5
for the mutual exclusion property of a buggy version of the synchronous arbiter
from the SMV example suite. Figure 6 gives the comparison on the mutual ex-
clusion property for a correct version of the arbiter circuit. The timings (given
in milliseconds) do not include the time spent constructing the BDD represen-
tations for the set of initial states and the transition relation. They do include
the time spent constructing the output O for the case of our model checker
WMC, whereas the timings for the baseline model checker MC are simply
those for checking the property. Note that when an AG property holds, the
WMC model checker requires only one greatest fixpoint iteration since the set
of states in V + = V is already a fixpoint. Further timings are not given due to
the slowness in constructing the BDD for the transition relation.

6 Related Work

Prior related work in this area includes results on counterexample generation,
methods for certifying model checkers, and model-checking algorithms based on
forward iteration.
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No. of cells 5 10 15 20 25 30 35 40 45 47

Max. BDD size 40 92 142 199 251 301 347 407 455 101
WMC Time (msecs) 0 130 80 229 290 470 530 660 880 150

No. of iterations 3 3 3 3 3 3 2 3 3 2

Max. BDD size 381 1041 1317 2295 4838 5533 5657 9976 6801 3338
MC Time (msecs) 10 260 440 1210 3510 2500 1710 11360 4804 1330

No. of iterations 3 4 3 5 4 3 3 4 3 3

Fig. 5. Performance comparison on mutual exclusion for buggy arbiter

No. of cells 5 10 15 20 25 30 35 40 45 47

BDD size 25 38 62 86 102 121 137 162 181 96
WMC time 0 10 20 210 40 90 140 120 380 80

No. of iterations 1 1 1 1 1 1 1 1 1 1

BDD size 186 673 892 1265 2934 3086 3406 8164 3737 1647
MC time (msecs) 20 140 320 250 890 1170 1260 4040 2890 540

No. of iterations 3 3 3 4 4 4 4 4 4 3

Fig. 6. Performance comparison on mutual exclusion for correct arbiter

Clarke, Grumberg, McMillan, and Zhao [CGMZ95] present techniques for the
efficient generation of counterexamples for fragments of ACTL and Fair ACTL
(CTL with fairness constraints). Counterexample construction for the three CTL
basic operators: AX, AG, and AU, are given, and the problem of finding fair
counterexamples is classified as NP-complete. The algorithms for generating
counterexamples have been implemented in the SMV model checker [McM93].
Kick [Kic96] shows that it is possible to construct tree-like counterexamples for
the entire µ-calculus, but the resulting trees are large and quite complicated.
Clarke, Jha, Lu, and Veith [CJLV02] investigate tree-like counterexamples for
ACTL based on a backward and then forward exploration of the state space.
Our model-checking algorithm, in contrast, avoids the computation of the entire
reachable state space through a forward unfolding of the state space followed by
a local fixpoint computation. It partitions the set of initial states into (possibly
empty) good states with a corresponding symbolic witness, and (possibly empty)
bad states with a corresponding symbolic counterexample.

Namjoshi [Nam01] introduced the notion of a certifying model checker that
can generate independently checkable witnesses for properties verified by a model
checker. He defined witnesses for properties of labelled transition systems ex-
pressed in the modal µ-calculus based on parity games over alternating tree
automata. Peled, Pnueli, and Zuck [PPZ01] produce deductive proofs for suc-
cessfully model checked LTL formulas based on identifying the strongly con-
nected components in the model checking tableau and generating a proof for the
absence of feasible paths. Gurfinkel and Chechik [GC03] present an approach
for annotating model checker witnesses with proof steps and generating proof
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obligations that can be independently verified with a theorem prover. All of the
above methods generate explanations only when the model checker achieves a
verification or a refutation, whereas our approach produces simple and direct
witnesses and counterexamples that partition the initial states into good and
bad states, respectively. Such a partition is needed for the recursive invocation
of the model checker on subformulas of the given formula which do not involve
either verification or refutation.

Iwashita, Nakata, and Hirose [INH96] present a CTL model-checking algo-
rithm based on forward state traversal for a fragment of CTL. They show that in
many situations backward state traversal is more expensive than forward traver-
sal. When combined with BDD-based state traversal techniques using partitioned
transition relations, their method could be successfully applied for verifying large
finite-state systems. Henzinger, Kupferman, and Qadeer [HKQ98] investigate the
class of specifications that can be checked by symbolic forward state traversal
and show that all ω-regular (linear-time) specifications can be verified using for-
ward traversal. Biere, Clarke, and Zhu [BCZ99] give a local tableau construction
for LTL model checking based on sets of states and forward image computation
with explicit detection of strongly connected components in the tableau. We
present a two-phase symbolic model checking algorithm for CTL consisting of a
forward traversal that identifies relevant reachable states followed by a backward
traversal that partitions the initial set of states into good and bad states.

7 Conclusions

We have given a simple local model-checking algorithm for CTL that constructs
witnesses and counterexamples. The algorithm is based on a constrained, for-
ward unfolding of the state space starting from the initial states, followed by a
fixpoint computation. Symbolic witnesses and counterexamples are constructed
from the results produced by the model checker. The witnesses and counterex-
amples have been independently characterized. The model-checking algorithm
has been proved to produce valid witnesses and counterexamples. Preliminary
experiments indicate that our method is significantly more efficient than the
standard method used for CTL model checking despite the overhead of collect-
ing evidence.

Our approach of generating both positive and negative evidence during model
checking can be extended and refined in a number of directions. We need to con-
struct an independent evidence checker for the witnesses and counterexamples
produced by our model checker. If we are interested only in the absence of
counterexamples, it is possible in some cases, to terminate as soon as a coun-
terexample is found. We can also restrict our search to bounded length evidence
by bounding the forward unfolding, but this may return only partial conclu-
sions. Counterexample-driven model checking can be combined with abstraction
to compute over and under-approximations of fixpoint properties. We are also
investigating the application of our two-phase method to controller synthesis,
where the backward fixpoint computation employs a controlled precondition op-
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eration. We also need to examine the effectiveness, both in terms of efficiency
and the size and clarity of the evidence, when this approach is adapted to Fair
CTL, LTL, and CTL*.
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Note to the reviewer: the appendix is not part of the official submission.

A Semantics of CTL

Given M = 〈AP,S,N〉 a Kripke structure. The notation M, s |= ϕ means that ϕ
holds at state s in the Kripke structure M. The relation “|=” is defined inductive
as follows ([[p]] denotes the set of states where p holds):

M, s |= p iff s ∈ [[p]]
M, s |= p̄ iff s 6∈ [[p[[

M, s |= ϕ∧ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2

M, s |= ϕ∨ϕ2 iff M, s |= ϕ1 or M, s |= ϕ2

M, s |= EXϕ iff M, s′ |= ϕ for some state s′ ∈ S such that s′ = s

M, s |= EFϕ iff for some path π = (s0, s1, . . .) with s = s0,

there exists i ≥ 0 such that M, si |= ϕ

M, s |= EGϕ iff for some path π = (s0, s1, . . .) with s = s0,

M, si |= ϕ for all i ≥ 0
M, s |= E[ϕ1 Uϕ2] iff for some path π = (s0, s1, . . .) with s = s0,

for some i ≥ 0,M, si |= ϕ2 and M, sj |= ϕ1 for 0 ≤ j < i

M, s |= E[ϕ1 Rϕ2] iff for some path π = (s0, s1, . . .) with s = s0,

there exists i ≥ 0 such that M, sj |= ϕ2 for all 0 ≤ j ≤ i,
and (M, si |= ϕ1 or si ∈ {s0, . . . , si−1})

M, s |= AXϕ iff M, s′ |= ϕ for all state s′ ∈ S such that s′ = s

M, s |= AFϕ iff for all paths π = (s0, s1, . . .) with s = s0,

there exists i ≥ 0 such that M, si |= ϕ

M, s |= AGϕ iff for all paths π = (s0, s1, . . .) with s = s0,

M, si |= ϕ for all i ≥ 0
M, s |= A[ϕ1 Uϕ2] iff for all paths π = (s0, s1, . . .) with s = s0,

for some i ≥ 0,M, si |= ϕ2 and M, sj |= ϕ1 for 0 ≤ j < i

M, s |= A[ϕ1 Rϕ2] iff for all paths π = (s0, s1, . . .) with s = s0,

there exists i ≥ 0 such that M, sj |= ϕ2 for all 0 ≤ j ≤ i,
and (M, si |= ϕ1 or si ∈ {s0, . . . , si−1})
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B Model Checking CTL with Witnesses and
Counterexamples Generation

PMC(p, I,N) = 〈[〈I, I − [[p]], , 〉], [I − [[p]]]〉
PMC(p̄, I,N) = 〈[〈I, I − [[p̄]], , 〉], [I − [[p̄]]]〉

EXMC(ϕ, I,N) =
let O′ = WMC(p, post(N)(I),N);
〈 ~U ′, ~W ′〉 = O′;
~W = [p̃re(N)(U ′0.B)]
in 〈[〈I, I ∩W0, O

′, 〉; ~U ′], ~W 〉
EFMC(ϕ, I,N, V, V −) =

let O′ = WMC(ϕ, I,N);
〈 ~U ′, ~W ′〉 = O′;
I ′ = U ′0.B − V
in (if I ′ = ∅

then
let ~Wm = p̃re∧(N)(V −)
in S = 〈[〈I, U ′0.B ∩Wm, R〉], ~W 〉

else
let 〈~U, ~Wm〉 = EFMC(ϕ, post(N)(I ′),N, V ∪ I, V − ∪ I ′,N)
in 〈[〈I, (I ∩Wm), O′, 〉; ~U ], ~W 〉

endif)
EGMC(ϕ, I,N, V, V +) =

let O′ = WMC(ϕ, I,N);
〈 ~U ′, ~W ′〉 = O′;
I ′ = I − (V ∪ U ′0.B)
in (if I ′ = ∅

then
let ~Wm = pre(N)∧(V +)
in S = 〈[〈I, I −Wm, O

′〉], ~W 〉
else

let 〈~U, ~Wm〉 = EGMC(ϕ, post(N)(I ′),N, V ∪ I, V + ∪ I ′,N)
in 〈[〈I, (I −Wm), O′, 〉; ~U ], ~W 〉

endif)
In the definitions below, we assume that V2 ⊆ V1.

r̃pre(N)∧(V1, V2) = ~Wm, where
W0 = V1

Wi+1 = Wi ∩ (V2 ∪ p̃re(N)(Wi))
Wm = p̃re(N)(Wm)

rpre(N)∧(V1, V2) = ~Wm, where
W0 = V1
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Wi+1 = Wi ∩ (V2 ∪ pre(N)(Wi))
Wm = pre(N)(Wm)

EUMC(ϕ1, ϕ2, I,N, V, Vϕ1ϕ2 , Vϕ2) =
let O′′ = WMC(ϕ2, I,N)
〈 ~U ′′, ~W ′′〉 = O′′

I ′′ = U ′′0 .B
O′ = WMC(ϕ1, I

′′,N)
〈 ~U ′, ~W ′〉 = O′

I ′ = I ′′ − (V ∪ U ′0.B)
Vϕ2 = Vϕ2 ∪ U ′′0 .B;
Vϕ1ϕ2 = Vϕ1ϕ2 ∪ U ′0.B;
in (if I ′ = ∅

then
let ~Wm = r̃pre(N)∧(Vϕ2 , Vϕ1ϕ2)
in S = 〈[〈I, (I ′ ∩Wm), O′, O′′〉], ~W 〉

else
let 〈~U, ~Wm〉 = EUMC(ϕ1, ϕ2, post(N)(I ′),N, V ∪ I,

Vϕ1ϕ2 , Vϕ2)
in 〈[〈I, (I ′ ∩Wm), O′, O′′〉; ~U ], ~W 〉

endif)

ERMC(ϕ1, ϕ2, I,N, V, Vϕ2 , Vϕ2ϕ1) =
let O′′ = WMC(ϕ2, I,N);
〈 ~U ′′, ~W ′′〉 = O′′;
I ′′ = I − U ′′0 .B;
O′ = WMC(ϕ1, I

′′,N);
〈 ~U ′, ~W ′〉 = O′;
I ′ = U ′0.B − V ;
Vϕ2 = Vϕ2 ∪ (I − U ′′0 .B)
in (if I ′ = ∅

then
let ~Wm = rpre(N)∧(Vϕ2 , Vϕ2ϕ1)
in S = 〈[〈I, (I ′ −Wm), O′, O′′〉], ~W 〉

else
let 〈~U, ~Wm〉 = ERMC(ϕ1, ϕ2, post(N)(I ′),N,

V ∪ I, Vϕ2 , Vϕ2ϕ1 ∪ I ′)
in 〈[〈I, (I ′ −Wm), O′, O′′〉; ~U ], ~W 〉

endif)

AXMC(ϕ, I,N) =
let O′ = WMC(p, post(N)(I),N);
〈 ~U ′, ~W ′〉 = O′;
~W = [pre(N)(U ′0.B)]
in 〈[〈I, I ∩W0, O

′, 〉; ~U ′], ~W 〉
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AFMC(ϕ, I,N, V, V −) =
let O′ = WMC(ϕ, I,N);
〈 ~U ′, ~W ′〉 = O′;
I ′ = U ′0.B − V
in (if I ′ = ∅

then
let ~Wm = pre(N)∧(V −)
in S = 〈[〈I, U ′0.B ∩Wm, R〉], ~W 〉

else
let 〈~U, ~Wm〉 = AFMC(ϕ, post(N)(I ′),N, V ∪ I, V − ∪ I ′,N)
in 〈[〈I, (I ∩Wm), O′, 〉; ~U ], ~W 〉

endif)

AGMC(ϕ, I,N, V, V +) =
let O′ = WMC(ϕ, I,N);
〈 ~U ′, ~W ′〉 = O′;
I ′ = I − (V ∪ U ′0.B)
in (if I ′ = ∅

then
let ~Wm = p̃re∧(N)(V +)
in S = 〈[〈I, I −Wm, O

′〉], ~W 〉
else

let 〈~U, ~Wm〉 = AGMC(ϕ, post(N)(I ′),N, V ∪ I, V + ∪ I ′,N)
in 〈[〈I, (I −Wm), O′, 〉; ~U ], ~W 〉

endif)

AUMC(ϕ1, ϕ2, I,N, V, Vϕ1ϕ2 , Vϕ2
) =

let O′′ = WMC(ϕ2, I,N);
〈 ~U ′′, ~W ′′〉 = O′′;
I ′′ = U ′′0 .B;
O′ = WMC(ϕ1, I

′′,N);
〈 ~U ′, ~W ′〉 = O′;
I ′ = I ′′ − (V ∪ U ′0.B);
Vϕ2 = Vϕ2 ∪ U ′′0 .B;
Vϕ1ϕ2 = Vϕ1ϕ2 ∪ U ′0.B
in (if I ′ = ∅

then
let ~Wm = rpre(N)∧(Vϕ2 , Vϕ1ϕ2)
in 〈[〈I, (I ′ ∩Wm), O′, O′′〉], ~W 〉

else
let 〈~U, ~Wm〉 = AUMC(ϕ1, ϕ2, post(N)(I ′),N, V ∪ I,

Vϕ1ϕ2 , Vϕ2)
in 〈[〈I, (I ′ ∩Wm), O′, O′′〉; ~U ], ~W 〉

endif)
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ARMC(ϕ1, ϕ2, I,N, V, Vϕ2 , Vϕ2ϕ1) =
let O′′ = WMC(ϕ2, I,N);
〈 ~U ′′, ~W ′′〉 = O′′;
I ′′ = I − U ′′0 .B;
O′ = WMC(ϕ1, I

′′,N);
〈 ~U ′, ~W ′〉 = O′;
I ′ = U ′0.B − V ;
Vϕ2 = Vϕ2 ∪ (I − U ′′0 .B)
in (if I ′ = ∅

then
let ~Wm = r̃pre(N)∧(Vϕ2 , Vϕ2ϕ1)
in S = 〈[〈I, (I ′ −Wm), O′, O′′〉], ~W 〉

else
let 〈~U, ~Wm〉 = ARMC(ϕ1, ϕ2, post(N)(I ′),N,

V ∪ I, Vϕ2 , Vϕ2ϕ1 ∪ (I ′′ − I ′))
in 〈[〈I, (I ′ −Wm), O′, O′′〉; ~U ], ~W 〉

endif)
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