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Abstract

Decision procedures for equality in a combination of theories are at the core of a
number of verification systems. Shostak’s decision procedure for equality in the
combination of solvable and canonizable theories has been around for nearly two
decades. Variations of this decision procedure have been implemented in a number of
systems including STP, Ehdm, PVS, STeP, and SVC. The algorithm is quite subtle
and a correctness argument for it has remained elusive. Shostak’s algorithm and all
previously published variants of it yield incomplete decision procedures. We describe
a variant of Shostak’s algorithm along with proofs of termination, soundness, and
completeness.
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Chapter 1

Introduction

Ground decision procedures (GDPs) are at the core of many modern theorem
proving and verification systems. Such decision procedures decide the validity of
quantifier-free formulas where the free variables are implicitly universally quantified
over the entire formula. The typical proof obligations that arise in extended type-
checking, verification, and theorem proving, are in the ground fragment. The atomic
formulas in such proof obligations often involve equalities and inequalities between
terms containing a mixture of uninterpreted function symbols and function sym-
bols with fixed interpretations from a combination of theories such as arithmetic,
arrays, datatypes, and set operations. Efficient ground decision procedures for this
fragment are therefore a topic of both theoretical and practical significance.

In 1984, Shostak [Sho84] published a decision procedure for the quantifier-free
theory of equality over uninterpreted functions combined with other theories that are
canonizable and solvable. Such algorithms decide statements of the form T ` a = b,
where T is a collection of equalities, and T , a, and b contain a mixture of inter-
preted and uninterpreted function symbols. Variants of Shostak’s procedure are em-
ployed by a number of verification systems including STP [SSMS82], Ehdm [EHD93],
PVS [ORS92], STeP [MT96, Bjø99], and SVC [BDL96]. The soundness of Shostak’s
algorithm is reasonably straightforward, but its completeness has steadfastly re-
sisted proof. The proof given by Shostak [Sho84] is seriously flawed. Despite its
significance and popularity, Shostak’s original algorithm and its subsequent varia-
tions [CLS96, BDL96, Bjø99] are all incomplete and potentially nonterminating. In
this report, we fix these flaws in Shostak’s original paper. We explain the ideas
underlying Shostak’s decision procedure by presenting a correct version of the algo-
rithm along with detailed and rigorous proofs for its correctness.

If the terms in a conjecture of the form T ` a = b are constructed
solely from variables and uninterpreted function symbols, then congruence clo-
sure [NO80, Sho78, DST80, CLS96, Kap97, BRRT99] can be used to partition the
subterms into equivalence classes respecting T and congruence. For example, when
congruence closure is applied to

f3(x) = f(x) ` f5(x) = f(x),

the equivalence classes generated by the antecedent equality are
{x}, {f(x), f3(x), f5(x)}, and {f2(x), f4(x)}. This partition clearly validates
the conclusion f5(x) = f(x).
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2 Chapter 1. Introduction

In practice, a conjecture T ` a = b usually contains a mixture of uninterpreted
and interpreted function symbols. Semantically, uninterpreted functions are uncon-
strained, whereas interpreted function are constrained by a theory, namely, a closure
condition with respect to consequence on a set of equalities. An example of such an
assertion is

f(x− 1)− 1 = x+ 1, f(y) + 1 = y − 1, y + 1 = x ` false,

where +, −, and the numerals are from the theory of linear arithmetic, false is an
abbreviation for 0 = 1, and f is an uninterpreted function symbol. The contradiction
here cannot be derived solely by congruence closure or linear arithmetic. Linear
arithmetic is used to show that x − 1 = y so that f(x − 1) = f(y) follows by
congruence. Linear arithmetic can then be used to show that x + 2 = y − 2 which
contradicts y + 1 = x.

Nelson and Oppen [NO79] showed how decision procedures for disjoint equa-
tional theories, i.e., theories with no interpreted functions in common, could be com-
bined. Since linear arithmetic and uninterpreted equality are disjoint, this method
can be applied to the above example. First, variable abstraction is used to obtain a
theory-wise partition of the term universe, that is, the subterms of T , a, and b, in a
conjecture T ` a = b. The uninterpreted equality theoryQ then consists of the terms
{f(u), f(y), w, z} and the equalities {w = f(u), z = f(y)}, and the linear arithmetic
theory L consists of the terms {u, x, y, x− 1, w− 1, x+ 1, z+ 1, y− 1, y+ 1} and the
equalities {u = x−1, w−1 = x+1, z+1 = y−1, y+1 = x}. The key observation is
that once the terms and equalities have been partitioned using variable abstraction,
the two theories L and Q need exchange only equalities between variables. Thus,
linear arithmetic can be used to derive the equality u = y, from which congruence
closure derives w = z, and the contradiction then follows from linear arithmetic.
Since the term universe is fixed in advance, there are only a bounded number of
equalities between variables so that the propagation of information between the
decision procedures must ultimately converge.

The Nelson-Oppen combination procedure has the advantage of being able to
combine individual decision procedures (of a specific form) for disjoint theories, but
it also has some disadvantages. The individual decision procedures must carry out
their own equality propagation and the communication of equalities between decision
procedures can be expensive. The procedure does not exploit any efficiencies that
can be gained from the specific characteristics of the theories involved

Shostak’s algorithm does not combine decision procedures but is instead a single
decision procedure for the combination of a class of theories. It gains efficiency
by maintaining and propagating equalities within a single congruence closure data
structure. Equalities involving interpreted symbols contain more information than
uninterpreted equalities. For example, the equality y+1 = x cannot be processed by
merely placing y+ 1 and x in the same equivalence class. This equality also implies
that y = x− 1, y − x = −1, x− y = 1, y + 3 = x+ 2, and so on. In order to avoid
processing all these variations on the given equality, Shostak restricts his attention to
solvable theories where an equality of the form y+1 = x can be solved for x to yield
the solution x = y + 1. If the theories considered are also canonizable, then there is
a canonizer σ such that whenever an equality a = b is valid, then σ(a) ≡ σ(b), where
≡ represents syntactic equality. A canonizer for linear arithmetic can be defined
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to place terms into an ordered sum-of-monomials form. Once a solved form such
as x = y + 1 has been obtained, all the other consequences a = b of this equality
can be obtained by σ(a′) = σ(b′) where a′ and b′ are the results of substituting the
solution for x into a and b, respectively. For example, substituting the solution into
y = x− 1 yields y = y + 1− 1, and the subsequent canonization step yields y = y.

The notion of a solvable and canonizable theory is extended to equalities in-
volving a mix of interpreted and uninterpreted symbols by treating uninterpreted
terms as variables. We describe the shortcomings of Shostak’s original algorithm
and its many incorrect variants by examining some very simple examples where
these algorithms can fail. For the conjecture,

f(x− 1)− 1 = x+ 1, f(y) + 1 = y − 1, y + 1 = x ` false,

Shostak’s algorithm would solve the equality f(x−1)−1 = x+1 as f(x−1) = x+2,
the equality f(y) + 1 = y − 1 as f(y) = y − 2, and y + 1 = x as x = y + 1. Now,
f(x− 1) and f(y) are congruent because the canonical form for x− 1 obtained after
substituting the solution x = y + 1 is y. By congruence closure, the equivalence
classes of f(x − 1) and f(y) have to be merged. In Shostak’s original algorithm
the current representatives of these equivalence classes, namely x+ 2 and y − 2 are
merged. The resulting equality x+ 2 = y− 2 is first solved to yield x = y− 4. This
is incorrect because we already have a solution for x as x = y + 1 and x should
therefore have been eliminated. The new solution x = y − 4 contradicts the earlier
one, but this contradiction goes undetected by Shostak’s algorithm. This example
can be easily adapted to show nontermination. Consider

f(v) = v, f(u) = u− 1, u = v ` false.

The merging of u and v here leads to the detection of the congruence between f(u)
and f(v). This leads to the solving of u− 1 = v as u = v + 1. Now, the algorithm
merges v and v + 1. Since v occurs in v + 1, this causes v + 1 to be merged with
v + 2, and so on.

Shostak also claimed that the individual canonizers and solvers for two disjoint
theories could easily be combined to yield a canonizer and solver for their union.
This claim is easily verifiable for canonizers since when canonizing a term of the
form f(a1, . . . , an) where f is in theory i for i ∈ {1, 2}, we use σi, the canonizer
corresponding to theory i. The method for combining solvers given there is incorrect
and unworkable in any variation. We have in fact solved the problem of combining
solvers, but this topic lies outside the scope of the present paper. We focus here on
the important case of a ground decision procedure for a single canonizable, solvable
theory combined with the theory of pure equality.

An earlier paper by Cyrluk, Lincoln, and Shankar [CLS96] gave an explana-
tion (with minor corrections) of Shostak’s algorithm for congruence closure and its
extension to interpreted theories. Though proofs of correctness for the combina-
tion algorithm are briefly sketched, the algorithm presented there is both incom-
plete and nonterminating. Other published variants of Shostak’s algorithm used in
SVC [BDL96] and STeP [Bjø99] inherit these problems.

This report is an expanded version of a conference paper [RS01] with the same
title. In this report, we present an algorithm that fixes the incompleteness and
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nontermination in earlier versions of Shostak’s algorithms. In the above example, the
incompleteness is fixed by substituting the solution for x into the terms representing
the different equivalence classes. Thus, when f(x− 1) and f(y) are detected to be
congruent, their equivalence classes are represented by y+ 3 and y− 2, respectively.
The resulting equality y + 3 = y − 2 easily yields a contradiction when solved. The
nontermination is fixed by ensuring that no new mergeable terms, such as v+ 2, are
created during the processing of an axiom in T .

Our algorithm is presented as a system of transformations on a set of equal-
ities in order to capture the key insights underlying its correctness. We outline
rigorous proofs for the termination, soundness, and completeness of this procedure.
The algorithm as presented here emphasizes logical clarity over efficiency, but with
suitable optimizations and data structures, it can serve as the basis for an efficient
implementation. SRI’s ICS (Integrated Canonizer/Solver) decision procedure pack-
age [FORS01] is directly based on the algorithm studied here.

Ford and Shankar [FS02] have formally verified the algorithm and proof pre-
sented here using the PVS verification system [ORS92]. This verification was very
helpful in the development of the expanded proofs here. The formal verification
was based on the earlier publication [RS01] and revealed a few minor gaps in that
presentation. In particular, one lemma was found to need an antecedent condition,
but this correction had no impact on the rest of the proof since only this weaker
lemma was actually used.

Chapter 2.1 introduces the theory of equality, which is augmented in Chapter 2.3
with function symbols from a canonizable and solvable theory. Chapter 2.3 also
introduces the basic building blocks for the decision procedure. The algorithm itself
is described in Chapter 3 along with some example hand-simulations. The proofs of
termination, soundness, and completeness are outlined in Chapter 4.



Chapter 2

Preliminaries

We introduce the background and basic operations needed to present the combina-
tion algorithm and its proof.

2.1 Background

This section introduces the basic terminology. With respect to a signature consisting
of a set of function symbols F and a set of variables V , a term is either a variable
x from V or an application f(a1, . . . , an) of an n-ary function symbol f from F to
n terms a1, . . . , an, where 0 ≤ n. The metavariable conventions are that u, v, x, y,
and z range over variables, a, b, c, d, and e range over terms, and M and N range
over sets of terms. The metavariables R, S, and T , range over sets of equalities.
The metatheoretic assertion a ≡ b indicates that a and b are syntactically identical
terms. Let vars(a), vars(a = b), and vars(T ) return the variables occurring in a
term a, an equality a = b, and a set of equalities T , respectively. The operation ddaee
is defined to return the set of all subterms of a.

A finite map from a set of terms to some range R is represented as {a1 7→
v1, . . . , an 7→ vn}. The set {a1, . . . , an} is the domain of the map. The application
of a map ρ as ρ(a) returns a itself when a is not in the domain of the map ρ,
and otherwise returns the value v corresponding to the a in ρ. The map ρ{a1 7→
v1, . . . , an 7→ vn} returns vi when applied to ai, but returns ρ(a) when applied to
some a that is distinct from each of the ai for 1 ≤ i ≤ n. When the range R is
just the set of terms, then the operation of replacement with respect to a map ρ
and a term a is written as ρ[a] and is defined to be ρ(a) if a is in the domain of ρ
or is a variable. Otherwise, ρ[a] is f(ψ[a1], . . . , ψ[an]) where a ≡ f(a1, . . . , an). A
substitution is a finite map from a set of variables to a set of terms.

Some of the function symbols are interpreted , i.e., they have a specific interpreta-
tion in some given theory τ , while the remaining function symbols are uninterpreted,
i.e., can be assigned arbitrary interpretations. A term f(a1, . . . , an) is interpreted
(uninterpreted) if f is interpreted (uninterpreted). A term e is non-interpreted if it
is either a variable or an uninterpreted term. We say that a term a occurs inter-
preted in a term e if there is an occurrence of a in e that is not properly within an
uninterpreted subterm of e. Likewise, a occurs uninterpreted in e if a is a proper
subterm of an uninterpreted subterm of e. solvables(a) denotes the set of outermost

5



6 Chapter 2. Preliminaries

Axiom: (for a = b ∈ T )

T ` a = b

Reflexivity:

T ` a = a

Symmetry:
T ` a = b

T ` b = a

Transitivity:
T ` a = b T ` b = c

T ` a = c

Congruence:
T ` a1 = b1 . . . T ` an = bn

T ` f(a1, . . . , an) = f(b1, . . . , bn)

Figure 2.1: Inference rules for equality.

non-interpreted subterms of a, i.e., those that do not occur uninterpreted in a.

solvables(f(a1, . . . , an)) =
⋃
i

solvables(ai),

if f is interpreted
solvables(a) = {a}, otherwise

2.2 The Theory of Equality

Proof Theory. The theory of equality deals with sequents of the form T ` a = b.
We will insist that these sequents be such that vars(a = b) ⊆ vars(T ). Figure 2.1
gives the proof theory for equality.

Semantics. The semantics for terms is given by a model M over a domain D and
an assignment ρ for the variables so that M [[a]]ρ ∈ D for all a, and the following
equations hold.

M [[x]]ρ = ρ(x)
M [[f(a1, . . . , an)]]ρ = M(f)(M [[a1]]ρ, . . . ,M [[an]]ρ)

We say that M,ρ |= a = b iff M [[a]]ρ = M [[b]]ρ, and M |= a = b iff M,ρ |= a = b for
all assignments ρ over vars(a = b). We write M,ρ |= S when ∀a, b : a = b ∈ S ⊃
M,ρ |= a = b, and M,ρ |= T ` a = b when (M,ρ |= T ) ⊃ (M,ρ |= a = b).

Decidability. The congruence closure decision procedure for equality decides
judgements of the form T ` a = b by partitioning the term universe (the set of sub-
terms of T , a, and b) into equivalence classes generated from T [Koz77, NO80, Sho78,
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DST80]. The partitioning is congruence closed if f(a1, . . . , an) and f(b1, . . . , bn) are
in the same equivalence class whenever for each i, 1 ≤ i ≤ n, ai and bi are in
the same equivalence class. Congruence closure is subsumed by the combination
decision procedure given in Chapter 3.

2.3 Canonizable and Solvable Theories

Shostak’s algorithm goes beyond congruence closure by deciding equality in the
presence of function symbols that are interpreted in a theory τ [Sho84, CLS96].
The algorithm is targeted at canonizable and solvable theories, i.e., theories that
are equipped with solvers and canonizers as outlined below. We write |=τ a = b to
indicate that a = b is valid in theory τ . The theory τ is thus specified in terms of
an oracle for deciding the validity of equalities in this theory.

The canonizer and solver are first described for pure τ -terms, i.e., without any
uninterpreted function symbols, in this section. The next section shows how these
operations can be extended to impure terms by regarding the uninterpreted subterms
as variables. Note that in this section, all terms are pure.

Definition 2.1 A theory τ is canonizable if there is a canonizer σ such that

1. |=τ a = b iff σ(a) ≡ σ(b).

2. σ(x) ≡ x.

3. vars(σ(a)) ⊆ vars(a).

4. σ(σ(a)) ≡ σ(a).

5. If σ(a) ≡ f(b1, . . . , bn), then σ(bi) ≡ bi for 1 ≤ i ≤ n.

For example, a canonizer σ for the theory of linear arithmetic can be defined to
transform expressions into an ordered-sum-of-monomials normal form. A term a is
said to be canonical if σ(a) ≡ a.

Definition 2.2 A model M is a σ-model if M |= a = σ(a) for any term a, and
M 6|= a = b for distinct canonical, variable-free terms a and b. If M |= a = b for
σ-model M , then a = b is σ-valid.

Lemma 2.3 (σ-distributivity) σ(f(σ(a1), . . . , σ(an))) ≡ σ(f(a1, . . . , an).

Proof. By Definition 2.1(4), for any i, 1 ≤ i ≤ n, σ(σ(ai)) ≡ σ(ai). By Defini-
tion 2.1(1), |=τ σ(ai) = ai, and hence |=τ f(σ(ai), . . . , σ(an)) = f(a1, . . . , an), and
therefore by Definition 2.1(1), σ(f(σ(a1), . . . , σ(an))) ≡ σ(f(a1, . . . , an).

Lemma 2.4 (substitutivity) For any substitution ψ mapping variables to terms,
if |= a = b, then |= ψ[a] = ψ[b].

Proof. Let ψ be of the form {x1 7→ t1, . . . , xn 7→ tn}. For a given ρ, let ρ′

be ρ{x1 7→ M [[t1]]ρ, . . . , xn 7→ M [[tn]]ρ}. Then M [[ψ(a)]]ρ = M [[a]]ρ′, and similarly,
M [[ψ[b]]]ρ = M [[b]]ρ′, and hence M |= ψ[a] = ψ[b].



8 Chapter 2. Preliminaries

Lemma 2.5 (σ-substitutivity) For any a, σ(ψ[σ(a)]) ≡ σ(ψ[a]).

Proof. Follows from Lemma 2.4 and Definition 2.1(1).

Lemma 2.6 (σ-validity) If σ is a canonizer for τ , then |=τ a = b iff a = b is
σ-valid.

Proof. If |=τ a = b, then by Definition 2.1(1), σ(a) ≡ σ(b). Since in all σ-models
M , M |= σ(a) = a and M |= σ(b) = b, we have M |= a = b.

Conversely, if in all σ-models M and assignments ρ, M,ρ |= a = b, then we can
show that σ(a) ≡ σ(b). Let the domain D consist of the canonical terms c such
that σ(c) ≡ c. The metavariable c ranges over such canonical terms. Let Mσ be
defined so that Mσ(f)(c1, . . . , cn) = σ(f(c1, . . . , cn)). To show that Mσ is a σ-
model, we first observe that Mσ[[a]]ρ ≡ σ(ρ(a)) by induction on a using Lemma 2.6.
By Lemma 2.5, σ(ρ(σ(a))) ≡ σ(ρ(a)), hence Mσ[[σ(a)]]ρ ≡ Mσ[[a]]ρ and Mσ is a
σ-model.

If we let ρσ be defined so that ρσ(x) = x, it is easy to see that for any d,
Mσ[[d]]ρσ = σ(d), by induction on d and Lemma 2.3. Since Mσ, ρσ |= a = b, we have
σ(a) ≡ σ(b).

When σ is a canonizer for theory τ , Lemma 2.6 allows us to replace |=τ a = b
with the σ-validity of a = b. We can, without loss of generality, replace Defini-
tion 2.1(1) by the conditions σ-distributivity and σ-substitutivity verified in Lem-
mas 2.3 and 2.5.

Definition 2.7 A set of equalities S and a = b are σ-equivalent iff for all σ-models
M and assignments ρ over the variables in a and b, M,ρ |= a = b iff there is an
assignment ρ′ extending ρ, over the variables in S, a, and b, such that M,ρ′ |= S.

Definition 2.8 A canonizable theory is solvable if there is an operation solve such
that solve(a = b) = ⊥ if a = b is unsatisfiable in any σ-model, or S = solve(a = b)
for a set of equalities S such that

1. S is a set of n equalities of the form xi = ei for 0 ≤ n where for each i,
0 < i ≤ n,

(a) xi ∈ vars(a = b).
(b) xi 6∈ vars(ej), for j, 0 < j ≤ n.
(c) xi 6≡ xj, for i 6= j and 0 < j ≤ n.
(d) σ(ei) ≡ ei.

2. S and a = b are σ-equivalent.

A solver for linear arithmetic, for example, takes an equation of the form

c+ a1x1 + . . .+ anxn = d+ b1x1 + . . .+ bnxn,

where a1 6= b1, and returns

x1 = σ( (d− c)/(a1 − b1)
+ ((b2 − a2)/(a1 − b1)) ∗ x2

+ . . .
+ ((bn − an)/(a1 − b1)) ∗ xn).
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In general, solve(a = b) may contain variables that do not occur in a = b, and vice-
versa. A solved form of the equation π1(x) = y in the theory of pairs, for example,
is given by the equation x = (y, d), where d is a fresh constant.

There are a number of interesting canonizable and solvable theories including
linear arithmetic, the theory of tuples and projections, algebraic datatypes like lists,
set algebra, and the theory of fixed-sized bitvectors.

2.4 Canonization and Solving with Uninterpreted
Terms

The solvers and canonizers characterized above are intended to work in the ab-
sence of uninterpreted function symbols. They can be adapted to terms containing
uninterpreted subterms by treating these subterms as variables. Canonizers are
applied to terms containing uninterpreted subterms by renaming distinct uninter-
preted subterms with distinct new variables. For a given term a, let γ be a bijective
map between a set of variables X that do not appear in a and the uninterpreted
subterms of a. Then σ(a) is γ[σ(γ−1[a])].

For solving equalities containing uninterpreted terms, we introduce, as with σ,
a bijective map γ between a set of variables X not occurring in a or b, and the
uninterpreted subterms of a and b, such that

solve(a = b) = γ[solve(γ−1[a] = γ−1[b])] .

For example,

solve(f(v − 1)− 1 = v + 1)
≡ γ[solve(u− 1 = v + 1)]
≡ γ[u = v + 2]
≡ (f(v − 1) = v + 2)

where f is uninterpreted and γ = {u 7→ f(v − 1)}. When uninterpreted terms are
handled as above, the conditions in Definitions 2.1 and 2.8 must be suitably adapted
by using solvables(a) instead of vars(a). With this replacement, Definitions 2.2
and 2.7 remain otherwise unchanged. Lemmas 2.3 and 2.6 remain valid for the
expanded definition of σ.

2.5 Proof Theory for Equality in Canonizable and Solv-
able Theories

Recall that a sequent T ` a = b is well-formed only when vars(a = b) ⊆ vars(T ).
The proof theory for equality is augmented for canonizable, solvable theories by the
proof rules:

Canonization: for any term a,

T ` a = σ(a)
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Solve: If S = solve(a = b) 6= ⊥ and vars(c = d) ⊆ vars(T ), then:

T ` a = b T ∪ S ` c = d

T ` c = d

Solve-⊥: If solve(a = b) = ⊥, then:

T ` a = b

T ` false

Definition 2.9 (derivability) A sequent T ` c = d is derivable if there is a proof
of T ` c = d using one of the inference rules: axiom, reflexivity, symmetry, transi-
tivity, congruence, canonization, solve, or solve-⊥.

Sometimes, we simply say T ` c = d instead of T ` c = d is derivable. We say
that T ` S is derivable if T ` c = d is derivable for every c = d in S. The sequent
T, S ` c = d is just T ∪ S ` c = d. The weakening and cut lemmas below are easily
verified.

Lemma 2.10 (weakening) If T ⊆ T ′ and T ` a = b is derivable, then T ′ ` a = b
is derivable.

Proof. By induction on the derivation of T ` a = b.

Lemma 2.11 (cut) If T ′ ` T and T ` a = b is derivable, then T ′ ` a = b is
derivable.

Proof. By induction on the derivation of T ` a = b.

Theorem 2.12 (proof soundness) If T ` a = b is derivable, then for any σ-
model M and assignment ρ over vars(T ), M,ρ |= T ` a = b.

Proof. By induction on the derivation of T ` a = b. The case of the solve
and solve-⊥ rules are interesting. If T ` a = b is the conclusion of an application
of the solve rule, then for some c and d, we have a subderivation of T ` c = d
and T, S ` a = b, where S = solve(c = d). Given that M,ρ |= T , we have by
the induction hypothesis that M,ρ |= c = d. By the condition on solve, there is
some extension ρ′ of ρ such that M,ρ′ |= T, S. Then, once again by the induction
hypothesis, M,ρ |= a = b, but since vars(a = b) ⊆ vars(T ), we have M,ρ |= a = b,
and hence the conclusion.

The soundness of the solve-⊥ rule can be similarly proved.
A set of equalities S is said to be functional (in a left-to-right reading of the

equality) if whenever a = b ∈ S and a = b′ ∈ S, b ≡ b′. For example, the solution
set returned by solve is functional. A functional set of equalities can be treated as
a substitution and the associated operations are defined below. S(a) returns the
solution for a if it exists in S, and a itself, otherwise. If a = b is in S for some b,
then a is in the domain of S, i.e., dom(S).

S(a) =

{
b if a = b ∈ S
a otherwise

dom(S) = {a | ∃b. a = b ∈ S}.
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Note that it may be the case that S(a) ≡ a for a in the domain dom(S).
The terms a and b are said to be congruent in S, symbolically, a S∼ b, if

a ≡ f(a1, . . . , an)
b ≡ f(b1, . . . , bn)

S(ai) ≡ S(bi) for 1 ≤ i ≤ n .

A set of equalities S is said to be congruence-closed when for any terms a and b in
dom(S) such that a S∼ b, we have S(a) ≡ S(b).

S[a] replaces a subterm b in a by S(b), where b ∈ solvables(a).

S[f(a1, . . . , an)] = f(S[a1], . . . , S[an]),
if f is interpreted

S[a] = S(a), otherwise.

The term computed by norm(S)(a) is a normal form for a with respect to S and
is defined as σ(S[a]). The operation norm does not appear in Shostak’s algorithm
and is the key element of our algorithm and its proof. For a fixed S, we drop the
reference to S and use â as a syntactic abbreviation for norm(S)(a).

norm(S)(a) = σ(S[a]).

Lemma 2.13 If solve(a = b) = S 6= ⊥, then norm(S)(a) ≡ norm(S)(b).

Proof. By Definitions 2.7 and 2.8(2), for any σ-model M and assignment ρ′, we
have M,ρ′ |= S ⇐⇒ M,ρ′ |= a = b. Let a′ ≡ S[a] and b′ ≡ S[b]. By induction
on a, M,ρ′ |= a = a′, and similarly M,ρ′ |= b = b′. Hence, M,ρ′ |= a′ = b′. Then,
since M is a σ-model, by Definition 2.2, it must be the case that σ(a′) ≡ σ(b′), and
therefore norm(S)(a) ≡ norm(S)(b).

The definition of the lookup operation uses Hilbert’s epsilon operator, indicated
by the keyword when, to return S(f(b1, . . . , bn)) when b1, . . . , bn satisfying the listed
conditions can be found. If no such b1, . . . , bn can be found, then lookup(S)(a)
returns a itself. We show later that the lookup operation is used only when the
results of this choice are deterministic.

lookup(S)(f(a1, . . . , an)) = S(f(b1, . . . , bn)),
when b1, . . . , bn :
f(b1, . . . , bn) ∈ dom(S),
and ai ≡ S(bi),
for 1 ≤ i ≤ n

lookup(S)(a) = a, otherwise.

can(S)(a) is a canonical form in which any uninterpreted subterm e that is
congruent to a known left-hand side e′ in S is replaced by S(e′). It is analogous to
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the canon operation in Shostak’s algorithm. For a fixed S, we use a as a syntactic
abbreviation for can(S)(a).

can(S)(f(a1, . . . , an)) = lookup(S)(f(a1, . . . , an)),
if f is uninterpreted

can(S)(f(a1, . . . , an)) = σ(f(a1, . . . , an)),
if f is interpreted

can(S)(a) = S(a), otherwise.

Lemma 2.14 (σ-norm) If S is functional, then norm(S)(σ(a)) ≡ norm(S)(a) and
can(S)(σ(a)) ≡ can(S)(a).

Proof. The first part is equivalent to σ(S[σ(a)]) ≡ σ(S[a]) which is a trivial
consequence of Lemma 2.5.

For the second part, if we let R = {b = b | b ∈ ddaee}, then can(S)(a) ≡
norm(R)(a). We can therefore use the first part of the theorem to establish the
second part.

We next introduce a composition operation for merging the results of a solve
operation into an existing solution set. Whenever R◦S is used, S must be functional,
and the result contains a = b̂ for each equality a = b in R in addition to the equalities
in S.

R ◦ S = {a = b̂ | a = b ∈ R} ∪ S.

The following lemmas about composition are given without proof.

Lemma 2.15 (norm decomposition) If R ◦ S is functional, then

norm(R ◦ S)(a) ≡ norm(S)(norm(R)(a)).

Lemma 2.16 (associativity of composition) If Q ◦R ◦ S is functional, then

(Q ◦R) ◦ S = Q ◦ (R ◦ S).

Lemma 2.17 (monotonicity) If R ◦ S is functional, then for any a and b in
dom(R):

R(a) ≡ R(b) implies (R ◦ S)(a) ≡ (R ◦ S)(b)
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An Algorithm for Deciding
Equality in the Presence of
Theories

We next present an algorithm for deciding T ` c = d for terms containing
uninterpreted function symbols and function symbols interpreted in a canoniz-
able and solvable theory. The algorithm for verifying T ` c = d checks that
can(S)(c) ≡ can(S)(d), where S = process(T ). The process procedure shown in
Figure 3.1, is written as a functional program. It is a mathematical description of
the algorithm and not an optimized implementation. The state of the algorithm
consists of a set of equalities S which holds the solution set. We demonstrate as
an invariant that S is functional. Two terms a and b in dom(S) are in the same
equivalence class according to S if S(a) ≡ S(b).

The operation process(T ) defined in Figure 3.1 returns a final solution set by
starting with an empty solution set and successively processing each equality a = b
in T . The steps in the algorithm are:

1. Let T ′ be T − {a = b}. First, S is computed as process(T ′).

2. Then assert(a = b, S) is computed. If S = ⊥, then assert(a = b, S) returns
⊥. Otherwise, the canonical forms a and b of a and b with respect to S are
computed. This step identifies the subterms of a = b that are known to be
equal with respect to S.

3. S+ is computed by adding to S the reflexivity equalities e = e for any subterms
e of a = b that are not already in dom(S).1 This preprocessing step ensures
that S contains entries corresponding to any terms that might be needed in
the congruence closure phase in the operation cc.

4. The merge operation then solves the equality a = b to get a solution S′, and
1Actually, the interpreted subterms of a = b need not all be included in dom(S). Only those

that are immediate subterms of uninterpreted subterms in a = b are needed. Going even further,

the interpreted subterms can completely eliminated from dom(S) if f(a1, . . . , an)
S∼ f(b1, . . . , bn) is

redefined to hold exactly when âi ≡ b̂i for 0 < i ≤ n. This variant of the definition is employed in
the version of the algorithm that is formally verified in PVS [FS02].

13
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process({a = b, T}) = assert(a = b, process(T ))
process(∅) = ∅.

assert(a = b,⊥) = ⊥
assert(a = b, S) = cc(merge(a, b, S+)),

where S+ = expand(S, a, b).

expand(S, a, b) = S ∪ {e = e | e ∈ new(S, a, b)}.

new(S, a, b) = dda = bee − dom(S).

merge(a, b, S) = ⊥, if solve(a = b) = ⊥
merge(a, b, S) = S ◦ solve(a = b), otherwise.

cc(⊥) = ⊥
cc(S) = cc(merge(S(a), S(b), S)),

when a, b :
a, b ∈ dom(S)

a
S∼ b, and S(a) 6≡ S(b)

cc(S) = S, otherwise.

Figure 3.1: Main Procedure: process

returns S ◦ S′ as the new value for the state S.2 If S′ is ⊥, then so is S ◦ S′.
Otherwise, the new solution set S ◦ S′ affirms a = b (i.e., norm(S ◦ S′)(a) ≡
norm(S ◦ S′)(b)) but it might not be congruence-closed.

5. Finally, cc(S ◦ S′) is invoked to compute the congruence closure of the result-
ing solution set. The operation cc(S) repeatedly picks a pair of congruent
terms c and d from dom(S) (i.e., c S∼ d) such that S(c) 6≡ S(d). The selec-
tion of congruent pairs of left-hand side terms uses the Hilbert choice opera-
tor. The corresponding right-hand sides S(c) and S(d) are then merged using
merge(S(c), S(d), S). Eventually either a contradiction is found or all congru-
ent left-hand sides in S are merged and the cc operation terminates returning
a congruence-closed solution set.

The above algorithm fixes the nontermination and incompleteness problems in
Shostak’s algorithm by introducing the norm operation and the composition opera-
tor R◦S to fold in a solution. The norm operation ensures that no new uninterpreted
terms are introduced during congruence closure in the function cc, as is needed to
guarantee termination. The composition operator R ◦ S ensures that any newly
generated solution S is immediately substituted into R and the algorithm never
attempts to find a solution for an already solved non-interpreted term.

2Any variables occurring in solve(a = b) and not in vars(a = b) must be fresh, i.e., they must
not occur in the original conjecture or be generated by any other invocation of solve.
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We first illustrate the algorithm on some examples. The first example contains
no interpreted symbols.

Example 3.1 Consider the goal

f5(x) = x, f3(x) = x ` f(x) = x,

The value of S after the base case is ∅. After the preprocessing of f3(x) = x in
assert , S is

{x = x, f(x) = f(x), f2(x) = f2(x), f3(x) = f3(x)}.

After merging f3(x) and x, S is

{x = x, f(x) = f(x), f2(x) = f2(x), f3(x) = x}.

When f5(x) = x is preprocessed in assert , can(S)(f5(x)) yields f2(x) since
S(f3(x)) ≡ x, and S is left unchanged. When f2(x) and x have been merged,
S is

{x = x, f(x) = f(x), f2(x) = x, f3(x) = x}.

Now f(x) S∼ f3(x) and hence f(x) and x are merged so that S is now

{x = x, f(x) = x, f2(x) = x, f3(x) = x}.

The conclusion f(x) = x easily follows, since can(S)(f(x)) ≡ x ≡ can(S)(x).

Example 3.2 Consider the goal

y + 1 = x, f(y) + 1 = y − 1, f(x− 1)− 1 = x+ 1 ` false

which is a permutation of our earlier example. Starting with S = ∅ in the base case,
the preprocessing of f(x − 1) − 1 = x + 1 causes the equation to be placed into
canonical form as −1 + f(−1 + x) = 1 + x and S is set to

{ 1 = 1,−1 = −1, x = x,−1 + x = −1 + x,
f(−1 + x) = f(−1 + x), 1 + x = 1 + x}.

Solving −1 + f(−1 + x) = 1 + x yields f(−1 + x) = 2 + x, and S is set to

{ 1 = 1,−1 = −1, x = x,−1 + x = −1 + x,
f(−1 + x) = 2 + x, 1 + x = 1 + x}.

No unmerged congruences are detected. Next, f(y) + 1 = y − 1 is asserted. Its
canonical form is 1 + f(y) = −1 + y, and once this equality is asserted, the value of
S is

{ 1 = 1,−1 = −1, x = x,−1 + x = −1 + x,
f(−1 + x) = 2 + x, 1 + x = 1 + x, y = y,
f(y) = −2 + y,−1 + y = −1 + y,
1 + f(y) = −1 + y}.
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Next y + 1 = x is processed. Its canonical form is 1 + y = x and the equality
1 + y = 1 + y is added to S. Solving y + 1 = x yields x = 1 + y, and S is reset to

{ 1 = 1,−1 = −1, x = 1 + y,−1 + x = y,
f(−1 + x) = 3 + y, 1 + x = 2 + y, y = y,
f(y) = −2 + y,−1 + y = −1 + y,
1 + f(y) = −1 + y, 1 + y = 1 + y}.

The congruence close operation cc detects the congruence f(1 − y) S∼ f(x) and
invokes merge on 3 + y and −2 + y. Solving this equality 3 + y = −2 + y yields ⊥
returning the desired contradiction.
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Analysis

We describe the proofs of termination, soundness, and completeness, and also
present a complexity analysis. The termination of process hinges on that of cc.
The number of uninterpreted terms in dom(S) stays fixed during the execution of
cc. With each recursive call, a pair of distinct equivalence classes each containing
an uninterpreted term from dom(S) are merged. Since there is a bound on the
number of pairs of uninterpreted terms, this bounds the number of times the merge
operation can be invoked from cc. The proof of correctness is given by observing
that the following are equivalent:

1. If process(T ) = S, then S = ⊥ or can(S)(a) ≡ can(S)(b).

2. T ` a = b is derivable.

3. T ` a = b is σ-valid, i.e., valid in all σ-models.

The implication between (1) and (2) captures soundness (Theorem 4.9). It is
proved by showing that for every equality c = d ∈ S, the sequent T ` c = d is
derivable, and the the sequent S ` e = e is derivable for any term e. The implication
between (2) and (3) captures proof soundness (Theorem 2.12) and is verified by
induction on proofs. The implication between (3) and (1) captures completeness
(Theorem 4.17). It is verified by constructing for S = process(T ) 6= ⊥, a σ-model
MS and an assignment ρS such that MS [[a]]ρS ≡ can(S)(a) and showing that for
any equality c = d ∈ T , can(S)(c) ≡ can(S)(d).

Key Invariants. The merge operation is clearly the workhorse of the procedure
since it is invoked from within both assert and cc. Let

U(X) = {a ∈ X | a uninterpreted}

of uninterpreted terms in the set X. For a, b, and S be such that U(A∪B) ⊆ dom(S)
and for all c ∈ A ∪ B, S(c) ≡ c, where A is solvables(a) and B is solvables(b), let
S′ = merge(a, b, S). Then the following properties hold of S′ if they hold of S:

1. Functionality.

2. Subterm closure: S is subterm-closed if for any d ∈ dom(S),

dddee ⊆ dom(S).

17
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3. Range closure: S is range-closed if for any d ∈ dom(S),

U(solvables(S(d))) ⊆ dom(S),

and for any c ∈ solvables(S(a)),

S(c) ≡ c.

4. Norm closure: S is norm-closed if for any d ∈ dom(S),

S(d) ≡ norm(S)(d).

This of course holds trivially for uninterpreted terms d.

5. Idempotence: S is idempotent if

S[S(d)] ≡ S(d),
norm(S)(S(d)) ≡ S(d), and

norm(S)(norm(S)(d)) ≡ norm(S)(d) .

These properties can be easily established by inspection. Since whenever
merge(a, b, S) is invoked in the algorithm, the arguments do satisfy the conditions
U(A ∪ B) ⊆ dom(S) and for all c ∈ A ∪ B, S(c) ≡ c, it then follows that these
invariants are also preserved by assert and cc, and therefore hold of process(T ). We
assume below that these invariants hold of S whenever the metavariable S is used
with or without subscripts or superscripts.

Lemma 4.1 (congruence closure) If S = cc(S′) 6= ⊥, then S is congruence-
closed. Similarly, if S = process(T ) 6= ⊥, then S is congruence-closed.

Proof. If cc(S′) terminates returning a solution set S, then by the definition of cc,
we know that S does not contain any unmerged pairs of congruent left-hand sides
and is therefore congruence-closed. If process(T ) = S for some solution set S, then
S = cc(S′) for some S′, and hence S must be congruence-closed.

Lemma 4.2 (merge equivalence)
Let A = solvables(a) and B ≡ solvables(b). Given that U(A∪B) ⊆ dom(S) and for
all c ∈ A ∪B, S(c) ≡ c, if S′ = merge(a, b, S) 6= ⊥, then

1. norm(S′)(a) ≡ norm(S′)(b).

2. U(dom(S′)) = U(dom(S)).

Proof. Let R ≡ solve(a = b). By definition,

merge(a, b, S) ≡ S ◦R.

By Lemma 2.13,
norm(R)(a) ≡ norm(R)(b).
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Since S(c) ≡ c for c ∈ A ∪B,

norm(S)(a) ≡ a, and
norm(S)(b) ≡ b.

Hence, by norm decomposition, we have

norm(S′)(a) ≡ norm(S′)(b).

By Definition 2.8, dom(R) ⊆ A ∪B, hence U(dom(S′)) = U(dom(S)).

Termination. We define #(S) to represent the number of distinct equivalence
classes partitioning U(dom(S)) as given by P (S).

E(S)(a) = {b ∈ U(dom(S)) | S(b) ≡ S(a)}
P (S) = {E(S)(a) | a ∈ U(dom(S))}
#(S) = |P (S)|

The definition of cc(S) terminates because the measure #(S) decreases with each
recursive call. If in the definition of cc, merge(S(a), S(b), S) = ⊥, then clearly cc
terminates. Otherwise, let

S′ = merge(S(a), S(b), S) 6= ⊥,

for a, b ∈ dom(S) such that S(a) 6≡ S(b) and a
S∼ b. In this case a and b must be

uninterpreted terms, since for interpreted terms a and b, if a S∼ b, then S(a) ≡ S(b)
by norm closure. By merge equivalence,

norm(S′)(S(a)) ≡ norm(S′)(S(b)) and
U(dom(S′)) = U(dom(S)).

By monotonicity, for any c and d in dom(S) such that S(c) ≡ S(d), we have

S′(c) ≡ S′(d),

and therefore
#(S′) ≤ #(S).

However, by norm closure,
S′(a) ≡ S′(b)

so that #(S′) < #(S).

Soundness. The following lemmas establish the soundness of the operations norm
and can with respect to S. Substitution soundness and can soundness are proved
by a straightforward induction on a, and norm soundness is a simple consequence
of substitution soundness.

Lemma 4.3 (substitution soundness)

If vars(a) ⊆ vars(T ∪ S), then T, S ` a = a′ is derivable, for a′ ≡ S[a].
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Lemma 4.4 (norm soundness)

If vars(a) ⊆ vars(T ∪ S), then T, S ` a = â is derivable.

Lemma 4.5 (can soundness)

If vars(a) ⊆ vars(T ∪ S), then T, S ` a = ā is derivable.

Lemma 4.6 (merge soundness)
Let S′ = merge(a, b, S) 6= ⊥, then:

1. If T, S ` a = b, and T, S′ ` c = d with vars(c = d) ⊆ vars(T ∪ S), then

T, S ` c = d.

2. Otherwise, merge(a, b, S) = ⊥, and

T, S ` ⊥.

Proof. If S′ = merge(a, b, S) 6= ⊥, then let R = solve(a = b). By norm soundness,

S,R ` S′,

and hence by cut,
T, S,R ` c = d

is derivable. By the solve rule,
T, S ` c = d

is derivable.
If merge(a, b, S) = ⊥, then by similar reasoning using the solve-⊥ rule, T, S `

false is derivable.

Lemma 4.7 (cc soundness)

1. If S′ = cc(S) 6= ⊥, T, S′ ` a = b for vars(a = b) ⊆ vars(T, S), then

T, S ` a = b.

2. Otherwise, cc(S) = ⊥, and
S ` false.

Proof. By computation-induction on the definition of cc, and applying merge
soundness.

Lemma 4.8 (process soundness)

1. If S = process(T1) 6= ⊥, T1 ⊆ T2, and T2, S ` c = d for vars(c = d) ⊆
vars(T2), then

T2 ` c = d.

2. Otherwise, process(T1) = ⊥, and

T1 ` false.
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Proof. By induction on the length of T1. In the base case, S is empty and the
theorem follows trivially.
In the induction step, with T1 = {a = b, T ′1} and S′ = process(T ′1), we have the
induction hypothesis that for any c, d such that vars(c = d) ⊆ vars(T2)

T2, S
′ ` c = d implies T2 ` c = d.

We know by can soundness that

T2, S
′ ` a = a, and

T2, S
′ ` b = b

are derivable. When S’ is augmented with identities over subterms of a and b to get
S′+, we have the derivability of

T2, S
′ ` S′+.

By cc soundness, we then have the derivability of T2, S
′+ ` c = d from that of

T2, S ` c = d. The derivability of

T2, S
′ ` c = d

then follows by cut from that of T2, S
′+ ` c = d, and we get the conclusion

T2 ` c = d

by the induction hypothesis.
A similar induction argument shows that when process(T1) = ⊥, then T2 ` false.

Theorem 4.9 (soundness)

1. If S = process(T ) 6= ⊥, vars(a = b) ⊆ vars(T ), and a ≡ b, then

T ` a = b.

2. Otherwise, process(T ) = ⊥, and

T ` false.

Proof. If S = process(T ) 6= ⊥, then by can soundness,

T, S ` a = a, and
T, S ` b = b

are derivable. Hence, by transitivity and symmetry,

T, S ` a = b

is derivable. Therefore, by process soundness,

T ` a = b

is derivable.
If process(T ) = ⊥, then already by process soundness, T ` false.
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Completeness. We show that when S = process(T ) then can(S) is a σ-model
satisfying T . When this is the case, completeness follows from proof soundness.
In proving completeness, we exploit the property that the output of process is
congruence-closed.

Lemma 4.10 (confluence)
If S is congruence-closed and U(ddaee) ⊆ dom(S), then can(S)(a) ≡ norm(S)(a).

Proof. The proof is by induction on a. In the base case, when a is a variable,
can(S)(a) ≡ S(a) ≡ norm(S)(a).

If a is uninterpreted and of the form f(a1, . . . , an), then

can(S)(a) ≡ lookup(S)(f(a1, . . . , an)).

Since S is subterm-closed, by the induction hypothesis and norm closure, we have

ai ≡ âi ≡ S(ai)

for 0 < i ≤ n. Then there must be some b of the form f(b1, . . . , bn) such that
S(bi) ≡ S(ai), for 0 < i ≤ n, since a itself is such a b. Then by congruence closure
and norm closure,

a ≡ S(b) ≡ S(a) ≡ â,

since a S∼ b.
If a is interpreted, by the induction hypothesis and subterm closure,

a ≡ σ(f(a1, . . . , an)) ≡ σ(f(â1, . . . , ân)) ≡ â.

Lemma 4.11 (can composition) If S′ = S ◦R and S′ is congruence-closed, then
can(S′)(can(S)(a)) ≡ can(S′)(a).

Proof. By induction on a. When a is a variable. can(S)(a) ≡ S(a). If a 6∈
dom(S), then S(a) = a, and hence the conclusion. Otherwise, by range-closure,
U(ddS(a)ee) ⊆ dom(S) ⊆ dom(S′). Then, by confluence, norm decomposition, and
idempotence,

can(S′)(S(a))
≡ norm(S′)(S(a))
≡ norm(R)(norm(S)(S(a)))
≡ norm(R)(norm(S)(a))
≡ norm(S′)(a)
≡ can(S′)(a).

In the induction step, let a ≡ f(a1, . . . , an). If a is uninterpreted, then if

f(a1, . . . , an) S∼ f(b1, . . . , bn)
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for some f(b1, . . . , bn) ∈ dom(S), then a ≡ S(f(b1, . . . , bn)). The reasoning used
in the base case can then be repeated to derive the conclusion. Otherwise, a ≡
f(a1, . . . , an) and by the induction hypothesis and the definition of can,

can(S′)(a) ≡ lookup(S′)(f(can(S′)(a1), . . . , can(S′)(an))) ≡ can(S′)(a).

When a is interpreted, by the induction hypothesis and the σ-norm lemma,

can(S′)(a)
≡ can(S′)(σ(f(a1, . . . , an)))
≡ σ(f(can(S′)(a1), . . . , can(S′)(an)))
≡ can(S′)(a).

Lemma can composition with ∅ for R yields the idempotence of can(S) for
congruence-closed S so that we can define a σ-model in terms of can(S).

Definition 4.12 (Model MS) MS is defined as a model with domain DS defined
as {a|can(S)(a) = a} such that

MS(f)(a1, . . . ,an) = lookup(S)(f(a1, . . . ,an)), if f is uninterpreted
MS(f)(a1, . . . ,an) = σ(f(a1, . . . ,an)), if f is interpreted.

Lemma 4.13 (MS σ-model) MS is a σ-model.

Proof. We need to show that MS , ρ ` σ(a) = a for any assignment ρ from vars(a)
to values in DS . Let us define ρ[a] as

ρ[x] = ρ(x)
ρ[f(a1, . . . , an)] = f(ρ[a1], . . . , ρ[an])

Note that MS [[a]]ρ = can(S)(ρ[a]) since

• If a ≡ x
l .h.s. = MS [[x]]ρ = ρ(x) = ρ[x] = r .h.s..

• If a ≡ f(a1, . . . , an), then

l .h.s. = can(S)(f(MS [[a1]]ρ, . . . ,MS [[an]]ρ))
{I.H} = can(S)(f(can(S)(ρ[a1]), . . . , can(S)(ρ[an])))

{idempotence of can} = can(S)(f(ρ[a1], . . . , ρ[an]))
= r .h.s.

Since |=τ σ(a) = a, it must also be the case that |=τ ρ[σ(a)] = ρ[a] by Lemma 2.4.
Then, by Definition 2.1, σ(ρ[σ(a)]) ≡ σ(ρ[a]). Then we can show that MS [[σ(a)]]ρ =
MS [[a]]ρ as follows

l .h.s. = can(S)(ρ[σ(a)])
{σ−norm} = can(S)(σ(ρ[σ(a)]))

= can(S)(σ(ρ[a]))
{σ−norm} = can(S)(ρ[a])

= r .h.s.
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Lemma 4.14 (expand congruence closed) If S is congruence-closed and S+ =
expand(S, a, b), then S+ is also congruence-closed.

Proof. Note that S+(c) ≡ S(c) for all c and can(S)(c) ≡ c for all c ∈ dom(S+)−
dom(S). If there are uninterpreted terms d and e such that d S+

∼ e, then by the
construction of S+, both d and e must be in dom(S+) − dom(S). If d ∈ dom(S)
and e ∈ dom(S+)−dom(S), then by congruence-closure of S, can(S)(e) ≡ S(d) 6≡ e
which contradicts the idempotence of can. On the other hand, if d and e are both
in dom(S+) − dom(S), then d ≡ f(d1, . . . , dn) and e ≡ f(e1 . . . , en), and for some
i, di 6≡ ei but S(di) ≡ S(ei). Without loss of generality, suppose S(di) 6≡ di, then
di ∈ dom(S). Then, by confluence, can(S)(di) ≡ norm(S)(di) ≡ S(di) 6≡ di, but
this violates the idempotence of can.

Lemma 4.15 (can expand) If S is congruence-closed and S+ = expand(S, a, b),
then can(S+)(c) = can(S)(c).

Proof. The proof is by induction on c. If c ≡ x for some variable x, either
x ∈ dom(S) and can(S+)(x) ≡ can(S)(x) or x 6∈ dom(S) and can(S+)(x) ≡ x ≡
can(S)(x).

When c is an uninterpreted term of the form f(c1, . . . , cn), we know by the
induction hypothesis that can(S+)(ci) ≡ can(S)(ci) for 1 ≤ i ≤ n. If there is
a term d ∈ dom(S+) such that d ≡ f(d1, . . . , dn) and S(di) ≡ can(S+)(ci) for
1 ≤ i ≤ n, then by Lemma 4.14, either d ∈ dom(S) and can(S+)(c) ≡ can(S)(c), or
d ∈ dom(S+)− dom(S) and can(S+)(c) ≡ S+(d) ≡ d ≡ lookup(S)(f(c1, . . . , cn)) ≡
can(S)(c).

If c is interpreted and of the form f(c1, . . . , cn), then by the induction hypothesis
and the definition of can, can(S+)(c) ≡ σ(f(c1, . . . , cn)) ≡ can(S)(c).

For a given set of variables X, ρXS is defined so that ρXS (x) = can(S)(x) for
x ∈ X.

Lemma 4.16 (can σ-model) If S = process(T ) 6= ⊥ and X = vars(T ), then
MS , ρ

X
S |= a = b for any a = b ∈ T .

Proof. Showing that MS , ρ
X
S |= a = b is the same as showing that

can(S)(a) ≡ can(S)(b).

The proof is by induction on T . In the base case, T is empty. In the induction step,

T = {a = b, T ′}

with X ′ = vars(T ′). Let S′ = process(T ′). By the induction hypothesis,

MS′ , ρ
X′
S′ |= T ′.

With S′+ = expand(S, a′, b′) for a′ ≡ can(S′)(a) and b′ ≡ can(S′)(b), let S0 =
merge(a′, b′, S′+), hence by merge equivalence,

norm(S0)(a′) ≡ norm(S0)(b′).
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By associativity of composition, it can be shown that there is an R such that

S = S0 ◦R

and an R′ such that
S = S′+ ◦R′.

Hence, by monotonicity,

norm(S)(a′) ≡ norm(S)(b′).

Since S is congruence-closed, by confluence,

can(S)(a′) ≡ norm(S)(a′) and
can(S)(b′) ≡ norm(S)(b′).

Hence, can(S)(a′) ≡ can(S)(b′).
By can composition and can expand,

can(S)(a′) = can(S)(can(S+)(a)) = can(S)(a)
can(S)(b′) = can(S)(can(S+)(b)) = can(S)(b)

Hence, can(S)(a) = can(S)(b) and

MS , ρ
X
S |= a = b.

A similar argument shows that for c = d ∈ T ′, can(S)(c) = can(S)(d). Since, by
the induction hypothesis, can(S′)(c) ≡ can(S′)(d), we also have

can(S)(c) ≡ can(S)(d).

Theorem 4.17 (completeness) If S = process(T ) 6= ⊥ and T ` a = b, then
can(S)(a) ≡ can(S)(b).

Proof. Since MS , ρ
X
S |= T by can σ-model for X = vars(T ), we have by proof

soundness that can(S)(a) ≡ can(S)(b).

Complexity. We have already seen in the termination argument that the number
of iterations of cc in process is bounded by the number of distinct equivalence classes
of terms in dom(S) which is no more than the number of distinct uninterpreted
terms. We will assume that the solve operation is performed by an oracle and that
there is some fixed bound on the size of the solution set returned by it. In the case
of linear arithmetic, the solution set has at most one element. Let n represent the
number of distinct terms appearing in T which is also a bound on |S| and on the size
of the largest term appearing in S. The composition operation can be implemented
in linear time. Thus the entire algorithm has O(n2) steps assuming that the σ and
solve operations are length-preserving and ignoring the time spent inside solve.
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Chapter 5

Conclusions

Shostak’s original decision procedure [Sho84] for equality in the presence of in-
terpreted and uninterpreted functions is seriously flawed. It is both incomplete
and non-terminating, and hence not a decision procedure. Subsequent variants of
Shostak’s algorithm have been similarly flawed. We have presented the first correct
algorithm that captures Shostak’s key insights, and described proofs of termination,
soundness, and completeness.

Our algorithm has been formally verified using PVS [FS02]. The verification took
about four man-months. Some of the detailed proofs given here were developed as
input for the formal verification. The PVS verification identified some minor gaps in
the earlier version of the proof. In particular, the conditions of σ-distributivity and
σ-substitutivity (Lemmas 2.3 and 2.5) were identified during the formal verification
and the proofs of these lemmas were developed interactively with PVS. The short
version of this paper [RS01] was missing the condition in Lemma 2.17 that a and b
must be restricted to elements of dom(R). The need for this condition was noticed
when preparing the PVS proof. The lemma was in fact applied only when the
condition already held. Also, Lemma 4.15 was stated and used in the proof of
Lemma 4.16 with the implicit claim that the justification was trivial. However, the
proofs of Lemmas 4.14 and 4.15 are not straightforward.

The algorithm described here is the basis of the ICS decision proce-
dures [FORS01]. The theory developed in this paper has been instrumental in
building a reliable, efficient, and compact implementation.

Decision procedures are critical deductive components that merit careful the-
oretical scrutiny. We have presented a rigorous development of a correct version
of Shostak’s widely used combination decision procedure. The theory outlined in
this paper is the basis for both a formal verification of the algorithm as well as a
practical implementation.
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