
SimCheck: An Expressive Type System for Simulink∗

Appeared in the Proceedings of the NASA Formal Methods (NFM) Symposium 2010

Pritam Roy
University of California Santa Cruz

Santa Cruz, CA, USA
pritam.roy@gmail.com

Natarajan Shankar
SRI Computer Science Laboratory

Menlo Park CA 94025 USA
shankar@csl.sri.com

Abstract

MATLAB Simulink is a member of a class of visual languages that are used for modeling and
simulating physical and cyber-physical system. A Simulink model consists of blocks with input and
output ports connected using links that carry signals. We extend the type system of Simulink with
annotations and dimensions/units associated with ports and links. These types can capture invariants
on signals as well as relations between signals. We define a type-checker that checks the well-
formedness of Simulink blocks with respect to these type annotations. The type checker generates
proof obligations that are solved by SRI’s Yices solver for satisfiability modulo theories (SMT).
This translation can be used to detect type errors, demonstrate counterexamples, generate test cases,
or prove the absence of type errors. Our work is an initial step toward the symbolic analysis of
MATLAB Simulink models.

1 Introduction

The MATLAB Simulink framework models physical and computational systems using hierarchical block
diagrams. Simulink provides the framework for building and simulating systems from a set of basic
building blocks and libraries. Blocks have input and output ports and the ports of different blocks are
connected via links. Simulink has a basic type system for annotating ports and links, along with a limited
capability for checking type correctness. There is, however, no systematic design-by-contract capability
for Simulink. We have developed a SimCheck capability that allows contracts [Mey97, ORSvH95] to be
specified by means of type annotations associated with the ports and links. SimCheck can be used to carry
out type inference for basic types, annotate links with expressive types, unit types, generate test cases,
capture interfaces and behaviors, monitor type conformance, and verify type correctness relative to such
expressive types. The SimCheck type system can be used to specify and verify high-level requirements
including safety objectives.

Unlike prior work [RdMH04, AC05, KAI+09, AKRS08, BHSO07, WCM+07] in the verification and
testing of Simulink/Stateflow designs, we pursue an approach that is closer to the correct-by-construction
paradigm. Our SimCheck tool is similar to the type-checker of the strongly-typed functional languages
(e.g. OCaml, Haskell etc.). The SimCheck tool is written in Matlab language and is integrated with
MATLAB Simulink. The designer can annotate the Simulink blocks with a type written in a simple
annotation language. SimCheck tool can type-check the model with respect to the type and provide
feedback to the designer whether the design behaves in the intended manner. If it does not, then the tool
generates the inputs that are responsible for the design to fail the type-checker. The designer can simulate
the generated test inputs on the design via dynamic monitoring of type constraints during simulation. The
designer can repeatedly fix the design and type-check the modified design in the design-cycle until the
SimCheck type-checker passes the design. Thus the integration of the SimCheck tool with the Simulink
diagrams provides a powerful, interactive tool to the designer.

∗This research was supported by NSF Grant CSR-EHCS(CPS)-0834810 and NASA Cooperative Agreement
NNX08AY53A.

pritam.roy@gmail.com
shankar@csl.sri.com

There is a long tradition of work on adding units and dimensions to type systems [ACL+05, Ken97,
Ken96]. Many system errors occur because of incompatibilities between units. For example, in 1985,
a strategic defense initiative (SDI) experiment went awry because the space shuttle pointed its mirror
at a point 10,023 nautical miles, instead of feet, above the earth. In 1999, the Mars Climate Orbiter
entered an incorrect orbit and was destroyed because of confusion between metric and imperial units of
measurement. Though Simulink deals primarily with physical quantities, we know of no prior work on
developing a type system with dimensions and units for it.

Each Simulink model consists of network of blocks. Each block has some common parameters: the
block label, the function, default initial values for state variables, and input and output ports. Blocks can
be hierarchical so that they are composed from sub-blocks connected by links. Simulink can be used to
model both continuous and synchronous systems. Each output of a Simulink block is a function of its
inputs. In a continuous-time model, the output of a block varies continuously with the input, whereas in
a discrete-time block, the signals are update synchronously in each time step. A block can also contain
state variables so that the output can be a function, in both the discrete and continuous-time models, of
the input and current state. We develop four analyzers for Simulink models:

1. An expressive type system that can capture range information on signals as well as relationships
between signals. Type correctness can be proved using the Yices solver.

2. A test case generator that produces inputs that conform to the specified type constraints, or that
illustrate type violations.

3. A unit analyzer that looks at the actual unit dimensions (length, mass, time, etc.) associated with a
numeric type.

4. A verifier for properties using bounded model checking and k-induction.

While we make heavy use of Yices to solve the constraints involved in type inference, analysis,
and test case generation, it is quite easy to plug in a different back-end solver. The target applications
for SimCheck are in various fields including hardware/protocol verification, Integrated Vehicle Health
Management (IVHM) and in cyber-physical systems (CPS). In these cases, the type system is used to
capture the safety goals of the system to generate monitors for the primary software in order to generate
alerts.

2 Types and Simulink

In Simulink, parameters, ports and signals have types. The basic types range over bool, int8, int16,
int32, uint8, uint16, uint32, and single and double floating point numbers. Complex
numbers are represented as a pair of numbers (integer or floating point). We ignore enumerated types
which contain string values. Fixed point real numbers are supported in an extension, but we do not
consider them here. The datatype for a port can be specified explicitly or it can be inherited from that
of a parameter or another port. The type of an output port can be inherited from a constant, an input
port, or even from the target port of its outgoing link. Simulink has structured types which are vectors or
matrices of the basic Simulink types. Simulink also supports objects and classes which are ignored here.
We do not address basic typechecking for Simulink since this is already handled by MATLAB. We add a
stronger type-checking to the built-in type-checker. In this paper, however, we focus on more expressive
type annotations for Simulink covering dimensions and units, predicate subtypes and dependent types,
and bounded model checking. A solver for Satisfiability Modulo Theories (SMT) can determine if a given
formula has a model relative to background theories that include linear arithmetic, arrays, data types, and

bit vectors. Yices[DdM06] is an SMT Solver developed at SRI International. Our annotations are written
in the constraint language of the Yices SMT solver. We use Yices as our main tool in checking contracts
and finding test cases and counterexamples. We provide a basic introduction to the Yices solver in the
Appendix.

3 Translation of Designs to the Yices Language

The translation scheme is illustrated with the example of the trajectory of a projectile. Figure 1 shows
the MATLAB model and it takes three inputs: the firing angle θ with respect to the horizontal, the initial
velocity v, and the height h0 above the ground. The model computes the horizontal and vertical distance
of the projectile at time t from the origin (0,0) via dx and dy respectively. The quantity vy denotes the
vertical velocity of the projectile.

Figure 1: Projectile Subsystem

Parsing MDL Files : Simulink diagrams are textually represented as mdl files. We have used the built-
in Simulink functions to create an abstract syntax tree (AST). Algorithm 1 resolves the types of every
signal by block and connector information. Matlab blocks generally have polymorphic types. All the
blocks in Figure 1 can take different types. However Yices is a strongly-typed language; so the algorithm
needs to resolve the types of each signal before the translation process. The algorithm traverses the
Simulink blocks from the source blocks (e.g. Constant blocks) and obtains the type information for the
ports /signals gradually. For some signals and ports the concrete type information is not available and
the tool creates an equivalence type-map for these variables. For example, type of v is equivalent to
the type of first input of Product block in Figure 1. The algorithm traverses the blocks in the design
in a Breadth-First Search (BFS) manner. The only interesting cases are when the algorithm dequeues
a subsystem block or an outport of a subsystem block. In the first case, the algorithm appends all the
inports of the subsystem block. The outport of a subsystem block appends the successor blocks of the
parent subsystem.

Algorithm 1 MDL2YICES (model)
visitedBlocks = /0

1. create the block transitions by parsing the connectors
2. push source blocks of the design into a queue
3. while queue is non-empty
4. block x = dequeue()
5. parse block x for description, type information and block-transitions
6. visitedBlocks = visitedBlocks ∪ {x}
7. if block is subsystem then append inports of x
8. else if block is an outport then append the successors of its parent subsystem
9. else append its successor of x
10. end if
11.end while
12.dump2yices(model,visitedBlocks,1)

Block Translation: The function dump2yices (Algorithm 2) translates every visited block and connec-
tor transition into the Yices language. The procedure printBlockInfo(block,d) dumps the type information
of the ports to the Yices file. The procedure also provides the transition-function of the block from the
input ports to the output ports.

Example 1. The type information and the block transitions of the Divide block are as follows:

(define Divide ::(-> real real real))
(define DivideIn1 :: real)
(define DivideIn2 ::(subtype (n :: real) (/= n 0)))
(define DivideOut :: real)
(assert (= DivideOut (Divide DivideIn1 DivideIn2)))

The algorithm printConnectors translates the connector assignments. Each connector signal obtains
the value and type from its source block. Similarly, the signal variables propagate the type and value to
its destination block inputs. We provide translation schemes for all other basic blocks in the Appendix.
The algorithm parseDescription parses the user-given annotations for the type-checking and verification
step. We describe the annotation grammar in the next section.

Algorithm 2 dump2yices(model,visitedBlocks,depth)
1. descr = ’ ’
2. for d ∈ {1,2, . . . ,depth+1}
3. for block ∈ visitedBlocks
4. descr = descr + parseDescription(block,d)
5. printBlockInfo(block,d)
6. end for
7. printConnectors(d)
8. end for

4 An Expressive Type System

In the SimCheck tool, the user can provide the constraints and properties for type-checking as well as ver-
ification via annotations. These annotations can be written as block descriptions or simulink annotation
blocks. The simple grammar of the annotation language has the following syntax:

blockannotation = def | constraints
def = scopedef | typedef | unitdef
scopedef = (input | output | local) <varname>
typedef = type <varname> :: <vartype>
unitdef = unit <varname> :: <varunitvalue>
constraints= (prop | check | iinv | oinv | bmcprop | kind) <expressions>

where, the terminal tokens are shown in bold. The start symbol of the grammar blockannotation consists
of two parts : definitions and properties. The definitions can provide the details about the scope, data-
type or units of the given signal. The tokens < varname >, < vartype >, < varunitvalue > denote the
scope, type, units of the signals respectively. The constraints are in either input-output invariant (tokens
iinv and oinv respectively) style or the assume-guarantee (tokens check and prop respectively) style. We
use the tokens bmcprop and kind for bounded-model-checking and k-induction purposes. The token
< expressions > denotes a prefix notation of the expression over the signal variables (syntactically the
same as Yices expressions). Figure 2(a) shows an example of user-given block description.

Compatibility Checking The user can provide various constraints over different Simulink blocks. The
tool checks the compatibility of the design with user-provided constraints. Let Cmodel and Cuser denote the
set of assertions from the model and user-provided constraints respectively. If the user-given constraints
are not satisfiable with respect to the Simulink design, then the tool declares that the design blocks are
not compatible with the constraints. In other words, the Yices solver returns unsat result for the query
∩cs∈(Cmodel∪Cuser)cs. There is no environment (i.e test input) that can satisfy the given user-constraints and
the design.

Example 2. For example, Figure 2(b) illustrates that the divider block only accepts non-zero inputs. If
the design connects constant zero to the second input of the divider block the design fails the compatibility
checking. The translation algorithm adds the following lines to the codes of Example 1:

(assert (= DivideIn2 0))
(check)

→ unsat

Dependent Types and Refinement Types: The expressive type-systems of the SimCheck tool are sim-
ilar to the PVS type-system and our tool supports predicate subtypes and dependent subtypes. Predicate
subtyping can be used to capture constraints on the inputs to a function, such as, the divisor for a division
operation must be non-zero. They can also be used to capture properties on the outputs, so that, for ex-
ample, the output of the absolute value function is non-negative. Finally, dependent typing can be used
to relate the type of an argument or a result to the value of an input. For example, we can constrain the
contents array of a stack data type to have a size equal to the size slot. We can also ensure that the length
of the result of appending two lists is the sum of the lengths of these two lists.

Example 3. Figure 3 shows the expressive power of the type-systems via thermostat example. The
output signal on can only take two integer values 0 and 1 (predicate subtype). The input signals ref and
houseTemp are dependent in such a way that the value of houseTemp should be always higher or equal
to 5 degrees below of ref (dependent types).

(a) Annotation Block (b) Compatibilty

Figure 2: Expressive Types

Figure 3: Thermostat Example with Dependent and RefinementTypes

With this kind of expressive typing, we can generate test cases that conform to input constraints.
The test criterion can itself be expressed as a type constraint. When a type constraint does not hold, we
can construct test cases that illustrate the violation. If no such violations are found, this validates type
correctness relative to the expressive type annotations. Of course, this assumes that we have a sound and
complete decision procedure for the proof obligations arising from such type constraints, but this is not
always the case. Many Simulink models are finite-state systems and expressive type checking can be
decidable, even if it is not practical. However, for the purpose of expressive type checking, we assume
that the signal types are taken from mathematical representations such as integers and real numbers.

Test Case Generation A test-case generator produces inputs that conform to the specified type con-
straints, or illustrate type violations. Let S and C denote the set of signals and user-constraints in a design
respectively. For every signal s ∈ S and for every constraint cs ∈C on signal s, the tool asks for the sat-
isfiability of the (¬cs)∩ (C \ cs). The Yices solver returns either a negative answer (unsat) or a positive
answer with a satisfying variable assignment. In the former case, we learn that there is no input that
can satisfy (¬cs)∩ (C \ cs). In the latter case, the variable assignment can provide a test-case that fails
exactly one of the user-given constraints and satisfies the other constraints.

Example 4. Figure 4 shows a design with various user-given input assumptions C = {(/ = s 0),(<=
x 8),(>= z 5)} of a design. Figure 2(a) shows the constraints of the Add block in the Figure 4. We can
verify that each of the three test-cases represents one case where all except one constraint is satisfied.

Figure 4: Test Case Generation

5 Property Verification via BMC and k-induction

Most practical designs contain memory elements and state variables; thus the effect of inputs spans
multiple clock-cycles. Hence, for a design with state-variables, the errors can only be detected with a
sequence of test inputs. The type checking for the sequential Simulink models can be extended to the
verification of the systems by bounded model-checking and k-induction algorithms. Algorithm 3 and
Algorithm 4 provide the pseudo-code for the bounded model checking and k-induction respectively for
a property φ and a user-given depth k.

Algorithm 3 BMC(k,vBlocks,φ ,model)
1. transition(1,k +1) = dump2yices(model,vBlocks,k)
2. ψ = ∨d∈{1,2,...,k+1}¬φd

3. check(transition,ψ)

Example 5. Figure 5 shows a design of a modulo-3 counter using 2 memory bits and an invariant
property that both bits cannot become 1 together. We have

transition(i, i+1) = (m0(i+1) = ¬(m0(i)∨m1(i)))∧ (m1(i+1) = (m0(i)∧¬(m1(i))))

and φi = ¬(m0(i)∧m1(i)). If the design is correct then the counter will never reach 3 and the given
property will hold for any k. For any user-given depth k, the bounded model checking (BMC) tool asks
the following query to the Yices solver : ∧i∈{1,2,...,k}transition∧ (∨i∈{1,2,...,k}¬φi). For a correct design,
the negated invariant property will never get satisfied and the BMC will return the unsat result .

Algorithm 4 K-Induction(k,vBlocks,φ ,model)
1. transition(1,k +1) = dump2yices(model,vBlocks,k)
2. ψ = (∧d∈{1,2,...,k}φd)∧¬φk+1
3. check (transition,ψ)

Figure 5: Bounded Model Checking

6 Specifying and Checking Dimensions

Most types in Simulink are numeric. Dimensions add interpretation to such types. A signal may have
a numeric type without indicating whether the numeric quantity represents force or volume. Dimension
checking can also highlight errors. For instance, the time derivative of distance should yield velocity, and
the time derivative of velocity should yield acceleration. Multiplying a mass quantity with an acceleration
quantity should yield a force. Each of these, distance, velocity, acceleration, mass, and force can also
be represented in different units. Confusion about units has led to some software-related failures. In
September 1999, NASA’s Mars Climate Orbiter was placed into a 57km orbit around Mars instead of
a 140-150km orbit because some calculations used pound force instead of Newtons. We use Novak’s
classification [Nov95] of units into a 7-tuple consisting of distance, mass, time, temperature, current,
substance, and luminosity. We have other dimensions like angle and currency, but these are distinct from
the basic ones considered above. The dimension of a quantity is represented as a 7-tuple of integers. For
example, 〈1,0,−1,0,0,0,0〉 represents velocity since it is of the form distance

time . A dimension of the form
〈0,0,0,0,0,0,0〉 represents a dimensionless scalar quantity. Figure 6 shows the projectile design and
the output of the dimension checker tool. The projectile subsystem block already shown in the Figure 1
We infer dimensions for Simulink signals from the annotations for the input signals and the outputs of
constant blocks. When a summation operation is applied to a set of input signals, the dimensions of
these signals must match, and the resulting summation has the same dimension. When two or more
inputs are multiplied, the dimension of the corresponding output is given by the pointwise summation of
the dimensions.

Figure 6: Unit and Dimensions

7 Related Work

Our work covers the verification and validation of MATLAB Simulink models through type annotations.
We use the Yices SMT solver to both verify type correctness as well as to generate test cases. We focus
in particular on expressive types that go beyond signal datatypes to capture dynamic ranges and rela-
tionships between signals. We also employ types to describe and check dimension and unit information.
Finally, we employ bounded model checking and k-induction to verify invariant properties and generate
counterexamples.

There is a substantial body of work [RdMH04, AC05, KAI+09, AKRS08, CK03, Sys, TSCC05,
WCM+07] in all of the above areas. The Reactis tool [Sys] generates and simulates test cases for
Simulink/Stateflow models including embedded C code. The Mathworks Simulink Design Verifier also
performs test generation. The Simulink Design Verifier is also capable of generating test cases and for
proving and refuting functional properties of Simulink blocks. The CheckMate tool [CK03] analyzes
properties of hybrid systems represented by Simulink/Stateflow models using a finite state abstraction of
the dynamics. The Honeywell Integrated Lifecycle Tools and Environment (HiLiTE) [BHSO07] from
Honeywell Research uses static analysis to constrain the ranges of inputs in order to generate test cases,
detect ambiguities and divide-by-zero errors, and unreachable code. The HiLiTE tool bases its analy-
sis on numeric techniques on a floating-point representation, whereas our approach is based on sym-
bolic constraint solving over the real numbers. The Simulink-to-Lustre translator defined by Tripakis, et
al [TSCC05], performs type inference on Simulink models and the resulting Lustre output can be ana-
lyzed using model checkers. The Gryphon tool suite [WCM+07] integrates a number of tools, including
model checkers, for analyzing properties of Simulink/Stateflow models.

There is a long tradition of work on adding units and dimensions to type systems. These are surveyed
in Kennedy’s dissertation [Ken96] where he presents a polymorphic dimension inference procedure.
Kennedy [Ken97] also proves that these programs with polymorphic dimension types are parametric so
that the program behavior is independent of the specific dimension, e.g., whether it is weight or length,
or its unit, e.g., inches or centimetres. The resulting type system, in which the numeric types are tagged
by dimension, has been incorporated into the language F#. The recently designed Fortress programming
language for parallel numeric computing also features dimension types [ACL+05]. We use an approach
to dimensions that is based on a fixed set of seven basic dimensions. Operations are parametric with
respect to this set of dimensions. The type is itself orthogonal to the dimension, so that it could be an
int32, float, or double, and still have a dimension corresponding to the weight. We use an SMT
solver to perform type inference with dimensions, and use scaling to bridge mismatched units.

8 Future Directions

This work is our first step toward type-based verification of physical and cyber-physical models described
in Simulink. Our work can be extended in a number of directions. Many models also contain Simulink
blocks to represent discrete control in the form of hierarchical state machines. For static type checking
and bounded model checking, we can extract the relationships between inputs and outputs of the State-
flow descriptions. We can also associate interface types that capture the temporal input-output behavior
of Stateflow state machines. Our current translation to Yices maps the Simulink bounded integer types
to the unbounded integer types of Yices, and the floating point types of Simulink are mapped to the real
numbers in Yices. This makes sense for checking the idealized behavior of the models. We can also
map these types to their bounded representations or even directly to bit vectors. The latter translations
are more useful when checking the execution behavior of the models or in validating the code gener-
ated from the models. The SimCheck type system and Yices translation can also be extended to capture

more extensive checking of Simulink models. We would like to extend our checks to cover Simulink
S-functions which are primitive blocks defined in the M language. We also plan to cover other properties
such as the robustness of the model with respect to input changes, error bounds for floating point compu-
tations, and the verification of model/code correspondence through the use of test cases [BHSO07]. The
type system can also be extended to handle interface types [dAH01] that specify behavioral constraints
on the input that ensure the absence of type errors within a block. Finally, we plan to translate Simulink
models to SAL and HybridSAL representations for the purpose of symbolic analysis.

9 Conclusions

We have outlined an approach to the partial verification of Simulink models through the use of an ex-
pressive type system. This type system can capture constraints on signals, the dimensions and units of
signals, and the relationships between signals. Our annotations are already expressed in the constraint
language of Yices. The resulting proof obligations are translated to the Yices constraint solver which is
then used to check compatibility with respect to dimensions, generate counterexamples and test cases,
and to prove type correctness. We also use Yices to perform bounded model checking and k-induction
to refute or verify type invariants. SimCheck represents a preliminary step in exploiting the power of
modern SAT and SMT solvers to analyze the Simulink models of physical and cyber-physical systems.
Our eventual goal is to use this capability to certify the correctness of such systems.

References

[AC05] M. M. Adams and Philip B. Clayton. ClawZ: Cost-effective formal verification for control systems.
In Kung-Kiu Lau and Richard Banach, editors, Formal Methods and Software Engineering, 7th Inter-
national Conference on Formal Engineering Methods, ICFEM 2005, Manchester, UK, November 1-4,
2005, Proceedings, volume 3785 of Lecture Notes in Computer Science, pages 465–479. Springer,
2005.

[ACL+05] Eric Allen, David Chase, Victor Luchango, Jan-Willem Maessen, Sukyoung Ryu, Jr. Guy L. Steele,
and Sam Tobin-Hochstadt. The Fortress language specification, version 0.618. Technical report, Sun
Microsystems, Inc., 2005.

[AKRS08] Rajeev Alur, Aditya Kanade, S. Ramesh, and K. C. Shashidhar. Symbolic analysis for improving
simulation coverage of Simulink/Stateflow models. In Proceedings of the 8th ACM & EMSOFT
2008, Atlanta, USA, October 19-24, pages 89–98. ACM, 2008.

[BHSO07] D. Bhatt, S. Hickman, K. Schloegel, and D. Oglesby. An approach and tool for test generation from
model-based functional requirements. In Proc. 1st International Workshop on Aerospace Software
Engineering, 2007.

[CK03] A. Chutinan and B. Krogh. Computational techniques for hybrid system verification. IEEE Transac-
tions on Automatic Control, 48(1):64–75, Jan. 2003.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. SIGSOFT Softw. Eng. Notes,
26(5):109–120, 2001.

[DdM06] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T). In 18th CAV
2006, Seattle, WA, USA, August 17-20, volume 4144 of Lecture Notes in Computer Science, pages
81–94. Springer, 2006.

[KAI+09] Aditya Kanade, Rajeev Alur, Franjo Ivancic, S. Ramesh, Sriram Sankaranarayanan, and K. C.
Shashidhar. Generating and analyzing symbolic traces of Simulink/Stateflow models. In 21st CAV,
Grenoble, France, June 26 - July 2, 2009, volume 5643 of LNCS, pages 430–445. Springer, 2009.

[Ken96] A. J. Kennedy. Programming Languages and Dimensions. PhD thesis, University of Cambridge,
1996. Published as University of Cambridge Computer Laboratory Technical Report No. 391.

[Ken97] Andrew J. Kennedy. Relational parametricity and units of measure. In The 24th ACM POPL ’97),
pages 442–455, January 1997.

[Mey97] Bertrand Meyer. Design by contract: Making object-oriented programs that work. In TOOLS (25),
page 360, 1997.

[Nov95] Gordon S. Novak. Conversion of units of measurement. IEEE TSE, 21(8):651–661, 1995.
[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal verification for fault-

tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineer-
ing, 21(2):107–125, February 1995.

[RdMH04] John Rushby, Leonardo de Moura, and Grégoire Hamon. Generating efficient test sets for Matlab/S-
tateflow designs. Task 33b report for Cooperative Agreement NCC-1-377 with Honeywell Tucson
and NASA Langley Research Center, Computer Science Laboratory, SRI International, Menlo Park,
CA, May 2004.

[Sys] Reactive Systems. Model based testing and validation with Reactis, Reactive Systems inc.,
http://www.reactive-systems.com.

[TSCC05] Stavros Tripakis, Christos Sofronis, Paul Caspi, and Adrian Curic. Translating discrete-time simulink
to lustre. ACM Trans. Embed. Comput. Syst., 4(4):779–818, 2005.

[WCM+07] Michael W. Whalen, Darren D. Cofer, Steven P. Miller, Bruce H. Krogh, and Walter Storm. Integra-
tion of formal analysis into a model-based software development process. In Stefan Leue and Pedro
Merino, editors, FMICS, volume 4916 of Lecture Notes in Computer Science, pages 68–84. Springer,
2007.

A Appendix

A.1 Satisfiability Modulo Theories and Yices

The formula language for Yices is similar to that of PVS and is quite expressive. It includes a higher-
order logic with predicate subtypes and dependent types. Interaction with Yices occurs through some
basic commands

1. (define 〈identi f ier〉 :: 〈type〉〈expression〉): Defines a constant.

2. (assert 〈 f ormula〉): Asserts a formula to the context.

3. (check): Checks if the context is satisfiable.

There are other commands for resetting the context, pushing and popping contexts, setting various flags,
and invoking weighted satisfiability. As a simple example, Yices responds with unsat to the input

(define x::real)
(assert (< (+ x 1) x))

Yices also returns unsat on the following integer constraints.

(define i::int)
(assert (> i 0))
(assert (<= (* 2 i) 1))

On the other hand, if we relax the second constraint to a non-strict inequality, we get sat with an
assignment of 0 for i.

(define i::nat)
(assert (<= (* 2 i) 1))
(check)

Yices can of course handle large problems with thousands of variables and constraints involving
Booleans, arrays, bit vectors, and uninterpreted function symbols. We can run Yices in the batch mode :
./yices ex1.ys. Yices also provides a basic typechecker.

A.2 Block Translation Details

Memory Blocks One memory element with initial value 70 can be translated in two consecutive clock
cycles as follows:

(define Memory__Out1__time1 :: real)
(define Memory__In1__time1 :: real)
(assert (= 70 Memory__Out1__time1))
(define Memory__Out1__time2 :: real)
(define Memory__In1__time2 :: real)
(assert (= Memory__Out1__time2 Memory__In1__time1))

Basic Blocks We exploit the Yices operators directly to translate basic arithmetic and logical operator
blocks. For example, Product block in Figure 1 is translated as

(define Product__In1__time1 :: real)
(define Product__In2__time1 :: real)
(define Product__Out1__time1 :: real)
(assert (= Product__Out1__time1 (* Product__In1__time1

Product__In2__time1)))

Constants Simulink constant blocks can have either a scalar value, a vector or a matrix. In the trans-
lation process we assume the matrix of type t as a function of type int → int → t The translation
process can catch the following problems via type checking rows and columns- (1) row-column
mismatches between blocks, (2) calling out of indices (for vectors/arrays as well as matrices). For
example, Constant1 block in Figure 1 is translated as

(define Constant1__Out1__time1 :: real)
(assert (= Constant1__Out1__time1 2))

Signal Connectors For example, the signal c in Figure 1 adds the following translations

(define c__time1 :: real)
(assert (= c__time1 Constant__Out1__time1))
(define Product3__In2__time1 :: real)
(assert (= Product3__In2__time1 c__time1))
(define Product2__In2__time1 :: real)
(assert (= Product2__In2__time1 c__time1))

	Introduction
	Types and Simulink
	Translation of Designs to the Yices Language
	An Expressive Type System
	Property Verification via BMC and k-induction
	Specifying and Checking Dimensions
	Related Work
	Future Directions
	Conclusions
	Appendix
	Satisfiability Modulo Theories and Yices
	Block Translation Details

