
Invited paper for LOPSTR’01. Appears in the Proceedings of LOPSTR’01, LNCS.
c©Springer-Verlag

Static Analysis for Safe Destructive Updates in a
Functional Language?

Natarajan Shankar

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA
shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/
Phone: +1 (650) 859-5272 Fax: +1 (650) 859-2844

Abstract. Functional programs are more amenable to rigorous math-
ematical analysis than imperative programs, but are typically less ef-
ficient in terms of execution space and time. The update of aggregate
data structures, such as arrays, are a significant source of space/time in-
efficiencies in functional programming. Imperative programs can execute
such updates in place, whereas the semantics of functional languages
require aggregate data structures to be copied and updated. In many
functional programs, the execution of aggregate updates by copying is
redundant and could be safely implemented by means of destructive, in-
place updates. We describe a method for analyzing higher-order, eager
functional programs for safe destructive updates. This method has been
implemented for the PVS specification language for the purpose of ani-
mating or testing specifications to check if they accurately reflect their
intended function. We also give a careful proof of correctness for the
safety of the destructive update optimization.

1 Introduction

Unlike imperative programming languages, pure functional languages are refer-
entially transparent so that two occurrences of the same expression evaluate to
the same value in the same environment. The execution semantics of functional
languages are therefore nondestructive since variables representing aggregate
data structures such as arrays cannot be destructively updated. Pure functional
? Funded by NSF Grants CCR-0082560 and CCR-9712383, DARPA/AFRL Contract

F33615-00-C-3043, and NASA Contract NAS1-20334. The author is deeply grate-
ful to the programme committee of the 11th International Workshop on Logic-based
Program Synthesis and Transformation, LOPSTR 01, for the opportunity to present
this work. The LOPSTR 01 programme chair, Professor Alberto Pettorossi, made
several excellent suggestions, and Pavol Cerny (visiting SRI from ENS Paris) cor-
rected numerous typographical errors in earlier drafts of this paper.

1

languages do not admit constructs for performing in-place modifications of ag-
gregate data structures. The aggregate update problem for functional programs
is that of statically identifying those array updates in a program that can be exe-
cuted destructively while preserving the semantics of the program. This problem
has been widely studied but none of the previously proposed techniques appear
to have actually been implemented in any widely used functional language. We
present a simple, efficient, and effective method for the static detection of safe de-
structive updates in a functional language. The method has been implemented
for the functional fragment of the specification language PVS [ORS92].1 This
fragment is essentially a strongly typed, higher-order language with an eager
order of evaluation. The method can be easily adapted to other functional lan-
guages, including those with a lazy evaluation order. The analysis method is
interprocedural. Each function definition is analyzed solely in terms of the re-
sults of the analysis of the previously defined functions and not their actual
definitions. We also outline a proof of the correctness for the introduction of
destructive updates.

PVS is a widely used framework for specification and verification. By optimizing
functions defined in the PVS specification language with safe destructive up-
dates, specifications can be executed for the purposes of animation, validation,
code generation, and fast simplification. The technique is presented for a small
functional language fragment of PVS.

The concepts are informally introduced using a first-order functional language
with booleans, natural numbers, subranges, flat (unnested) arrays over sub-
ranges, application, conditionals, and array updates. A flat array maps an index
type that is a subrange type [0..n] to an members of an element type that is either
a boolean, natural number, or subrange type. The range type of the mapping
cannot be a function or array type.

The full analysis given in Section 2 is for a higher-order language that includes
lambda-abstractions. A function is defined as f(x1, . . . , xn) = e where e contains
no free variables other than those in {x1, . . . , xn}. A few simple examples serve
to motivate the ideas. Let Arr be an array from the subrange [0..9] to the
integers. Let A and B be variables of type Arr. An array lookup is written as
A(i) for 0 ≤ i ≤ 9. An array update has the form A[(i) := a] and represents a
new array A′ such that A′(i) = a and A′(j) = A(j) for j 6= i. Pointwise addition
on arrays A + B is defined as the array C such that C(i) = A(i) + B(i) for
0 ≤ i ≤ 9. Now consider the function definition

f1(A) = A+A[(3) := 4].

When executing f1(A), the update to A cannot be carried out destructively
since the original array is an argument to the + operation. The evaluation of
1 The PVS system and related documentation can be obtained from the URL http://

pvs.csl.sri.com. The presentation in this paper is for a generic functional language
and requires no prior knowledge of PVS. The notation used is also somewhat different
from that of PVS.

2

A[(3) := 4] must return a reference to a new array that is a suitably modified
copy of the array A.

The implementation of array updates by copying can be expensive in both space
and time. In many computations, copying is unnecessary since the original data
structure is no longer needed in the computation that follows the update. Con-
sider the definition

f2(A, i) = A(i) +A[(3) := 4](i).

Given an eager, left-to-right evaluation order (as defined in Section 3), the ex-
pression A(i) will be evaluated prior to the update A[(3) := 4]. Since the original
value of A is no longer used in the computation, the array can be updated de-
structively.2 The optimization assumes that array A is not referenced in the
context where f2(A, i) is evaluated. For example, in the definition

f3(A) = A[(4) := f2(A, 3)],

it would be unsafe to execute f2 so that A is updated destructively since there
is a reference to the original A in the context when f2(A, 3) is evaluated.

Next, consider the function definition

f4(A,B) = A+B[(3) := 4].

Here, the update to array B can be executed destructively provided A and B
are not bound to the same array reference. This happens, for instance, in the
definition

f5(C) = f4(C,C).

In such a situation, it is not safe to destructively update the second argument C
of f4 when evaluating the definition of f4 since the reference to C from the first
argument is live, i.e., appears in the context, when the update is evaluated.

The task is that of statically analyzing the definitions of programs involving
function definitions such as those of f1, f2, f3, f4, and f5, in order to identify
those updates that can be executed destructively. Our analysis processes each
definition of a function f , and generates the definition for a (possibly) destructive
analogue fD of f that contains destructive updates along with the conditions
LA(fD) under which it is safe to use fD instead of f . The analysis LA(fD) is
a partial map of the form 〈x1 7→ X1, . . . , xn 7→ Xn〉 where 〈〉 is the empty map.
The analysis when applied to a definition f(x1, . . . , xn) = e produces a definition
of the form fD(x1, . . . , xn) = eD, where some occurrences of nondestructive
updates of the form e1[(e2) := e3] in e have been replaced by destructive updates
of the form e1[(e2) ← e3]. The analysis of the examples above should therefore
2 With a lazy order of evaluation, the safety of this optimization depends on the order

in which the arguments of + are evaluated.

3

yield
fD1 (A) = A+A[(3) := 4] LA(fD1) = 〈〉

fD2 (A, i) = A(i) +A[(3)← 4](i) LA(fD2) = 〈A 7→ ∅〉
fD3 (A) = A[(4)← f2(A, 3)] LA(fD3) = 〈A 7→ ∅〉

fD4 (A,B) = A+B[(3)← 4] LA(fD4) = 〈B 7→ {A}〉
fD5 (C) = f4(C,C) LA(fD5) = 〈〉

Observe that when the array referenced by B is destructively updated in fD4 ,
the variable A is live, and hence LA(fD4) = 〈B 7→ {A}〉. The information in
LA(fD4) is used to reject fD4 (C,C) as unsafe in the definition of fD5 . In general,
this kind of interprocedural analysis can be too coarse. definition. For example,
the definition f6(A,B,C) = (A+B[(3) := 4]+C[(4) := 3]) can be safely mapped
to either fD6 (A,B,C) = (A+B[(3)← 4] +C[(4)← 3]), where LA(fD6) = 〈B 7→
{A}, C 7→ {A,B}〉. The update analysis rejects fD6 (A,A,B) as unsafe, even
though this would have been safe had fD6 (A,B,C) been defined as (A+B[(3) :=
4] + C[(4)← 3]).

We now informally describe the conditions under which fD(x1, . . . , xn) = e
together with the liveness analysis LA(fD), is a safe, destructive counterpart
of the definition f(x1, . . . , xn) = e. The liveness analysis table LA(fD) as a
partial map from the set of variables {x1, . . . , xn} to its powerset such that
xj ∈ LA(fD)(xi) if xj is live in the context (as defined below) of a destructive
update applied to (the value bound to) xi. The table LA(fD) can be used to
determine whether it is safe to replace f(a1, . . . , an) by fD(a1, . . . , an) in another
function definition.

Given a definition fD(x1, . . . , xn) = e, where e contains an occurrence of a de-
structive update operation of the form e1[(e2)← e3], the task is to identify if this
is a safe destructive update. The crucial idea here is that when the destructive
update expression e1[(e2)← e3] is evaluated, the array reference for the value of
e1 is modified. This array reference is either freshly created within e1, in which
case the destructive update is safe, or it appears in the binding of some free vari-
able in e1. In the latter case, the update is unsafe if such a variable in e1 is live
in the context when the update e1[(e2)← e3] is being evaluated. More strongly,
the analysis must ensure that the value of e1 does not have any array references
in common with its context as it appears when the update is evaluated. Such an
analysis can be carried out by examining the mutable variables that occur in the
body of a function definition. A mutable type is a type whose values can contain
references. For a first-order language, only array types are mutable. A mutable
variable is a variable of mutable type.

A specific occurrence of a destructive update u of the form e1[(e2) ← e3] in an
expression e can be identified by decomposing e as U{u}, where U is an update
context containing a single occurrence of the hole {}, and U{u} is the result of
filling the hole with the update expression u. In order to determine if u is a safe
destructive update, we compute

4

1. The set Lv(U) of live mutable variables in the update context U . When
the expression U{u} is evaluated, the free variables in it are bound to val-
ues through some substitution σ, and the free mutable variables are bound
to values containing references. The set Lv(U) calculates those variables x
such that σ(x) is present in the partially evaluated context U ′ when the
subexpression u is evaluated. This is a subset of the mutable variables in U .

2. The set Ov(e1) of the output array variables in e1 contains those array
variables x such that the reference σ(x) is a possible value of σ(e1).

A destructive update expression e1[(e2) ← e3] occurring in an update context
U , where e ≡ U{e1[(e2) ← e3]} in a definition fD(x1, . . . , xn) = e, is safe if
Lv(U) ∩ Ov(e1) = ∅. Informally, this means that when some instance σ(e) of
e is evaluated, the array references that are possible values of σ(e1) do not
occur in the context derived from σ(U) when the destructive update e1[(e2) ←
e3]. However, we are assuming that whenever xi 6≡ xj , then σ(xi) 6= σ(xj).
This assumption is violated when aliasing occurs, i.e., when σ(xi) = σ(xj) for
xi 6≡ xj , as is the case in the evaluation of f4(C,C) in the definition of f5.
To account for the possibility aliasing, a table LA(fD) is constructed so that
Lv(U) ⊆ LA(fD)(x) for each x in Ov(e1), i.e., LA(fD)(x) is the set of variables
that must not be aliased to x in any invocation of fD.

The analysis can use the table LA(gD) to determine when it is safe to in-
voke a destructive function application gD(a1, . . . , am) within the definition of
fD. An application occurrence gD(a1, . . . , am) in an update context U , where
U{gD(a1, . . . , am)} ≡ e, is safe iff Ov(ai) ∩ (Lv(U) ∪Ov(aj)) = ∅ for each xi in
the domain of LA(gD) and xj in LA(gD)(xi). Why does this condition ensure the
safety of the given occurrence of gD(a1, . . . , am)? If σ(e) is the instance of e that
is being evaluated, the references that are destructively updated in evaluating
σ(gD(a1, . . . , am)) are from the values of σ(ai) for xi in the domain of LA(gD).
During the evaluation of the body of the definition of gD, there can be a destruc-
tive update to a reference in the value of σ(ai) for xi in the domain of LA(gD).
The references in the context of this destructive update are either those from the
context σ(Lv(U)) or from σ(Ov(aj)) for xj ∈ LA(gD)(xi). The mapping LA(fD)
must then be defined to satisfy the constraint Lv(U) ∪ Ov(aj) ⊆ LA(f)(x) for
each x in Ov(ai) such that xi is in the domain of LA(gD) and xj in LA(gD)(xi).

Thus in the examples f1 to f5, we have

1. f1: If eD is A+A[(3)← 4], then Ov(A) is {A}, the update context is (A+{}),
and Lv(A + {}) is {A}. Since Ov(A) has a nonempty intersection with the
live variables in the context, the update is not safe.

2. f2: If eD is A(i) + A[(3) ← 4](i), Ov(A) is {A}, then the update context is
(A(i) +{}(i)), and Lv(A(i) +{}(i)) is ∅. Since the updated variable A is not
live in the update context, the update is safe. Note that LA(fD2)(A) = ∅.

3. f3: If eD is A[(4) ← fD2 (A, 3)]. Here, the update context for fD2 (A, 3) is
(A[(4) ← {}]), where Lv(A[(4) ← {}]) is {A}. Since A is in the domain of
LA(fD2) and there is a nonempty intersection between Ov(A) and the live

5

variable set {A}, the occurrence of fD2 (A, 3) is unsafe. The update A[(4)←
f2(A, 3)] can be executed destructively, since there are no live references to
A in the update context {}. We then have LA(fD3)(A) = ∅.

4. f4: If eD is A + B[(3) ← 4], then Ov(B) is {B}, the update context is
(A + {}), and Lv(A + {}) is {A}. Since {B}

⋂
{A} = ∅, the update is safe,

but LA(fD4)(B) = {A}.
5. f5: If eD is fD4 (C,C), then the update context is {} with Lv({}) equal to
∅. Since LA(fD4) maps B to {A} and Ov(C) = {C}, the analysis detects
the aliasing between the binding C for A and C for B. The occurrence of
fD4 (C,C) is therefore unsafe.

The formal explanation for the destructive update analysis and optimization is
the topic of the remainder of the paper. A similar analysis and transformation
for safe destructive updates was given independently and earlier by Wand and
Clinger [WC98] for a first-order, eager, functional language with flat arrays. Their
work is in turn based on a polynomial-time, interprocedural analysis given by
Shastry, Clinger, and Ariola [SCA93] for determining safe evaluation orders for
destructive updates. In this paper, we go beyond the treatment of Wand and
Clinger by

1. Employing a notion of update contexts in presenting the analysis.
2. Simplifying the proof of correctness through the use of evaluation contexts.
3. Applying the optimization to a richer language with higher-order operations.
4. Carrying out a complexity analysis of the static analysis procedure.

These extensions are the novel contributions of the paper. We have also imple-
mented our method as part of a code generator for an executable functional
fragment of the PVS specification language which generates Common Lisp pro-
grams. It was released with PVS 2.3 in the Fall of 1999. Functional programs,
such as sorting routines, written in this fragment of PVS execute at speeds that
are roughly a factor of five slower than the corresponding programs written in
C, and with comparable space usage. The slowness relative to C is primarily due
to the overhead of dealing dynamically with multiple array representations.

Clean [vG96] is a lazy functional language where a destructive update optimiza-
tion has been implemented. The Clean optimization scheme requires program-
mer annotations to ensure safe destructive updates. Other annotation schemes
for expressing destructive updates in functional languages include the use of
state monads [Wad97] and various linear type systems [Wad90]. The method
presented here does not rely on any programmer annotations.

There is a large body of work on static analysis applied to the destructive ar-
ray update problem including that of Hudak [Hud87], Bloss and Hudak [BH87],
Bloss [Blo94], Gopinath and Hennessy [GH89], and Odersky [Ode91]. Draghicescu
and Purushothaman [DP93] introduce the key insight exploited here that in a
language with flat arrays, the sharing of references between a term and its con-
text can only occur through shared free variables, but their update analysis for

6

a lazy language has exponential complexity. Laziness complicates the analysis
since there is no fixed order of evaluation on the terms as is the case with eager
evaluation. Goyal and Paige [GP98] carry out a copy optimization that works
together with reference counting to reduce the need for copying data structures
in the set-based language SETL. The destructive evaluation of recursive pro-
grams studied by Pettorossi [Pet78] and Schwarz [Sch82], employs annotations
to construct an intermediate form that explicitly reclaims storage cells during
evaluation. This is a slightly different problem from that of destructive array
updates, but their annotations are obtained through a similar live variable anal-
ysis.

In comparison to previous approaches to update analyses, the method given here
is simple, efficient, interprocedural, and has been implemented for an expressive
functional language. The implementation yields code that is competitive in per-
formance with efficient imperative languages. The proof of correctness is simple
enough that the method can be adapted to other languages with only modest
changes to the correctness argument.

2 Update Analysis

We describe a small functional language and an update analysis procedure for
this language that generates a destructive counterpart to each function defini-
tion. The language is strongly typed. Each variable or function has an associated
type. Type rules identify the well-typed expressions. The type of a well-typed
expression can be computed from the types of its constituent subexpressions.
Types are exploited in the analysis, but the principles apply to untyped lan-
guages as well.

The base types consist of bool, integer, and index types of the form [0 < κ],
where κ is a numeral. The only type constructor is that for function types which
are constructed as [T1, . . . , Tn→T] for types T, T1, . . . , Tn. The language admits
subtyping so that [0 < i] is a subtype of [0 < j] when i ≤ j, and these are both
subtypes of the type integer. A function type [S1, . . . , Sn→S] is a subtype of
[T1, . . . , Tn→T] iff Si ≡ Ti for 0 < i ≤ n, and S is a subtype of T . We do
not explain more about the type system and the typechecking of expressions.
Readers are referred to the formal semantics of PVS [OS97] for more details.
An array type is a function type of the form [[0 < i]→W] for some numeral i
and base type W , so that we are, for the present, restricting our attention to
flat arrays. The language used here is similar to that employed by Wand and
Clinger [WC98], but with the important inclusion of higher-order operations and
lambda-abstraction. We allow arrays to be built by lambda-abstraction, whereas
Wand and Clinger use a NEW operation for constructing arrays.

The metavariable conventions are that W ranges over base types, S and T range
over types, x, y, z range over variables, p ranges over primitive function sym-

7

bols, f and g range over defined function symbols, a, b, c, d, and e range over
expressions, L, M , N range over sets of array variables.

The expression forms in the language are

1. Constants: Numerals and the boolean constants TRUE and FALSE.
2. Variables: x
3. Primitive operations p (assumed to be nondestructive) and defined opera-

tions f .
4. Abstraction: (λ(x1 : T1, . . . , xn : Tn) : e), is of type [T1, . . . , Tn→T], where e

is an expression of type T given that each xi is of type Ti for 0 < i ≤ n. We
often omit the types T1, . . . , Tn for brevity.

5. Application: e(e1, . . . , en) is of type T where e is an expression of type
[T1, . . . , Tn→T] and each ei is of type Ti.

6. Conditional: IF e1 THEN e2 ELSE e3 is of type T , where e1 is an expression
of type bool, and e2, and e3 are expressions of type T .

7. Update: A nondestructive update expression e1[(e2) := e3] is of type [[0 <
i]→W], where e1 is of array type [[0 < i]→W], e2 is an expression of type
[0 < i], and e3 is an expression of type W . A destructive update expression
e1[(e2)← e3] has the same typing behavior as its nondestructive counterpart.

A program is given by a sequence of function definitions where each function def-
inition has the form f(x1 : T1, . . . , xn : Tn) : T = e. The body e of the definition
of f cannot contain any functions other than the primitive operations, the pre-
viously defined functions in the sequence, and recursive occurrences of f itself.
The body e cannot contain any free variables other than those in {x1, . . . , xn}.

A variable of array type is bound to an array reference, i.e., a reference to an
array location in the store, as explicated in the operational semantics (Section 3).
A type is mutable if it is an array or a function type. A type is updateable if it is
an array type or a function type whose range type is updateable. A variable is
mutable if its type is mutable, and updateable if its type is updateable. Mv(a) is
the set of all mutable free variables of a, Ov(a) is the set of updateable output
variables in a, and Av(a) is the set of active mutable variables in the value of a.
These will be defined more precisely below so that Ov(a) ⊆ Av(a) ⊆ Mv(a).

Output Analysis. In order to analyze the safety of a destructive update, we
need to compute the set of variables whose references could be affected by the
update. For an update expression e1[(e2) ← e3], this is just the set of variables
in e1 that might potentially propagate array references to the value. Mv(a) is
defined as the set of mutable free variables of a. The set of output variables
of an expression a of array type is computed by Ov(a). Thus Ov(a) could be
conservatively approximated by the set of all updateable variables in a, but
the analysis below is more precise. The auxiliary function Ovr(a) computes a
lambda-abstracted set of variables (λ(x1, . . . , xn) : S) for a defined function or
a lambda-abstraction in the function position of an application. This yields a

8

more precise estimate of the set of output variables. For example, if the array
addition operation + is defined as (λX, Y : (λ(x : [0 < i]) : X(x) + Y (x))), then
Ovr(X + Y) = (λ(X,Y) : ∅)({X}, {Y }) = ∅.

Given a sequence of definitions of functions f1, . . . , fm, the table OA is a map
from the function index i to the output analysis for the definition of fi, i.e.,
Ovr(fi) = OA(i). A map such as OA from an index set I to some range type T is
represented as 〈i1 7→ t1, . . . , in 7→ tn〉. The domain of a map OA is represented as
dom(OA). The result of applying a map OA to a domain element i is represented
as OA(i). The update of a map OA as OA〈i 7→ t〉 returns t when applied to i,
and OA(j) when applied to some j different from i. The empty map is just 〈〉.
For a sequence of definitions of functions f1, . . . , fm, the output analysis table
OA is defined as OAm, where OA0 is the empty map 〈〉, and OAi+1 = OAk

i+1

for the least k such that OAk
i+1 = OAk+1

i+1 . The map OAj
i for the definition

fi(x1, . . . , xn) = e, is computed iteratively as

OA0
i = OAi−1〈i 7→ (λx1, . . . , xn : ∅)〉

OAk+1
i = OAk

i 〈i 7→ Ovr(OAk
i)(λ(x1, . . . , xn) : e)〉.

The over-approximation of the output variables, Ov(a), is defined below in terms
of the auxiliary function Ovr(a). The defining equations have to be read in order
so that the first equation, when applicable, supersedes the others. The case of
destructive updates e1[(e2) ← e3] in the definition of Ovr is counterintuitive.
Ovr(F)(e1[(e2) ← e3]) is defined to return ∅ instead of Ovr(F)(e1). This is
because the destructive update overwrites the array reference corresponding to
the value of e1, and does not propagate the original array to the output.

Ovr(F)(a) = ∅, if a is not of updateable type
Ovr(F)(x) = {x}, if x is of updateable type
Ovr(F)(fi) = F (i)

Ovr(F)(a(a1, . . . , an)) = Ovr(F)(a)(Ov(F)(a1), . . . ,Ov(F)(an))
Ovr(F)(λ(x : [0 < i]) : e) = ∅
Ovr(F)(λ(x1, . . . , xn) : e) = (λ(x1, . . . , xn) : Ov(F)(e))

Ovr(F)(IF e1 THEN e2 ELSE e3) = Ov(F)(e2) ∪Ov(F)(e3)
Ovr(F)(a1[(a2) := a3]) = ∅
Ovr(F)(a1[(a2)← a3]) = ∅

Ov(F)(a) = S − {x1, . . . , xn}, if
Ovr(F)(a) = (λ(x1, . . . , xn) : S)

Ov(F)(a) = Ovr(F)(a), otherwise

When F is fixed to be OA, we just write Ovr(e) for Ovr(OA)(e), and Ov(e) for
Ov(OA)(e). Note that Ovr(e) can return either a lambda-abstraction (λx1, . . . , xn :
S) or a set of variables S. The definition above uses the application form

Ovr(F)(a)(Ov(F)(a1), . . . ,Ov(F)(an))

9

which is defined below.

(λ(x1, . . . , xn) : S)(S1, . . . , Sn) = (S − {x1, . . . , xn}) ∪
⋃
{Si|xi ∈ S}

S(S1, . . . , Sn) = S ∪ S1 ∪ . . . ∪ Sn

As an example, we extract the output variables returned by the definition

f1(x, y, z, i) = IF(x(i) < y(i), x, f1(y, z, x, i)).

The iterations then proceed as

OA0
1(1) = (λx, y, z, i : ∅)

OA1
1(1) = (λx, y, z, i : {x})

OA2
1(1) = (λx, y, z, i : {x, y})

OA3
1(1) = (λx, y, z, i : {x, y, z})

OA4
1(1) = (λx, y, z, i : {x, y, z})

The complexity of computing the output variables of an expression e with n
updateable variables is at most n ∗ |e| assuming that the set operations can
be performed in linear time by representing the sets as bit-vectors. If the size
of these bit-vectors fits in a machine word, then the set operations take only
constant time and the complexity is just |e|. Since the cardinality of the output
variables of an expression is bounded by the number n of updateable variables in
the expression, the fixed point computation of the table entry OA has at most n
iterations. The complexity of computing the table entry for a function definition
is therefore at most n2 ∗ |e|.

Active Variables. The set Av(a) of variables returns the active variables in an ex-
pression. It is used to keep track of the variables that point to active references
in already evaluated expressions. The set Av(a) includes Ov(a) but addition-
ally contains variables that might be trapped in closures. We already saw that
Ov(λ(x : [0 < i]) : X(x) + Y (x)) = ∅ since this returns a new array reference.
Also, Ov(λ(x : integer) : X(i) + x) (with free variables X and i) is ∅ because
the lambda-abstraction is not of updateable type. However, the evaluation of
(λ(x : integer) : X(i) + x) yields a value that traps the reference bound to X.
This means that X is live in a context that contains (λ(x : integer) : X(i)+x).
On the other hand, Av(a) is more refined than Mv(a) since Av(X(i)) is ∅,
whereas Mv(X(i)) is X.

As with the output variables, the active variable analysis for the defined oper-
ations f1, . . . , fm, are computed and stored in a table VA, where VA = VAm,
VA0 = [], and VAi+1 = VAk

i+1 for the least k such that VAk+1
i+1 = VAk

i+1. The
computation of VAj

i is given by

VA0
i = VAi−1〈i 7→ (λ(x1, . . . , xn) : ∅)〉

VAj+1
i = VAj

i 〈i 7→ Avr(VAj
i)((λ(x1, . . . , xn) : e))〉

10

The operation Av(F)(e) of collecting the active variables in an expression e
relative to the table F is defined in terms of the auxiliary operation Avr(F)(e)
as

Avr(F)(a) = ∅, if a is not of mutable type
Avr(F)(x) = {x}, if x is of mutable type
Avr(F)(fi) = F (i)

Avr(F)(a(a1, . . . , an)) = Avr(F)(a)(Av(F)(a1), . . . ,Av(F)(an))
Avr(F)((λ(x : [0 < i]) : e)) = ∅
Avr(F)((λ(x1, . . . , xn) : e)) = (λ(x1, . . . , xn) : Av(F)(e))

Avr(F)(IF e1 THEN e2 ELSE e3) = Av(F)(e2) ∪Av(F)(e3)
Avr(F)(a1[(a2) := a3]) = ∅
Avr(F)(a1[(a2)← a3]) = ∅

Av(F)(fi) = ∅
Av(F)((λ(x1, . . . , xn) : e)) = Mv((λ(x1, . . . , xn) : e))

Av(F)(a) = Avr(F)(a), otherwise

For example, if f2 is defined as

f2(x, y, z) = IF(z = 0, (λ(u : integer) : x(u+ u)), f2(y, x, z − 1)),

then VA2 = λx, y, z : {x, y}. Given the table VA, we abbreviate Av(VA)(e) as
Av(e), and Avr(VA)(e) as Avr(e).

Lemma 1. Ov(e) ⊆ Av(e).

Proof. This is easily established since Ov(e) and Av(e) have similar definitions
but the latter collects both updateable and mutable variables, whereas the for-
mer collects only the updateable variables. For the case of lambda-abstractions
e occurring in non-function positions Av(e) collects all the mutable variables,
whereas Ov(e) collects only those variables that might be propagated to the
output when the lambda-abstraction is actually applied.

The complexity analysis for the computation of the active variables is similar
to that for output variables but with n representing the number of mutable
variables in the expression.

Update Contexts. An update context U is an expression containing a single oc-
currence of a hole {}. An update context U has one of the forms

1. {}.
2. {}(e1, . . . , en).
3. e(e1, . . . , ej−1, {}, ej+1, . . . , en).

11

4. IF({}, e2, e3), IF(e1, {}, e3), or IF(e1, e2, {}).
5. {}[(e2) := e3], e1[({}) := e3], or e1[(e2) := {}].
6. {}[(e2)← e3], e1[({})← e3], or e1[(e2)← {}].
7. U{V } for update contexts U and V .

The primary observation about update contexts is that the hole {} can occur
anywhere except within a lambda-abstraction. Note that the context of evalua-
tion of an update expression within a lambda-abstraction is not easily calculated.
For ease of explanation, the definition of update contexts above is conservative
in not allowing holes {} to occur within lambda-abstractions that occur in func-
tion positions of beta-redexes, e.g., let-expressions, even though the context of
evaluation for the hole can be exactly determined.

Live Variables. The key operation over update contexts is that of calculating
the live variables Lv(U). Since the order of evaluation is known, it is easy to
determine exactly which subexpressions in the context U will have already been
evaluated before the expression in the hole. The live variables in U must contain
the active variables Av(a) for those subexpressions a that are evaluated before
the hole, and Mv(b) for the subexpressions b that are evaluated subsequent to
the hole. More precisely,

Lv({}) = ∅
Lv({}(e1, . . . , en)) =

⋃
i

Mv(ei)

Lv(e(e1, . . . , ej−1, {}, . . . , en)) = Av(e) ∪
⋃
i<j

Av(ei) ∪
⋃
i>j

Mv(ei)

Lv(IF({}, e2, e3)) = Mv(e2) ∪Mv(e3)
Lv(IF(e1, {}, e3)) = ∅
Lv(IF(e1, e2, {})) = ∅
Lv({}[(e2) := e3]) = ∅
Lv(e1[({}) := e3]) = Mv(e1) ∪Mv(e3)
Lv(e1[(e2) := {}]) = Mv(e1)
Lv({}[(e2)← e3]) = ∅
Lv(e1[({})← e3]) = Mv(e1) ∪Mv(e3)
Lv(e1[(e2)← {}]) = Mv(e1)

Lv(U{V }) = Lv(U) ∪ Lv(V)

The complexity analysis for the live variables computation is at most that of
computing the active variables of the expression, i.e., n ∗ |e|, since this includes
the computation of the active variables of the relevant subexpressions as well.

Liveness Analysis. Given a definition of the form fD(x1, . . . , xn) = eD, LA(fD)
is a partial map from the updateable variables in {x1, . . . , xn} so that LA(fD)(xi)

12

is the set of variables that must not aliased to xi whenever fD is invoked. The
set LA(fD)(xi) contains those variables in eD that are live in some update con-
text U of a destructive update e1[(e2) ← e3], i.e., eD ≡ U{e1[(e2) ← e3]}, and
xi ∈ Ov(e1). The liveness analysis LA(fD) can be calculated by means of a fixed
point computation on the definition so that LA(fD) = LAk(fD) for the least k
such that LAk+1(fD) = LAk(fD).

LA0(fD)(xi) = ⊥, if
xi is not updateable, or
∀ U, e1, e2, e3 : e ≡ U{e1[(e2)← e3]} ⇒ xi 6∈ Ov(e1), and
∀ U, gD, a1, . . . , an : e ≡ U{gD(a1, . . . , am)}

⇒ ∀ j : xj ∈ dom(LA(gD)) : xi 6∈ Ov(aj)

LA0(fD)(xi) = L1 ∪ L2, otherwise, where
L1 = {y | ∃ U, e1, e2, e3 : eD ≡ U{e1[(e2)← e3]}

∧ xi ∈ Ov(e1)
∧ y ∈ Lv(U)}

, and

L2 = {y | ∃ U, gD, a1, . . . , am :
eD ≡ U{gD(a1, . . . , am)}
∧ (∃ j, l : xj ∈ dom(LA(gD))

∧ xi ∈ Ov(aj)
∧ xl ∈ LA(gD)(xj)
∧ y ∈ Av(al) ∪ Lv(U))

LAk+1(fD)(xi) = LAk(fD)(xi), if
∀ U, a1, . . . , an : eD ≡ U{fD(a1, . . . , an)}

⇒ ∀ j : xj ∈ dom(LAk(fD)) ∧ xi 6∈ Ov(aj)

LAk+1(fD)(xi) = L ∪ LAk(fD)(xi) where
L = {y | ∃ U, a1, . . . , an : eD ≡ U{fD(a1, . . . , an)}

∧ (∃ j, l : xj ∈ dom(LAk(fD))
∧ xl ∈ LAk(fD)(xj)
∧ xi ∈ Ov(aj)
∧ y ∈ Av(al) ∪ Lv(U))

An entry in the liveness analysis table is a partial map from the set of variables
{x1, . . . , xn} to subsets of this set. The number of iterations in the fixed point
computation of a liveness analysis entry is at worst n2. Each iteration is itself of
complexity at worst n∗|eD|, yielding a complexity of O(n3 ∗|eD|) for a definition
of the form fD(x1, . . . , xn) = eD. In recent work, Pavol Cerny has simplified the
definitions of these analyses so that the program e is examined only once to
compute an abstract flow analysis table. In practice, only a small fraction of the
variables in a function definition are mutable, so this complexity is unlikely to
be a significant bottleneck.

13

Safe Updates. Let γ(e) represent the result of repeatedly replacing destructive
updates e1[(e2) ← e3] in e by corresponding nondestructive updates e1[(e2) :=
e3], and destructive applications gD(a1, . . . , an) by g(a1, . . . , a2). It is easy to see
that if e = γ(e′), then Ov(e) = Ov(e′) and Av(e) = Av(e′).

To obtain the destructive definition fD(x1, . . . , xn) = eD and the liveness table
LA(fD), from the definition f(x1, . . . , xn) = e, we construct eD so that γ(eD) ≡
e and eD is safe. An expression eD is safe if

1. Every occurrence of e1[(e2) ← e3] in eD within an update context U (i.e.,
eD ≡ U{e1[(e2) ← e3]}), satisfies Ov(e1) ∩ Lv(U) = ∅ and Lv(U) ⊆
LA(fD)(x) for each variable x in Ov(e1).

2. Every occurrence of a destructive function application gD(a1, . . . , an) in e
within an update context U (i.e., eD ≡ U{gD(a1, . . . , an)}) satisfies Ov(ai)∩
(Lv(U) ∪ Av(aj)) = ∅ for each xi in the domain of LA(gD) and yi ∈
LA(gD)(xi). Furthermore, Lv(U)∪Av(aj) ⊆ LA(fD)(x) for each variable x
in Ov(ai) for xi in the domain of LA(gD) and xj ∈ LA(gD)(xi).

There are several different strategies for identifying safe destructive updates in
order to obtain the definition fD(x1, . . . , xn) = eD from f(x1, . . . , xn) = e.
We present one such strategy that is quite conservative. The choice of different
strategies does not affect the underlying theory and correctness argument. We
first compute e+ from e by converting all occurrences of safe updates in e to
destructive form, all recursive function calls f(a1, . . . , an) to f+(a1, . . . , an), and
all safe occurrences of other function calls g(a1, . . . , am) to gD(a1, . . . , am). This
yields a definition f+(x1, . . . , xn) = e+ that might be overly aggressive in its
recursive calls. Since the liveness analysis for updates and function calls is unaf-
fected by the transition from e to e+, the only unsafe subterms in the definition
e+ are the recursive calls of the form f+(a1, . . . , an). The next step is to rec-
ognize and eliminate the unsafe recursive calls from the definition of f+. Using
LA(f+), we construct eD by replacing the unsafe recursive calls f+(a1, . . . , an)
by f(a1, . . . , an), and the safe recursive calls by fD(a1, . . . , an). This yields the
definition fD(x1, . . . , xn) = eD.

Theorem 1 (Safe Definition). The destructive definition fD(x1, . . . , xn) =
eD obtained from the nondestructive definition f(x1, . . . , xn) = e, is safe.

Proof. In the definition f+(x1, . . . , xn) = e+, the destructive updates and the
function calls other than f+ are safe because they depend only on the output
variable analysis Ov(d), the active variable analysis Av(d) for subterms d of e,
and the liveness analysis LA(g) for functions g other than f or f+. These update
terms therefore continue to remain safe in the definition of f+.

For each xi, LA(fD)(xi) is ⊥ or LA(fD)(xi) ⊆ LA(f+)(xi). Since the definition
eD is constructed from e+ by replacing the unsafe destructive recursive calls by
safe ones with respect to LA(f+), the definition fD(x1, . . . , xn) = eD is safe
with respect to LA(fD).

14

3 Operational Semantics

We present operational semantics for the languages with destructive updates.
We then exhibit a bisimulation between evaluation steps on a nondestructive
expression e and its safe destructive counterpart eD. The concepts used in defin-
ing the operational semantics are quite standard, but we give the details for the
language used here.

The expression domain is first expanded to include

1. Explicit arrays: #(e0, . . . , en−1) is an expression representing an n-element
array.

2. References: ref (i) represents a reference to reference number i in the store.
Stores appear in the operational semantics.

A value is either a boolean constant, integer numeral, a closed lambda-abstraction
(λx1, . . . , xn : e) or a reference ref (i). The metavariable v ranges over values.

An evaluation context [Fel90] E is an expression with an occurrence of a hole []
and is of one of the forms

1. []
2. [](e1, . . . , en)
3. v(v1, . . . , vj−1, [], ej+1, . . . , en)
4. IF([], e2, e3), IF(TRUE, [], e3), or IF(FALSE, e2, []).
5. e1[([]) := e3], e1[(v2) := []], or [][(v2) := v3].
6. e1[([])← e3], e1[(v2)← []], or [][(v2)← v3].
7. E1[E2], if E1 and E2 are evaluation contexts.

A redex is an expression of one of the following forms

1. p(v1, . . . , vn).
2. f(v1, . . . , vn).
3. (λ(x : [0 < n]) : e).
4. (λ(x1, . . . , xn) : e)(v1, . . . , vn).
5. #(v0, . . . , vn−1).
6. IF TRUE THEN e1 ELSE e2.
7. IF FALSE THEN e1 ELSE e2.
8. ref (i)[(v2) := v3].
9. ref (i)[(v2)← v3].

A store is a mapping from a reference number to an array value. A store s can
be seen as a list of array values [s[0], s[1], . . . ,] so that s[i] returns the (i+1)’th ele-
ment of the list. Let s[i]〈i 7→ vi〉 represent the array value #(w0, . . . , vi, . . . , wn−1),
where s[i] is of the form #(w0, . . . , wi, . . . , wn−1). List concatenation is repre-
sented as r ◦ s.

A reduction transforms a pair consisting of a redex and a store. The reductions
corresponding to the redexes above are

15

1. 〈p(v1, . . . , vn), s〉 → 〈v, s〉, if the primitive operation p when applied to ar-
guments v1, . . . , vn yields value v.

2. 〈f(v1, . . . , vn), s〉 → 〈[v1/x1, . . . , vn/xn](e), s〉, if f is defined by f(x1, . . . , xn) =
e.

3. 〈(λ(x : [0 < n]) : e), s〉 → 〈#(e0, . . . , en−1), s〉, where ei ≡ (λ(x : [0 < n]) :
e)(i), for 0 ≤ i < n.

4. 〈(λ(x1 : T1, . . . , xn : Tn) : e)(v1, . . . , vn), s〉 → 〈[v1/x1, . . . , vn/xn](e), s〉.
5. 〈#(v0, . . . , vn−1), s〉 → 〈ref (m), s′〉, where s ≡ [s[0], . . . , s[m − 1]] and s′ ≡
s ◦ [#(v0, . . . , vn−1)].

6. 〈IF TRUE THEN e1 ELSE e2, s〉 → 〈e1, s〉.
7. 〈IF FALSE THEN e1 ELSE e2, s〉 → 〈e2, s〉.
8. 〈ref (i)[(v2) := v3], s〉 → 〈ref (m), s′〉, where

s ≡ [s[0], . . . , s[i], . . . , s[m− 1]]
s′ ≡ [s[0], . . . , s[i], . . . , s[m]]

s[m] = s[i]〈v2 7→ v3〉.

9. 〈ref (i)[(v2) ← v3], s〉 → 〈ref (i), s′〉, where s1 ≡ [s[0], . . . , s[i], . . . , s[m − 1]]
and s2 ≡ [s[0], . . . , s[i]〈v2 7→ v3〉, . . . , s[m− 1]]).

An evaluation step operates on a pair 〈e, s〉 consisting of a closed expression and
a store, and is represented as 〈e, s〉 −→ 〈e′, s′〉. If e can be decomposed as a E[a]
for an evaluation context E and a redex a, then a step 〈E[a], s〉 −→ 〈E[a′], s′〉
holds if 〈a, s〉 → 〈a′, s′〉. The reflexive-transitive closure of −→ is represented
as 〈e, s〉 ∗−→ 〈e′, s′〉. If 〈e, s〉 ∗−→ 〈v, s′〉, then the result of the computation is
s′(v), i.e., the result of replacing each reference ref (i) in v by the array s′[i].
The computation of a closed term e is initiated on an empty store as 〈e, []〉. The
value eval(e) is defined to be s(v), where 〈e, []〉 ∗−→ 〈v, s〉.

4 Correctness

The correctness proof demonstrates the existence of a bisimulation between eval-
uations of the unoptimized nondestructive program and the optimized program.
The key ideas in the proof are:

1. The safe update analysis is lifted from variables to references since the ex-
pressions being evaluated do not contain free variables.

2. The safety of an expression is preserved by evaluation.
3. Given a nondestructive configuration 〈e, s〉 and its destructive counterpart
〈d, r〉, the relation s(e) = γ(r(d)) between the two configurations is pre-
served by evaluation. Recall that the operation γ(a) transforms all destruc-
tive updates a1[(a2) ← a3] in a to corresponding nondestructive updates
a1[(a2) := a3], and all destructive applications gD(a1, . . . , an) to the corre-
sponding nondestructive applications g(a1, . . . , an).

16

4. When e and d are values, then the bisimulation ensures that the destructive
evaluation returns the same result as the nondestructive evaluation.

The intuitive idea is that the destructive optimizations always occur safely within
update contexts during evaluation. When an update context coincides with an
evaluation context U , the references accessible in the context are a subset of
Lv(U). The safety condition on the occurrences of destructive operations within
an update context then ensures that a reference that is updated destructively
does not occur in the context. The observation that all destructive operations
occur safely within update contexts can be used to construct a bisimulation
between a nondestructive configuration 〈e, s〉 and a destructive configuration
〈d, r〉 that entails the invariant s(e) = γ(r(d)). This invariant easily yields the
main theorem

eval(e) = eval(eD)

for a closed, reference-free expression e.

The application of a store s of the form [s[0], . . . , s[n − 1]] to an expression e,
written as s(e), replaces each occurrence of ref (i) in e by s[i], for 0 ≤ i < n.

The definition of safety for an expression e has been given in Section 2 (page 14).
A destructive expression is either a destructive update of the form e1[(e2)← e3]
or a destructive function invocation of the form gD(a1, . . . , an). An expression
is safe if all destructive expressions occur safely within update contexts. In the
update analysis in Section 2, the expressions being analyzed contained variables
but no references, but the expressions being evaluated contain references and not
variables. The definitions of Ovr , Mv , and Av have to be extended to include
references so that

Ovr(ref (i)) = Mv(ref (i)) = Av(ref (i)) = {ref (i)}.

With this change, for a closed term e, the sets returned by Ov(e), Mv(e), and
Av(e), consist entirely of references. Recall that Ov(e) ⊆ Av(e) ⊆ Mv(e).

A closed expression d is normal if every occurrence of a destructive expression u
in d occurs within an update context, i.e., there is some update context U such
that d ≡ U{u}.

Lemma 2. Normality is preserved during evaluation: if d is a normal, closed
term and 〈d, r〉 =⇒ 〈d′, r′〉, then so is d′.

Proof. Essentially, U is an update context if the hole {} in U does not occur
within a lambda-abstraction. Any evaluation context E can be turned into an
update context as E[{}], but not necessarily vice-versa. It is easy to see that
none of the reductions causes a destructive term to appear within a lambda-
abstraction.

Let dom(r) for a store r be the set {ref (i)|i < |r|}. A configuration 〈d, r〉 is called
well-formed if d is a normal, closed term and each reference ref (i) occurring in
e is in the domain of r, dom(r).

17

Lemma 3. The well-formedness of configurations is preserved during evalua-
tion.

Proof. By Lemma 2, if 〈d, r〉 −→ 〈d′, r′〉 and d is a normal, closed term, then
so is d′. The only redexes that introduce new references are #(v0, . . . , vn−1) and
ref (i)[(v2) := v3]. In either case, the reduction step ensures that the store is
updated to contain an entry for the newly introduced reference.

Since we are dealing with flat arrays, the expression r(d) contains no references
when 〈d, r〉 is a well-formed configuration.

Let ρ(d) be the operation of collecting all the references occurring in the expres-
sion d.

Lemma 4. For every reduction 〈a, r〉 → 〈a′, r′〉, ρ(a′) ∩ dom(r) ⊆ ρ(a). Hence,
for each evaluation step 〈d, r〉 −→ 〈d′, r′〉, ρ(d′) ∩ dom(r) ⊆ ρ(d).

Proof. Any references ref (i) in r that are unreachable in a, i.e., ref (i) 6∈ ρ(a),
are also unreachable in a′. This is because for each of the reductions 〈a, r〉 →
〈a′, r′〉, the only references in a′ that are not in a are those that are also not in
r.

Lemma 5. If a is a normal, safe, closed expression, 〈E[a], s〉 is a well-formed
configuration, 〈E[a], s〉 −→ 〈E[a′], s′〉, and Ov(a′) − Ov(a) is nonempty, then
Ov(a′) ∩ Lv(E[{}]) and Av(a′) ∩ Lv(E[{}]) are both empty.

Proof. For a redex a and its residual a′, (Ov(a′)−Ov(a)) (alternately, (Av(a′)−
Av(a))) is nonempty only if a is either an array of the form #(v0, . . . , vn−1), an
update expression ref (i)[(v2) := v3], or a destructive update ref (i)[(a2) ← a3].
In the first two cases, the reference in the singleton set Ov(a′) is fresh and does
not occur in E[{}]. In the third case, since a′ is a destructive subexpression
of a safe expression ref (i) 6∈ Lv(E[{}]). Since Ov(a′) = Av(a′) = {ref (i)},
Ov(a′) ∩ Lv(E[{}]) and Av(a′) ∩ Lv(E[{}]) are both empty.

Lemma 6. If E is an evaluation context, then Lv(E[{}]) = Mv(E).

Proof. By induction on the structure of an evaluation context. If E ≡ [],
then Lv(E[{}]) = Mv(E[{}]) = ∅. If E ≡ [](e1, . . . , en), then Lv(E[{}]) =
Mv(E). When E ≡ v(v1, . . . , vj−1, [], ej+1, . . . , en), we use the observation that
for any value v, Mv(v) = Av(v), to conclude that Lv(E[{}]) = Mv(E). If
E ≡ IF([], e2, e3), then Lv(E[{}]) = Mv(e2) ∪ Mv(e3) = Mv(E). The remain-
ing cases for conditional expressions and update expressions can be similarly
examined. The final case when E ≡ E1[E2], we can assume that E1 is one of
the above cases but not the empty context. We know that Lv(E1[E2[{}]) =
Lv(E1[{}]) ∪ Lv(E2[{}]), which by the induction hypothesis is just Mv(E).

18

Theorem 2. If 〈d, r〉 is a well-formed configuration, 〈d, r〉 −→ 〈d′, r′〉, and d is
safe, then d′ is safe.

Proof. We have to show that every occurrence of a destructive expression u′ in
d′ is safe. Let d be of the form E[a] for some evaluation context E and redex a.
Then, d′ is of the form E[a′] where 〈a, r〉 → 〈a′, r′〉. Given any occurrence of an
update expression u′ in an update context U ′ in d′, the residual a′ either occurs
within u′, u′ occurs within a′, or a′ occurs within U . This is because none of the
redexes can partially overlap a destructive expression.

If a′ occurs properly in u′, then d′ ≡ U ′{u′}, and the following cases arise:

1. u′ is of the form d′1[d′2 ← d′3]: Then, if a′ occurs in either d′2 or d′3, we
have that d′1 ≡ d1, where u ≡ d1[(d2) ← d3] and d ≡ U ′{u}. Therefore,
Ov(d′1) = Ov(d1) and u′ occurs safely within the update context U ′ since u
occurs safely within U ′.
If a′ occurs in d′1, then (Ov(d′1)−Ov(d1)) ⊆ (Ov(a′)−Ov(a)). Since every
evaluation context is an update context, we have an update context V ′ such
that d′1 ≡ V ′{a′}, d1 ≡ V ′{a}, and d ≡ U ′{V ′{a}}. By Lemma 5, if (Ov(a′)−
Ov(a)) is nonempty, then Lv(U ′{V ′}) ∩ (Ov(a′) − Ov(a)) is empty. Since
Lv(U ′{V ′}) = Lv(U ′) ∪ Lv(V ′), it follows that u′ is safe in the update
context U ′.

2. u′ is of the form gD(b′1, . . . , b
′
n), where a′ occurs in bi for some i, 1 ≤ i ≤ n.

Then, u ≡ gD(b1, . . . , bn), where bj ≡ b′j for j, 1 ≤ j ≤ n and i 6= j. Since,
〈d, r〉 is a well-formed configuration, Lv(U ′) ⊆ dom(r). By Lemma 5, we
have that (Ov(b′i) − Ov(b)) ∩ Lv(U ′) is empty, as is (Ov(b′i) − Ov(bi)) ∩
Lv(gD(. . . , bi−1, {}, bi+1, . . .})), and similarly for Av(b′i) − Av(bi). In order
to ensure that gD(b′1, . . . , b

′
n) occurs safely within U ′, we have to check that

for any xj in dom(LA(gD)), Ov(b′j) ∩ Lv(U ′) is empty, and for k 6= j

and xk in LA(gD)xj , Av(b′k) ∩ Ov(xj) is empty. Since U{gD(b1, . . . , bn)}
is safe, if j 6= i, then clearly Ov(b′j) = Ov(bj) and Ov(b′j) ∩ Lv(U ′) is
empty. If additionally, k 6= i, then Av(b′k) = Av(bk) and Av(b′k) ∩ Av(bj)
is also empty. If j = i, then we know that Ov(b′j) ∩ Lv(U ′) is empty.
If k = i, then Av(b′j) ∩ Lv(gD(. . . , b′i−1, {}, b′i+1, . . .)) is empty, and since
Ov(b′j) ⊆ Lv(gD(. . . , b′i−1, {}, b′i+1, . . .)), we have that Av(b′k) ∩ Ov(b′j) is
empty.

If u′ occurs (properly or not) within a′, then by the syntax of a redex a, one of
the following two cases is possible:

1. Redex a is a conditional expression and a′ must be either the THEN or ELSE
part of a. Since the argument is symmetrical, we consider the case when u′

occurs in the THEN part. Then U is of the form U1{IF(b1, {U2{}}, b3)} and
U ′ is then of the form U1{U2{}}. Since Lv(U1)∪Lv(U2) ⊆ Lv(U). Therefore,
u′ occurs safely in U ′.

19

2. Redex a is of the form gD(v1, . . . , vn) and is reduced to a′ of the form σ(bD),
where gD is defined as gD(x1 . . . , xn) = bD and substitution σ is of the form
〈x1 7→ v1, . . . , xn 7→ vn〉. We have to ensure that any update expression u′

occurring in bD is safe within the update context U ′ where d′ ≡ U ′{u′}. Note
that we have already checked the safety of bD during the generation of the
definition of gD.
If u′ is of the form σ(b1[(b2) ← b3]), we have bD ≡ V {b1[(b2) ← b3]} where
Ov(b1) ∩ Lv(V) = ∅. Since bD does not contain any references, the result
of applying substitution σ to bD is just σ(V){σ(e1)[σ(e2) ← σ(e3)]}. It is
easy to check that Lv(σ(V)) = ρ(Lv(V)). Note that for a value v, Ov(v) ⊆
Av(v) ⊆ Mv(v) = ρ(v). From the update analysis of g, we know that Ov(b1)∩
Lv(V) = ∅ and Lv(V) ⊆ LA(gD)(x) for x ∈ Ov(b1). Note that Ov(σ(b1)) ⊆
ρ(σ(Ov(b1))). Since the occurrence of gD(v1, . . . , vn) is safe with respect to
the update context U , and U ′ = U{V },
(a) Ov(σ(b1)) ∩ Lv(U) = ∅
(b) Ov(σ(b1)) ∩ σ(Lv(V)) = ∅
Therefore, the destructive update σ(b1)[(σ(b2))← σ(b3)] is safe with respect
to the update context U ′.
A similar argument can be used to show that if u′ is of the form fD(b1, . . . , bn)
in bD, it occurs safely within the update context U ′, where d′ ≡ U ′{u′}.

The final case is when u′ and a′ do not overlap, then a′ occurs in U ′. Except
for the case where a is a destructive update, every other instance of a reduction
of a from a redex a in U yielding U ′, we can check that (Lv(U ′) ∩ dom(r)) ⊆
Lv(U). Clearly, then u′ occurs safely in U ′ since it occurs safely in U . When
redex a is a destructive update of the form ref (i)[(b2)← b3], then by Lemma 6,
ref (i) 6∈ Lv(E[{}]). If u′ occurs in E, then Mv(u′) ⊆ Lv(E[{}]), and hence u′

again occurs safely in U ′.

The significance of the safety invariant established in Theorem 2 should be ob-
vious. It shows that whenever a destructive update redex ref (i)[(v2) ← v3] is
evaluated, it occurs within a context that is both an evaluation context E[] and
an update context E[{}]. Since by Lemma 6, Lv(E[{}]) = Mv(E) and by Theo-
rem 2, ref (i) 6∈ Lv(E[{}]), the destructive update can be executed safely without
any unintended side-effects.

Given that all configurations are well-formed and safe, it is easy to establish the
bisimulation between destructive and nondestructive execution. The bisimula-
tion R between a nondestructive configuration 〈e, s〉 and a destructive configu-
ration 〈d, r〉 is given by ∃π : e = γ(π(d))∧ (∀ j ∈ dom(r) : s[π(j)] = r[j]), where
π is a permutation from dom(r) to dom(s) and π(d) is the result of replacing
each occurrence of ref (i) in d by ref (π(i)).

Theorem 3. If 〈e, s〉 is a well-formed configuration where e is a nondestructive
expression, and 〈d, r〉 is a well-formed configuration with a safe destructive ex-
pression d, then the relation R given by λ 〈e, s〉, 〈d, r〉 : ∃π : e = γ(π(d))∧ (∀ j ∈
dom(r) : s[π(j)] = r[j]) is a bisimulation with respect to evaluation.

20

Proof. By Lemma 2 we already have that for a safe, well-formed configuration
〈d, r〉, whenever 〈d, r〉 −→ 〈d′, r′〉 then 〈d′, r′〉 is a safe, well-formed configuration.
If R(〈e, s〉, 〈d, r〉) holds, 〈e, s〉 −→ 〈e, s′〉, and 〈d, r〉 −→ 〈d′, r′〉, then we can show
that R(〈e′, s′〉, 〈d′, s′〉) holds. First note that if there is a π such that e = γ(π(d)),
then if e = E[a] and d = D[b], then E = γ(π(D)) and a = γ(π(b)). We also have
that 〈a, s〉 → 〈a′, s′〉 where e′ ≡ E[a′], and 〈b, r〉 → 〈b′, r′〉, where d′ ≡ D[b′].

If a is a redex of the form ref (i)[(v2) := v3] and b is of the form ref (j)[(v2) ←
v3], then we know that π(j) = i. Since D[b] is safe, ref (j) 6∈ Mv(D[{}]), and
b′ is ref (j), while r′[j] is r[j]〈v2 7→ v3〉 and r′[k] = r[k] for k 6= j. On the
nondestructive side, a′ is ref (m), where s′ is s ◦ [s(i)〈v2 7→ v3〉]. If we let π′ be
π〈j 7→ m〉, then since s[i] = r[j], we also have s′[m] = r′[j]. Since ref (j) 6∈ Mv(D)
and ref (m) 6∈ Mv(E), γ(π′(D)) = γ(π(D)) = E.

In every other case for the redexes a and b, the destructive and nondestructive
evaluation steps are essentially identical, and γ(π(b′)) = a′, and hence γ(r′(b′)) =
s′(a′).

The main correctness theorem easily follows from the bisimulation proof.

Theorem 4. If e and d are closed, reference-free terms such that γ(d) ≡ e, then

eval(d) ≡ eval(e).

5 Observations

As already mentioned, our analysis is essentially similar to one given indepen-
dently and earlier by Wand and Clinger [WC98], but our presentation is based
on update contexts, and the correctness proof here is more direct, due to the use
of evaluation contexts. Wand and Clinger use an operational semantics based on
an abstract machine with a configuration consisting of a label, an environment,
a return context, and a continuation.

The worst-case complexity of analyzing a definition f(x1, . . . , xn) = e as de-
scribed here is n3 ∗ |e|. Our definitions for the various analyses used here, are
quite naive, and their efficiency can be easily improved. The procedure requires
n2 iterations in the fixed point computation since LA(f) is an n-element array
consist of at most n − 1 variables. The complexity of each iteration is at worst
n ∗ |e|. In practice, this complexity is unlikely to be a factor since only a few
variables are mutable. If n is smaller than the word size, then the set operations
can be executed in constant time yielding a complexity n2 ∗ |e|.

We have used a simple core language for presenting the ideas. The method can
be adapted to richer languages, but this has to be done carefully. For example,
nested array structures introduce the possibility of structure sharing within an
array where, for example, both A(1) and A(2) reference the same array. Such
internal structure sharing defeats our analysis. For example, the update of index

21

3 of the array at index 2 of A might have the unintended side-effect of updating
a shared reference at index 1 of array A. The analysis has to be extended to rule
out the nested update of nested array structures. Non-nested updates of nested
arrays, such as A(2)[(3) := 4], are already handled correctly by the analysis since
we check that A is not live in the context, and the result returned is the updated
inner array A(2) and not the nested array A. Other nested structures such as
records and tuples also admit similar structure sharing, but type information
could be used to detect the absence of sharing.

Allowing array elements to be functional is only mildly problematic. Here, it is
possible for references to the original array to be trapped in a function value
(closure) as in A[(2) := (λ(x) : x+ A(2)(2))]. It is easy to modify the notion of
an update context and the accompanying definitions to handle functional values
in arrays.

The analysis method can be adapted to lazy functional languages. Here, an
additional analysis is needed to determine for a function f(x1, . . . , xn) = e if an
argument xj might be evaluated after an argument xi in the body e of f .

PVS functions are translated to destructive Common Lisp operations that are
then compiled and executed. We omit performance information due to lack of
space. A draft report with performance results for PVS can be obtained from
the URL www.csl.sri.com/shankar/PVSeval.ps.gz.

Since functional programs require nondestructive arrays for correct operation,
we have carried out some experiments with good data structures for this case.
The results here are encouraging but outside the scope of this paper.

6 Conclusions.

Experience has shown that the semantic simplicity of functional programming
can be used to derive efficient and easily optimizable programs. Optimizations
arising from the static analysis for destructive updates presented in this pa-
per enables functional programs to be executed with time and space efficiencies
that are comparable to low-level imperative code. The update analysis has been
implemented within a code generator for the functional fragment of the specifi-
cation language PVS. An efficient execution capability for this fragment is useful
for validating specifications and in fast simplification of executable terms arising
in a proof.

A common criticism of specification languages is that there is a duplication of
effort since the design is described in a specification language as well as an
implementation language. As a result, the verified design is different from the
implemented one, and these two designs evolve separately. Through the genera-
tion of efficient code from logic, it is possible to unify these designs so that the
implementation is generated systematically from its description in a logic-based
specification language. Systematic logic-based transformations [PP99] can be

22

used to obtain more efficient algorithms and better resource usage. Such trans-
formations can also lead to programs that are more optimizable, as is needed for
the update analysis given here to be effective. The target of the transformation
can then be subjected to static analysis (e.g., update analysis) to support the
generation of efficient, possibly destructive, code in a programming language.
The target programming language, in our case, Common Lisp, bridges the gap
between the logic-based program and the target machine. The programming
language compiler then handles the machine-specific optimizations.

There is a great deal of work to be done before such code generation from a
specification language can match or surpass the efficiency of custom code written
in a low-level programming language like C. Most of the remaining work is in
implementing other forms of analyses similar to the update analysis described in
this paper. The C language allows various low-level manipulations on pointers
and registers that cannot be emulated in a high-level language, but the vast
majority of programs do not exploit such coding tricks. For these programs, we
believe that it is quite feasible to generate code from a high-level logic-based
specification language that matches the efficiency of the best corresponding C
programs.

References

[BH87] A. Bloss and P. Hudak. Path semantics. In Proceedings of the Third Work-
shop on the Mathematical Foundations of Programming Language Semantics,
number 298 in Lecture Notes in Computer Science, pages 476–489. Springer-
Verlag, 1987.

[Blo94] Adrienne Bloss. Path analysis and the optimization of nonstrict functional
languages. ACM Transactions on Programming Languages and Systems,
16(3):328–369, 1994.

[DP93] M. Draghicescu and S. Purushothaman. A uniform treatment of order of
evaluation and aggregate update. Theoretical Computer Science, 118(2):231–
262, September 1993.

[Fel90] M. Felleisen. On the expressive power of programming languages. In Euro-
pean Symposium on Programming, number 432 in Lecture Notes in Computer
Science, pages 35–75. Springer-Verlag, 1990.

[GH89] K. Gopinath and John L. Hennessy. Copy elimination in functional languages.
In 16th ACM Symposium on Principles of Programming Languages. Associa-
tion for Computing Machinery, January 1989.

[GP98] Deepak Goyal and Robert Paige. A new solution to the hidden copy problem.
In Static Analysis Symposium, pages 327–348, 1998.

[Hud87] P. Hudak. A semantic model of reference counting and its abstraction. In
S. Abramsky and C. Hankin, editors, Abstract Interpretation of Declarative
Languages. Ellis Horwood Ltd., 1987. Preliminary version appeared in Pro-
ceedings of 1986 ACM Conference on LISP and Functional Programming,
August 1986, pages 351–363.

[Ode91] Martin Odersky. How to make destructive updates less destructive. In Proc.
18th ACM Symposium on Principles of Programming Languages, pages 25–26,
January 1991.

23

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

[OS97] Sam Owre and Natarajan Shankar. The formal semantics of PVS. Techni-
cal Report SRI-CSL-97-2, Computer Science Laboratory, SRI International,
Menlo Park, CA, August 1997.

[Pet78] A. Pettorossi. Improving memory utilization in transforming recursive pro-
grams. In J. Winkowski, editor, Proceedings of MFCS 1978, pages 416–425,
Berlin, Germany, 1978. Springer-Verlag.

[PP99] Alberto Pettorossi and Maurizio Proietti. Synthesis and transformation of
logic programs using unfold/fold proofs. Journal of Logic Programming, 41(2-
3):197–230, 1999.

[SCA93] A. V. S. Sastry, William Clinger, and Zena Ariola. Order-of-evaluation anal-
ysis for destructive updates in strict functional languages with flat aggregates.
In Conference on Functional Programming Languages and Computer Archi-
tecture, pages 266–275, New York, 1993. ACM Press.

[Sch82] Jerald Schwarz. Using annotation to make recursion equations behave. IEEE
Transactions on Software Engineering, 8(1):21–33, 1982.

[vG96] John H. G. van Groningen. The implementation and efficiency of arrays in
Clean 1.1. In Proc. 8th International Workshop on Implementation of Func-
tional Languages, IFL’96, number 1268 in Lecture Notes in Computer Science,
pages 105–124. Springer-Verlag, 1996.

[Wad90] P. Wadler. Linear types can change the world! In M. Broy and C. Jones, edi-
tors, Programming Concepts and Methods. North-Holland, Amsterdam, 1990.

[Wad97] P. Wadler. How to declare an imperative. ACM Computing Surveys,
29(3):240–263, September 1997.

[WC98] Mitchell Wand and William D. Clinger. Set constraints for destructive array
update optimization. In Proc. IEEE Conf. on Computer Languages ’98, pages
184–193. IEEE, April 1998.

24

