
Verification by Abstraction?

Natarajan Shankar

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA
shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/
Phone: +1 (650) 859-5272 Fax: +1 (650) 859-2844

Abstract. Verification seeks to prove or refute putative properties of
a given program. Deductive verification is carried out by constructing a
proof that the program satisfies its specification, whereas model checking
uses state exploration to find computations where the property fails.
Model checking is largely automatic but is effective only for programs
defined over small state spaces. Abstraction serves as a bridge between
the more general deductive methods for program verification and the
restricted but effective state exporation methods used in model checking.
In verification by abstraction, deduction is used to construct a finite-
state approximation of a program that preserves the property of interest.
The resulting abstraction can be explored for offending computations
through the use of model checking. We motivate the use of abstraction
in verification and survey some of the recent advances.

1 Introduction

The goal of verification is to prove or refute the claim that a given program has a
specified property. Deductive methods for imperative programs use program an-
notations to generate verification conditions that can be discharged using an au-
tomated theorem prover [Hoa69]. Model checking [CGP99] is an automatic ver-
ification technique based on explicit or symbolic state-space exploration that is
applicable to finite-state programs and a limited class of infinite-state programs.
The deductive approach requires annotations and manual guidance, whereas
model checking does not scale well to large or infinite-state systems. Abstraction
can serve as a bridge between these two methods yielding the benefit of gener-
ality, scale, and automation. A property-preserving abstraction of a program P
and a property B is another program P̂ and property B̂ such that the verifica-
tion P |= B follows from P̂ |= B̂. If the claim P̂ |= B̂ can be verified by model
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checking, and P̂ and B̂ can be automatically constructed from P and B, then we
have a powerful verification method that does not depend on manually supplied
program annotations.

Deduction can be used to automate the construction of P̂ and B̂ from P . The
proof obligations required to construct property-preserving abstractions can usu-
ally be discharged by means of efficient decision procedures. The theorem proving
involved in constructing property-preserving abstractions is also failure tolerant :
the failure to discharge a valid proof obligation might yield a coarser abstraction
but does not lead to unsoundness. The power of model checking is also enhanced
through the use of abstraction to prune the size of the state space to manageable
levels. Since the abstract model loses information, model checking can generate
counterexamples that do not correspond to feasible behaviors at the concrete
level. The concrete counterparts of abstract counterexamples can be examined
using efficient decision procedures and used to refine the abstraction relation.
Known properties of the concrete system can be used to sharpen the precision
of the abstract model. Amir Pnueli in his invited talk1 at CAV 2002 identified
property-preserving abstraction as one of the cornerstones of a successful verifi-
cation methodology. The abstraction paradigm brings about a useful synthesis
of deduction and model checking where deduction is used locally to approxi-
mate individual formulas and transition rules, and exploration is used globally
to calculate, for example, the reachable states on the abstract model. We briefly
explain the basic ideas underlying verification by abstraction and summarize
some of the recent advances.

2 Abstract Interpretation

The foundations of verification by abstraction go back to the abstract inter-
pretation framework of Cousot and Cousot [CC77, CH78], but practical and
general techniques for their use in verification are of more recent vintage. Ab-
stract interpretation operates between a concrete partial order C and an abstract
one A related by means of a Galois connection which is a pair (α, γ) of maps:
α from C to A, and γ from A to C, such that for any a ∈ A and c ∈ C,
α(c) ≤A a⇔ c ≤C γ(a). Intuitively, γ(a) is the greatest concretization of a, and
α(c) is the least abstraction for c, on the respective partial orders. Note that
c ≤C γ(α(c)) and α(γ(a)) ≤A a for any c ∈ C and a ∈ A. The maps α and γ
are order-preserving.

If 〈C,≤C〉 and 〈A,≤A〉 are complete lattices, then they admit least and greatest
fixpoints of monotone operators. If FC is a monotone operator on C, then µFC
is the least fixpoint of F in C and can be defined as

⋂
{X|FC(X) ≤C X}. It is

possible to derive an abstract operator F̂C = α◦FC ◦γ from a concrete operator
FC . It is easy to see that µFC ≤C γ(µF̂C). Furthermore, if F (a) ≤A F ′(a) for
1 The slides from this talk are available at http://www.wisdom.weizmann.ac.il/
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+̂ 0 +1 −1 >
0 0 +1 −1 >

+1 +1 +1 > >
−1 −1 > −1 >
> > > > >

−̂ 0 +1 −1 >
0 0 −1 +1 >

+1 +1 > +1 >
−1 −1 −1 > >
> > > > >

Fig. 1. Abstract versions of + and −

all a ∈ A, µF ≤A µF ′. In particular, if F̂C(a) ≤ FA(a) for all a ∈ A, then
µFC ≤ γ(µFA). We write µX : F [X] as a shorthand for µ(λX : F [X]). Linear-
time and branching-time temporal operators from logics such as CTL, LTL, and
CTL* can be expressed in terms of least and greatest fixpoints of monotone
predicate transformers on the lattice of predicates or sets of states.

The approximation of concrete fixpoints by abstract fixpoints over a finite space
can be used to derive concrete properties. A program over a state space Σ is
given by an initialization predicate I and a binary next-state relation N over Σ.
The concrete lattice C corresponding to Σ is the boolean algebra of predicates
over Σ. Given such a program, the set of reachable states is characterized by
µX : I ∨ post(N)(X), where post(N)(X) = {s′ ∈ Σ|(∃(s : Σ) : N(s, s′)}. This
is the strongest invariant of the program. Iteration is one way to compute the
fixpoint as the limit of I ∨ post(N)(I) ∨ post(N)(post(N)(I)) ∨ . . ., but this
computation might not terminate when the state space Σ is infinite.

As a running example, we consider a program π over a state space Σ consisting
of an input integer variable x and an output integer variable y. The initialization
predicate Iπ is given by y = 0 and transition relation Nπ between the current
(unprimed) state and the next (primed) state is given by the formula

(x ≥ 0 ∧ y′ = y + x) ∨ (x ≤ 0 ∧ y′ = y − x).

The task is to verify the invariant y ≥ 0. It can be verified that the postcon-
dition computation µX : Iπ ∨ post(Nπ)(X) on this transition system does not
converge. We can use an abstract lattice to compute an approximation ̂post(Nπ)
to post(Nπ). For this purpose, we use a sign abstraction for the integer domain
given by an abstract domain D = {0,+1,−1,>}, where γ(0) is the set {0},
γ(+1) is the set of non-negative integers [0,∞), γ(−1) is the set of non-positive
integers (−∞, 0], and γ(>) is the set of integers (−∞,∞). The operations + and
− on integers can be lifted to the corresponding operations +̂ and −̂ on D as
shown in Figure 1. The table of entries in Figure 1 can be precomputed using
theorem proving.

The domain D is a finite lattice as is D ×D where the first projection is repre-
sented by x̂ and the second projection by ŷ, and γ(〈x̂, ŷ〉) is just 〈γ(x̂), γ(ŷ)〉. It is
easy to see that the initialization predicate Iπ is approximated by α(Iπ) = 〈>, 0〉.
With u and t as the meet and join operations on the lattice D, the postcondition
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operator post(Nπ) can be approximated by

̂post(Nπ) = 〈〈x̂, ŷ〉 7→ 〈>, (ŷ+̂(+1 u x̂)) t (ŷ−̂(−1 u x̂))〉〉.

The fixpoint µX̂ : α(Iπ) t ̂post(Nπ)(X̂) can be calculated to yield 〈>,+1〉. The
concretization γ(〈>,+1〉) of the abstract fixpoint yields the concrete invariant
y ≥ 0.

The abstraction can also map to an infinite domain, in which case acceleration
techniques like widening and narrowing [CC77, CC92] have to be used to make
the fixpoint computations converge. Techniques based on abstract interpretation
and fixpoint calculations have been widely used in invariant generation [BBM97,
BLS96,GS96,DLNS98,JH98,TRSS01].

3 Property-Preserving Abstraction

In the example above, the sign abstraction allowed us to approximate a fixpoint
computation over a concrete lattice by one over an abstract finite lattice. In order
to use model checking to explore the abstraction, we need to generate an abstract
transition system that preserves the desired property of the concrete transition
system. The formal use of abstraction in model checking was considered by Kur-
shan [Kur93]. Clarke, Grumberg, and Long [CGL92] gave a data abstraction
method that preserved ∀CTL* (and hence, LTL) properties by demonstrating
a simulation relation between the concrete and abstract systems. Dams, Gerth,
and Grumberg [DGG94, Dam96] showed that a bisimulation relation between
the abstract and concrete systems preserves CTL* properties. The relationship
between abstract interpretation and the familiar simulation and bisimulation re-
lations used to obtain property preservation, has been studied by Loiseaux, Graf,
Sifakis, Bensalem, and Bouajjani [LGS+95]. Kesten and Pnueli [KP98] present
a data abstraction method for fair transition systems with respect to linear-time
temporal logic (LTL) properties. Approximate model checking algorithms based
on abstract interpretation for mu-calculus and CTL have been given by Pardo
and Hachtel [PH97].

The main challenge in using abstraction in the verification of temporal properties
is that of constructing the abstract program P̂ and propertyB̂, from the concrete
program P and property B. When P is itself a finite-state program given by
〈I,N〉, and the abstraction between the concrete state space Σ and the abstract
state space Σ̂ is given by a relation ρ, then the abstract initialization Î can
be constructed so that Î(ŝ) = (∃s : ρ(s, ŝ) ∧ I(s)) and the transition relation
N̂ can be computed from the concrete one as ρ−1 ◦ N ◦ ρ. Both Î and N̂ can
be represented as reduced ordered binary decision diagrams for the purposes of
symbolic model checking. Such an abstraction can be shown to preserve ∀CTL*
properties.
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+̂ 0 +1 −1

0 {0} {+1} {−1}
+1 {+1} {+1} {0,−1,+1}
−1 {−1} {0,−1,+1} {−1}
−̂ 0 +1 −1

0 {0} {−1} {+1}
+1 {+1} {0,−1,+1} {+1}
−1 {−1} {−1} {0,−1,+1}

Fig. 2. Data Abstraction of + and −

3.1 Syntactic Data Abstraction

Data abstraction is based on assigning individual abstract values to subsets of
a data domain so that a concrete variable over an infinite domain, like x in
the program π above, is replaced by an abstract variable, x̂, over a finite do-
main. We have already used data abstraction in the analysis of the example
program P above. The Bandera program analysis tool [CDH+00], the Cadence
SMV model checker [McM98], and the SCR verification tool [HKL+98] employ
precomputed data abstractions to syntactically transform a transition system to
a corresponding abstract one. For the case of the program π considered above,
we can take the abstract data domain D to be {0,+1,−1} where γ({0}) = {0},
γ({+1}) = (0,∞), γ({−1}) = (−∞, 0), and γ(X̂ ∪ Ŷ ) = γ(X̂) ∪ γ(Ŷ ). The
abstract operations +̂ and −̂ can then be precomputed using theorem proving
as shown in Figure 2.

The program π̂ can then be syntactically computed [Sha02] so that Iπ̂ = (ŷ =
0) and Nπ̂ = (x̂ ∈ {0,+1} ∧ ŷ′ ∈ ŷ+̂x̂) ∨ (x̂ ∈ {0,−1} ∧ ŷ′ ∈ ŷ−̂x̂). Model
checking can be used to compute the set of reachable abstract states as µX̂ :
I ∨ post(N̂)(X̂) to yield the invariant ŷ ∈ {0,+1}. The concrete counterpart of
the abstract invariant is the desired concrete invariant y ≥ 0.

3.2 Predicate Abstraction

Predicate or boolean abstraction is another way of reducing an infinite-state sys-
tem to a finite-state one by introducing boolean variables that correspond to
assertions over the (possibly infinite) state of a program. Predicate abstraction
was introduced by Graf and Säıdi [SG97] as a way of computing invariants by
abstract interpretation. In this form of abstraction, boolean variables b1, . . . , bn
are used to represent concrete predicates p1, . . . , pn. The concrete lattice consists
of predicates over the concrete state space Σ and the abstract lattice consists of
monomials, i.e., conjunctions over literals, bi or ¬bi, over the abstract boolean
variables. The concrete reachability assertion µX : I ∨ post(N)(X) can be ap-
proximated by γ(µX : Î ∨ post(N̂)(X)). Here γ(p̂) for an abstract assertion p̂
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is the result of substituting the concrete assertion pi corresponding to the ab-
stract boolean variable bi. The abstract initialization predicate Î is computed
as α(I), where α(p) =

∧
{li| ` p ⊃ γ(li)} where each li is either bi or ¬bi.

Deduction is used in the construction of the α(p). The strongest invariant is
then computed iteratively as µX : α(I)∨α(post(N)(γ(X))). In each step of the
iteration, the partial invariant X is concretized as γ(X), the concrete postcondi-
tion post(N)(γ(X)) is computed, and then abstracted using the definition of α
given above. Since the state space of the abstract program is finite, the abstract
reachability computation converges.

For the program π, the abstraction predicates are given by γ(b) = (y ≥ 0).
The abstraction of the initialization predicate, α(Iπ), is computed to be b. The
iteration step post(Nπ)(y ≥ 0) yields y ≥ 0 and α(y ≥ 0) is clearly b. This
therefore yields the abstract invariant b as the fixpoint, and γ(b) is the desired
invariant y ≥ 0. Graf and Säıdi further noticed that many typical abstraction
predicates can be obtained from the initialization, guards, and assignments in the
program, and only a few have to be introduced manually. Abstract reachability
computation has also been studied by Das, Dill, and Park [DDP99] for the full
boolean lattice instead of the monomial lattice.

Graf and Säıdi [SG97] gave a method for calculating the abstract transition
relation in terms of monomials. We have already seen how I can be abstracted
as α(I). The next state relation N can be abstracted as

∨
{p̂ ∧ q̂′|p̂ ∈ M, q̂ =

α(post(N)(γ(p̂)))}, where M is the set of monomials over the abstract boolean
variables bi, q̂′ =

∧
i l
′
i for q̂ =

∧
i li. The weakest liberal precondition of a

transition relation p̃re(N)(p) is defined as {s : Σ|(∀s′ : N(s, s′) ∧ p(s′))}. Since
post(N)(q) ⊃ p ⇐⇒ q ⊃ p̃re(N)(p) (a Galois connection), we can compute
α(post(N)(q)) using p̃re(N)(p) which is more easily computed syntactically from
the program. Note, however, that the abstract reachability computation µX :
α(I) ∨ α(post(N)(γ(X))) can be more precise than µX : α(I) ∨ post(N̂)(X) at
the cost of requiring more calls to the theorem prover since the abstraction is
computed at each iteration. A variant of the Graf-Säıdi method is used in the
SLAM project at Microsoft [BMMR01] for analyzing C programs.

Other methods have been proposed for constructing boolean abstractions. In
the InVest system [BLO98], Bensalem, Lakhnech, and Owre use the elimination
method to construct the abstract transition graph so that a transition 〈ŝ, ŝ′〉 is
eliminated from the abstract transition relation N̂ if ` γ(s) ⊃ p̃re(N)(¬γ(s′)).
Each abstract state s is a monomial of the form

∧
i∈[0,n) li. Methods for construct-

ing predicate abstractions based on the full boolean lattice have been explored by
Colón and Uribe [CU98], Das, Dill, and Park [DDP99], Säıdi and Shankar [SS99],
and Flanagan and Qadeer [FQ02].

The Säıdi–Shankar method has been implemented in an abstractor for PVS 2.4
that integrates both predicate and data abstraction [Sha02]. In this enumeration
method, the abstract overapproximation α(p) of a concrete predicate p is com-
puted as the conjunction of clauses c such that ` p ⊃ γ(c), where each clause is
a disjunction of literals li that are relevant to p. The criterion of relevance was
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introduced in InVest [BLO98]. A relation bi ∼ bj holds between two abstract
variables if vars(γ(bi)) ∩ vars(γ(bj)) 6= ∅, where vars(p) is the set of concrete
program variables in p. The ∼ relation is also closed under transitivity so that it
is an equivalence relation. Let [bi] represent the equivalence class of bi under ∼,
and vars([bi]) be the set

⋃
{vars(b)|b ∈ [bi]}. The boolean variable bi is relevant

to p if vars(p)∩ vars([bi]) 6= ∅. The clauses c are generated in order of increasing
length and tested with the proof goal p ⊃ γ(c). If clause c passes the test, i.e.,
p ⊃ γ(c) is provable, then any clause that is subsumed by c need not be tested.
If a clause d is such that c ∧ d is equivalent to a proper subclause of c then the
test must have failed, and hence d also need not be tested. The transition rela-
tion N can also be overapproximated as α(N) over 2n boolean variables. Data
abstraction where the target of the abstraction is an enumerated type can be
smoothly integrated with this method by extending the boolean case analysis in
the above enumeration to a multi-valued domain.

On the example program π, we can construct an abstraction where the sin-
gle abstract variable b represents the concrete predicate y ≥ 0. The predicate
abstraction process yields b for α(Iπ) and ¬b ∨ b′ for α(Nπ). Clearly, b is an
invariant for the resulting abstract transition system, and hence the concrete
invariant y ≥ 0 follows. Note that unlike the method shown in Section 3.1, the
abstraction here is not syntactic. Since the abstraction is not precomputed, it is
possible to construct a more econonomical abstract transition system but with
the cost of an exponential number of proof goals. The above enumeration method
requires the testing of 3n proof goals in the worst case, when n abstract boolean
variables are introduced.

3.3 Counterexample-Guided Abstraction

Counterexample-guided abstraction is an active current research topic in ab-
straction. Since the abstraction is only a conservative approximation of the con-
crete system, the abstract version of a concrete property may fail to hold of
the abstracted system. The verification then generates an abstract counterex-
ample. The validity of this counterexample can be examined at the concrete
level. If the counterexample is spurious, it is possible to refine the abstraction.
Such an idea was investigated by Sipma, Uribe, and Manna [SUM96] in the
context of explicit-state LTL model checking. The InVest system [BLO98] ex-
amines the failure of the concretized counterexamples to suggest new predicates.
Rusu and Singerman [RS99] propose a tight integration of theorem proving and
model checking where the deductive proof is used to suggest predicates and iden-
tify spurious counterexamples, and model checking on the abstraction generates
useful invariants that are fed back to the theorem prover. The verification pro-
ceeds until either a proof is successfully completed or a valid counterexample is
generated. Clarke, Grumberg, Jha, Lu, and Veith [CGJ+00] have also studied
counterexample-guided refinement in the context of the abstraction of finite-
state systems as a way of suggesting new abstraction predicates. Säıdi [Säı00]
introduces new predicates to eliminate nondeterminism in the abstract model.
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Das and Dill [DD01] use a partial abstraction technique that is refined through
the elimination of spurious counterexamples. The intuition here is that since
transition systems are typically sparse when seen as graphs, the construction
of the precise abstract transition system can be wasteful. The Das–Dill method
starts with a coarsely abstracted transition system with respect to a given set of
abstraction predicates. Such an initial approximation can be obtained by placing
some bound on the proof goals used in constructing the abstract transition re-
lation. Model checking is used to construct a possibly spurious counterexample.
A decision procedure is used to isolate the abstract transition that is concretely
infeasible. The conflict set corresponding to the infeasible transition yields the
minimal subset of literals that are sufficient for guaranteeing infeasibility. The
negation of conjunction of the literals given by the conflict set is conjoined to
the abstract transition relation to yield a more refined abstract transition rela-
tion where the spurious counterexample has been eliminated. The next round of
the iteration repeats the model checking using the refined abstraction. The lazy
abstraction method of Henzinger, Jhala, Majumdar, and Sutre [HJMS02] inte-
grates the refinement and model checking procedures so that the verified parts
of the state space are not re-explored in subsequent iterations.

3.4 Abstractions Preserving Liveness

Näıve abstractions are typically not useful for verifying liveness properties since
the abstraction can introduce nonterminating loops that do not occur in the cor-
responding concrete system. Liveness properties are preserved in the sense that
they do hold of the concrete system when provable of the abstract system, but
the latter situation is largely hypothetical. For example, in the example program
P above, we may wish to show that if the input x is infinitely often non-zero,
then output y is unbounded. This property fails to hold of the abstract program
even when we enrich the abstraction with the predicates y ≤ M for a bound
M . We add a state variable r to the abstraction ranging over {dec, inc, same}
such that r is set to dec, inc, or same according to whether the rank M

.
− y

has decreased, increased, or remained the same. Since the rank is decreased
according to a well-founded order, we can introduce a fairness constraint assert-
ing that r cannot take the value dec infinitely often along a path unless it also
takes the value inc infinitely often. Abstraction techniques for progress properties
based on the introduction of additional fairness constraints have been studied
by Dams [Dam96], Merz [Mer97], Uribe [Uri98], Kesten and Pnueli [KP00], and
by Pnueli, Xu, and Zuck [PXZ02]. In this way, abstraction yields a relatively
complete verification method [KPV99] for the verification of LTL properties.

3.5 Abstracting Parameterized Systems

The verification of parametric systems consisting of n identical processes
through abstraction, has been studied through the network invariants method
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of Wolper and Lovinfosse [WL89] and Kurshan and McMillan [KM89]. Lesens
and Säıdi [LS97] combine predicate abstraction with a counting abstraction to
verify parameterized networks of processes. A similar 0-1-many abstraction has
been studied by Pong and Dubois [PD95] and Pnueli, Xu, and Zuck [PXZ02].
The PAX system [BBLS00] captures parametric systems using the WS1S logic
so that finite-state abstractions can be constructed using the MONA tool. The
resulting abstractions are model checked using SPIN [Hol91] or SMV [McM93].
The PAX tool has been used to verify safety and liveness properties of examples
including algorithms for mutual exclusion and group membership.

3.6 Abstracting Timed and Hybrid Systems

Timed and hybrid systems constitute natural candidates for abstraction. The re-
gion graph constructions used in model checking such systems is already a form
of abstraction [ACD93]. Colón and Uribe [CU98,Uri98] carried out a verification
of a two-process instance of Fischer’s real time mutual exclusion protocol using
predicate abstraction. Möller, Rueß, and Sorea [MRS02] present a predicate ab-
straction method for next-free temporal properties of timed systems that uses a
restricted semantics for time-flow to ensure non-Zeno behavior in the abstraction.
In this restricted semantics, each time increment must ensure that some clock ei-
ther reaches or crosses an integer boundary. Namjoshi and Kurshan [NK00] give
a method for systematically constructing abstraction predicates that is complete
for systems with finite bisimulations.

Khanna and Tiwari [TK02] give a qualitative abstraction method for hybrid
systems where the flows over a vector (x1, . . . , xn) are specified as ẋi =
fi(x1, . . . , xn), where fi(x1, . . . , xn) is a polynomial. The initial set Π0 of polyno-
mials is fixed to contain the flow polynomials fi(x1, . . . , xn) and the polynomials
occurring in the initializations, guards and assignments. The set Π0 is then en-
riched to obtain Π by adding the derivative ṗ for each polynomial p ∈ Π, unless
ṗ is a constant or a constant multiple of some polynomial q already in Π. The
construction of Π can be terminated at any point without affecting the sound-
ness of the abstraction. Then a sign abstraction with respect to these derivatives
is computed by introducing a variable sp ranging over {−,+, 0} for each p ∈ Π.
PVS augmented with the QEPCAD decision procedure [CH91] for the first-order
theory of real closed fields is used to determine the concrete feasibility of ab-
stract states. There is a transition on the abstract system from state ŝ to ŝ′ only
when the signs of the flows are consistent with the transition. For example, if sp
goes from + in ŝ to 0 in ŝ′ for a polynomial p, then sq must be − in ŝ for q = ṗ.
Discrete transitions are abstracted as shown earlier for transition systems. Alur,
Dang and Ivanc̆ić [ADI02] present a predicate abstraction technique for linear
hybrid automata.
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4 Conclusions

In summary, abstraction is a powerful verification paradigm that combines de-
duction and model checking. The keys to the effectiveness of abstraction are
that

1. Guessing useful abstraction maps is easier than identifying program anno-
tations and invariant strengthenings.

2. It makes use of failure-tolerant theorem proving, largely in effectively decid-
able domains, to deliver possibly approximate results.

3. The refinement of abstractions can be guided by counterexamples.
4. Abstraction interacts effectively with other verification techniques such as

invariant generation, progress verification, and refinement.

We have given a basic introduction to verification methods based on abstrac-
tion. The practicality of these abstraction techniques has been demonstrated
on several large examples. Flanagan and Qadeer [FQ02] have applied predicate
abstraction to a large (44KLOC) file system program and automatically derived
over 90% of the loop invariants. Predicate abstraction has also been used in the
SLAM project [BMMR01] at Microsoft to find bugs in device driver routines.

Abstraction is an effective approach to the verification of both finite and infinite-
state systems since it can be applied to large and complex systems with minimal
user guidance. The SAL (Symbolic Analysis Laboratory) framework [BGL+00]
developed at SRI provides a toolbus and an intermediate description language
for tying together a number of verification tools through the use of property-
preserving abstractions.
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[GS96] Susanne Graf and Hassen Säıdi. Verifying invariants using theorem proving.
In Alur and Henzinger [AH96], pages 196–207.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre.
Lazy abstraction. In ACM Symposium on Principles of Programming Lan-
guages02, pages 58–70. Association for Computing Machinery, January
2002.

[HKL+98] Constance Heitmeyer, James Kirby, Jr., Bruce Labaw, Myla Archer, and
Ramesh Bharadwaj. Using abstraction and model checking to detect safety
violations in requirements specifications. IEEE Transactions on Software
Engineering, 24(11):927–948, November 1998.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Comm.
ACM, 12(10):576–583, 1969.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, 1991.

[HP99] Nicolas Halbwachs and Doron Peled, editors. Computer-Aided Verification,
CAV ’99, volume 1633 of Lecture Notes in Computer Science, Trento, Italy,
July 1999. Springer-Verlag.

[HV98] Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Verification,
CAV ’98, volume 1427 of Lecture Notes in Computer Science, Vancouver,
Canada, June 1998. Springer-Verlag.

[JH98] Ralph Jeffords and Constance Heitmeyer. Automatic generation of state
invariants from requirements specifications. In Sixth ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, pages 56–69, Lake
Buena Vista, FL, November 1998. Association for Computing Machinery.

[KM89] R.P. Kurshan and K. McMillan. A structural induction theorem for pro-
cesses. In Eighth ACM Symposium on Principles of Distributed Computing,
pages 239–248, Edmonton, Alberta, Canada, August 1989.

[KP98] Yonit Kesten and Amir Pnueli. Modularization and abstraction: The keys
to practical formal verification. In Mathematical Foundations of Computer
Science, pages 54–71, 1998.

[KP00] Yonit Kesten and Amir Pnueli. Verification by augmented finitary abstrac-
tion. Information and Computation, 163(1):203–243, 2000.

[KPV99] Yonit Kesten, Amir Pnueli, and Moshe Y. Vardi. Verification by augmented
abstraction: The automata-theoretic view. In J. Flum and M. R. Artalejo,
editors, CSL: Computer Science Logic, volume 1683 of Lecture Notes in
Computer Science, pages 141–156. Springer-Verlag, 1999.



13

[Kur93] R.P. Kurshan. Automata-Theoretic Verification of Coordinating Processes.
Princeton University Press, Princeton, NJ, 1993.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6:11–44, 1995.
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