
Invited paper for FLoC’02. Appears in the Proceedings of FME’02, LNCS.
c©Springer-Verlag

Little Engines of Proof?

Natarajan Shankar

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA
shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/
Phone: +1 (650) 859-5272 Fax: +1 (650) 859-2844

Abstract. The automated construction of mathematical proof is a basic
activity in computing. Since the dawn of the field of automated reason-
ing, there have been two divergent schools of thought. One school, best
represented by Alan Robinson’s resolution method, is based on simple
uniform proof search procedures guided by heuristics. The other school,
pioneered by Hao Wang, argues for problem-specific combinations of de-
cision and semi-decision procedures. While the former school has been
dominant in the past, the latter approach has greater promise. In re-
cent years, several high quality inference engines have been developed,
including propositional satisfiability solvers, ground decision procedures
for equality and arithmetic, quantifier elimination procedures for integers
and reals, and abstraction methods for finitely approximating problems
over infinite domains. We describe some of these “little engines of proof”
and a few of the ways in which they can be combined. We focus in par-
ticular on combining different decision procedures for use in automated
verification.

Its great triumph was to prove that the sum of two even numbers is
even.

Martin Davis [Dav83] (on his Presburger arithmetic procedure)

The most interesting lesson from these results is perhaps that even in a
fairly rich domain, the theorems actually proved are mostly ones which
call on a very small portion of the available resources of the domain.

Hao Wang (quoted by Davis [Dav83])

? Funded by NSF Grants CCR-0082560 and CCR-9712383, DARPA/AFRL Contract
F33615-00-C-3043, and NASA Contract NAS1-20334. John Rushby, Sam Owre,
Ashish Tiwari, and Tomás Uribe commented on earlier drafts of this paper.

1

1 Introduction

At a very early point in its development, the field of automated reasoning took
an arguably wrong turn. For nearly forty years now, the focus in automated
reasoning research has been on big iron: general-purpose theorem provers based
on uniform proof procedures augmented with heuristics. These efforts have not
been entirely fruitless. As success stories, one might list an impressive assort-
ment of open problems that have succumbed to semi-brute-force methods, and
spin-off applications such as logic programming. However, there has been very
little discernible progress on the problem of automated proof construction in any
significant mathematical domain. Proofs in these domains tend to be delicate ar-
tifacts whose construction requires a collection of well-crafted instruments, little
engines of proof, working in tandem. In other disciplines such as numerical anal-
ysis, computer algebra, and combinatorial algorithms, it is quite common to have
libraries of useful routines. Such software libraries have not taken root in auto-
mated deduction because the scientific and engineering challenges involved are
quite significant. We examine some of the successes in building and combining
little deduction engines for building proofs and refutations (e.g., counterexam-
ples), and survey some of the challenges that still lie ahead.

The tension between general-purpose proof search and special-purpose decision
procedures has been with us from very early on. Automated reasoning had its
beginnings in the pioneering Logic Theorist system of Newell, Shaw, and Si-
mon [NSS57]. The theorems they proved were shown by Hao Wang [Wan60b]
to fall within simply decidable fragments like propositional logic and the ∀∗∃∗
Bernays-Schönfinkel fragment of first-order logic [BGG97]. Many technical ideas
from the Logic Theorist such as subgoaling, substitution, replacement, and for-
ward and backward chaining, have been central to automated reasoning, but
the dogma that human-oriented heuristics are the key to effective theorem prov-
ing has not been vindicated. Hao Wang [Wan60a] proposed an entirely different
approach that he called inferential analysis as a parallel to numerical analysis.
Central to his approach was the use of domain-specific decision and semi-decision
procedures, so that proofs could be constructed by means of reductions to some
combination of problems that could each be easily solved. Due to the prevailing
bias in artificial intelligence, Wang lost the debate at that point in time, but,
as we argue here, his ideas still make plenty of sense. As remarked by Martin
Davis [Dav83]:

The controversy referred to may be succinctly characterized as being be-
tween the two slogans: “Simulate people” and “Use mathematical logic”.
. . . Thus as early as 1961 Minsky [Min63] remarked

. . . it seems clear that a program to solve real mathematical prob-
lems will have to combine the mathematical sophistication of
Wang with the heuristic sophistication of Newell, Shaw, and Si-
mon.

2

The debate between human-oriented and logic-oriented approaches is beside the
point. The more significant debate in automated reasoning is between two ap-
proaches that in analogy with economics can be labelled as macrological and
micrological . The macrological approach takes a language and logic such as first-
order logic as given, and attempts to find a uniform (i.e., problem-independent)
method for constructing proofs of conjectures stated in the logic. The micrologi-
cal approach attacks a class of problems and attempts to find the most effective
way of validating or refuting conjectures in this problem class. In his writings,
Hao Wang was actually espousing a micrological viewpoint. He wrote [Wan60a]

In contrast with pure logic, the chief emphasis of inferential analysis is
on the efficiency of algorithms, which is usually obtained by paying a
great deal of attention to the detailed structure of problems and their
solutions, to take advantage of possible systematic short cuts.

Automated reasoning got off to a running start in the 1950s. Already in 1954,
Davis [Dav57] had implemented a decision procedure for Presburger arith-
metic [Pre29]. Davis and Putnam [DP60], during 1958–60, devised a decision
procedure for CNF satisfiability (SAT) based on inference rules for propagation
of unit clauses, ground resolution, deletion of clauses with pure literals, and
splitting. The ground resolution rule turned out to be space-inefficient and was
discarded in the work of Davis, Logemann, and Loveland [DLL62]. Variants of
the latter procedure are still employed in modern SAT solvers. Gilmore [Gil60]
and Prawitz [Pra60] examined techniques for first-order validity based on Her-
brand’s theorem. Many of the techniques from the 1950s still look positively
modern.

Robinson’s introduction [Rob65] of the resolution principle (during 1963–65)
based on unification brought about a qualitative shift in automated theorem
proving. From that point on, the field of automated reasoning never looked
forward. Resolution provides a simple inference rule for refutational proofs for
first-order statements in skolemized, prenex form. It spawned a multitude of
strategies, heuristics, and extensions. Nearly forty years later, resolution [BG01]
remains extremely popular as a general-purpose proof search method primarily
because the basic method can be implemented and extended with surprising ease.
Resolution-based methods have had some success in proving open problems in
certain domains where general-purpose search can be productive. The impact of
resolution on theorem proving in mathematically rich domains has not been all
that encouraging.

The popularity of uniform proof methods like resolution stems from the simple
dogma that since first-order logic is a generic language for expressing statements,
generic first-order proof search methods must also be adequate for finding proofs.
This central dogma seems absurd on the face of it. Stating a problem and solving
it are two quite separate matters. But the appeal of the dogma is obvious.
A simple, generic method for proving theorems basically hits the jackpot by
fulfilling Leibniz’s dream of a reasoning machine. A more sophisticated version

3

of the dogma is that a uniform proof method can serve as the basic structure for
introducing domain-specific automation. There is little empirical evidence that
even this dogma has any validity.

On the other hand, certain domain-specific automated theorem provers have
been quite effective. The Boyer-Moore line of theorem provers [BM79,KMM00]
has had significant success in the area of inductive proofs of recursively defined
functions. Various geometry theorem provers [CG01] based on both algebraic
and non-algebraic, machine-oriented and human-oriented methods, have been
able to automatically prove theorems that would tax human ingenuity. Both of
these classes of theorem provers owe their success to domain-specific automation
rather than general-purpose theorem proving.

Main Thesis. Automated reasoning has for too long been identified with uni-
form proof search procedures in first-order logic. This approach shows very little
promise. The basic seduction of uniform theorem proving techniques is that
phenomenal gains could be achieved with very modest implementation effort.
Hao Wang [Wan60b,Wan60a,Wan63] in his early papers on automated reasoning
sketched the vision of a field of inferential analysis that would take a deeper look
at the problem of automating mathematical reasoning while exploiting domain-
specific decision procedures. He wrote [Wan63]

That proof procedures for elementary logic can be mechanized is familiar.
In practice, however, were we slavishly to follow these procedures with-
out further refinements, we should encounter a prohibitively expansive
element. . . . In this way we are led to a closer study of reduction proce-
dures and of decision procedures for special domains, as well as of proof
procedures of more complex sorts.

Woody Bledsoe [Ble77] made a similar point in arguing for semantic theorem
proving techniques as opposed to resolution.

Decision procedures [Rab78], and more generally inference procedures, are cru-
cial to the approach advocated here. Few problems are stated in a form that is
readily decidable, but proof search strategies, heuristics, and human guidance
can be used to decompose these problems into decidable subproblems. Thus,
even though not many interesting problems are directly expressible in Pres-
burger arithmetic, a great many of the naturally arising proof obligations and
subproblems do fall into this decidable class.

Building a library of automated reasoning routines along the lines of numerical
analysis and computer algebra, is not as easy as it looks. A theorem prover has a
simple interface in that it is given a conjecture and it returns a proof or a disproof.
The lower-level procedures often lack clear interface specifications of this sort.
Even if they did, building a theorem prover out of modular components may not
be as efficient as a more monolithic system. Boyer and Moore [BM86] indicate
how even a simple decision procedure can have a complex interaction with the
other components, so that it is not merely a black box that returns proved or

4

disproved . The construction of modular inference procedures is a challenging
research issues in automated reasoning.

Work on little engines of proof has been gathering steam lately Many groups
are actively engaged in the construction of little proof engines, while oth-
ers are putting in place the train tracks on which these engines can run.
PVS [ORSvH95] itself can be seen as an attempt to unify many different in-
ference procedures: typechecking, ground decision procedures, simplification,
rewriting, MONA [EKM98], model checking [CGP99], abstraction, and static
analysis, within a single system with an expressive language for writing mathe-
matics.

2 Propositional Logic

The very first significant metamathematical results were those on the soundness,
completeness, and decidability of propositional logic [Pos21]. Since boolean logic
has applications in digital circuit design, a lot of attention has been paid to
the problem of propositional satisfiability. A propositional formula φ is built
from propositional atoms pi by means of negation ¬φ, disjunction φ1 ∨ φ2, and
conjunction φ1 ∧ φ2. Further propositional connectives can be defined in terms
of basic ones like ¬ and ∨. A propositional formula can be placed in negation
normal form, where all the negations are applied only to propositional atoms. A
literal l is an atom p or its negation ¬p. A clause C is a disjunction of literals.
By labelling subformulas with atoms and using distributivity, any propositional
formula can be efficiently transformed into one that is in conjunctive normal
form (CNF) as a conjunction of clauses. A CNF formula can be viewed as a bag
Γ of clauses. The Davis–Putnam method (DP) [DP60] consisted of the following
rules:

1. Unit propagation: l, Γ is satisfiable if Γ [l 7→ >,¬l 7→ ⊥] is satisfiable.
2. Pure literal: Γ is satisfiable if Γ −∆ is satisfiable, for ¬l 6∈ ddΓ ee, where ddΓ ee

is the set of subformulas of Γ , and l ∈ C for each C ∈ ∆.
3. Splitting: Γ is satisfiable if either l, Γ or ¬l, Γ is satisfiable.
4. Ground resolution: l∨C1,¬l∨C2, Γ is satisfiable if C1 ∨C2, Γ is satisfiable.

The Davis–Logemann–Loveland (DLL) variant [DLL62] drops the ground reso-
lution rule since it turned out to be space-inefficient. Several modern SAT solvers
such as SATO [Zha97], GRASP [MSS99], and Chaff [MMZ+01], are based on
the DLL method. They are capable of solving satisfiability problems with hun-
dreds of thousands of propositional variables and clauses. With this kind of
performance, many significant applications become feasible including invariant-
checking for systems of bounded size, bounded model checking, i.e., the search
for counterexamples of length k for a temporal property, and boolean equiva-
lence checking where two circuits are checked to have the same input/output
behavior.

5

St̊almarck’s method [SS00] does not employ a CNF representation. Truth val-
ues are propagated from formulas to subformulas through a method known as
saturation. There is a splitting rule similar to that of DP, but it can be applied
to subformulas and not just propositions. The key component of St̊almarck’s
method is the dilemma rule which considers the intersection of the two subfor-
mula truth assignments derived from splitting. Further splitting is carried out
with respect to this intersection.

Binary Decision Diagrams. Reduced Ordered Binary Decision Diagrams (ROB-
DDs) [Bry86] are a canonical representation for boolean functions, i.e., functions
from [Bn→B]. BDDs are binary branching directed acyclic graphs where the
nodes are variables and the outgoing branches correspond to the assignment of
> and ⊥ to the variable. There is a total ordering of variables that is maintained
along any path in the graph. The graph is kept in reduced form so that if there
is a node such that both of its branches lead to the same subgraph, then the
node is eliminated.

Standard operations like negation, conjunction, disjunction, composition, and
boolean quantification, have efficient implementations using BDDs. The BDD
data structure has primarily been used for boolean equivalence checking and
symbolic model checking. The main advantage of BDDs over other representa-
tions is that checking equivalence is easy. Boolean quantification is also handled
more readily using BDDs. BDDs can also be used for SAT solving since it is
in fact a compact representation for all solutions of a boolean formula. But the
strength of BDDs is in representing boolean functions of a low communication
complexity, i.e., where it is possible to partition the variables so that there are
few dependencies between variables across the partition. BDDs have been pop-
ular for symbolic model checking [CGP99] and boolean equivalence checking.

Quantified Boolean Formulas and Transition Systems. In a propositional logic
formula, all variables are implicitly universally quantified. One obvious exten-
sion is the introduction of Boolean existential and universal quantification. The
resulting fragment is called quantified boolean formulas (QBF). This kind of
quantification can be expressed purely in propositional logic. For example, the
formula (∃p : Q) is equivalent to (Q[p 7→ >] ∨Q[p 7→ ⊥]). The language of QBF
is of course exponentially more succinct than propositional logic. The decision
procedure for QBF validity is a PSPACE-complete problem. Many interesting
problems that can be cast as interactive games can be mapped to QBF.

Finite-state transition systems can be defined in QBF. A finite state type consists
of a finite number of distinct variables over types such as booleans, scalars,
subranges, and finite arrays over a finite element type. A finite state type can
be encoded in binary form. A transition system over a finite state type that is
represented by n boolean variables then consists of an initialization predicate I
that is an n-ary boolean function, and a transition relation N that is a 2n-ary
boolean function. The nondeterministic choice between two transition relations
N1 and N2 is easily expressed as N1 ∨N2. Internal state can be hidden through

6

boolean quantification. The composition (N1;N2) of two transition relations N1

and N2 can be captured as ∃y : N1(x, y) ∧N2(y, x′).

Fixpoints and Model Checking. QBF can be further extended through the ad-
dition of fixpoint operators that can capture the transitive closure of a tran-
sition relation. Given a transition relation N , the reflexive-transitive closure
of N can be written as µQ : x′ = x ∨ (∃y : N(x, y) ∧ Q(y, x′)). Similarly,
the set of states reachable from the initial set of state can be represented as
µQ : I(x)∨(∃y : Q(y)∧N(y, x)). The boolean function represented by a fixpoint
formula can be computed by unwinding the fixpoint until convergence is reached.
For this, the ROBDD representation of the boolean function is especially conve-
nient since it makes it easy to detect convergence through an equivalence test,
and to represent boolean quantification [BCM+92,McM93]. The boolean fixpoint
calculus can easily represent the temporal operators of the branching-time tem-
poral logic CTL where one can for example assert that a property always (or
eventually) holds on all (or some) computation paths leading out of a state.
The boolean fixpoint calculus can also represent different fairness constraints on
paths. The emptiness problem for Büchi automaton over infinite words can be
expressed using fairness constraints. This in turn captures the model checking
problem for linear-time temporal logics [VW86,Kur93].

Weak monadic second-order logic of a single successor (WS1S). WS1S has a
successor operation for constructing natural numbers, first-order quantification
over natural numbers, and second-order quantification over finite sets of natu-
ral numbers. WS1S is a natural formalism for many applications, particularly
for parametric systems. The logic can be used to capture interesting datatypes
such as regular expressions, lists, queues, and arrays. There is a direct mapping
between the logic and finite automata. A finite set X of natural numbers can
be represented as a bit-string where a 1 in the i’th position indicates that i is
a member of X. A formula with free set variables X1, . . . , Xn is then a set of
strings over Bn. The logical operations have automata theoretic counterparts
so that negation is complementation, conjunction is the product of automata,
and existential quantification is projection. The MONA library [EKM98] uses
an ROBDD representation for the automaton corresponding to the formula.

3 Equality and Inequality

Equality introduces some of the most significant challenges in automated rea-
soning [HO80]. Many subareas of theorem proving are devoted to equality in-
cluding rewriting, constraint solving, and unification. In this section we focus
on ground decision procedures for equality. Many theorem proving systems are
based around decision procedures for equality. The language now includes terms
which are built from variables x, and applications f(a1, . . . , an) of an n-ary func-
tion symbol f to n terms a1, . . . , an. The ground fragment can be seen as an
extension of propositional logic where the propositional atoms are of the form

7

a = b, for terms a and b. The literals are now either equations a = b or disequa-
tions a 6= b. The variables in a formula are taken to be universally quantified. The
validity of a formula φ that is a propositional combination of equalities can be
decided by first transforming ¬φ into disjunctive normal form D1∨ . . .∨Dn, and
checking that each disjunct Di, which is a conjunction of literals, is refutable.
The refutation of a conjunction Di of literals can be carried out by partitioning
the terms in Di into equivalence classes of terms with respect to the equalities in
Di. If for some disequation a 6= b in Di, a and b appear in the same equivalence
class, then we have a contradiction and Di has been refuted. The original claim
φ is verified if each such disjunct Di has been refuted.

If the function symbols are all uninterpreted, then congruence closure can be
used to construct the equivalence classes corresponding to the conjunction of
literals Di. Let the set of subterms of Di be ddDiee. The initial partition P0 is the
set {{c} | c ∈ ddDiee}. When an equality of the form a = b from Di is processed,
it results in the merging of the equivalence classes corresponding to a and b. As
a result of this merge, other equivalence classes might become mergeable. For
example, one equivalence might contain f(a1, . . . , an) while the other contains
f(b1, . . . , bn), and each aj is in the same equivalence class as the corresponding bj .
The merging of equivalence classes is performed until no further mergeable pairs
of equivalence classes remain, and the partition P1 is constructed. The equalities
in Di are successively processed and the resulting partition is returned as Pm.
If for some disequality a 6= b, a and b are in the same equivalence class in Pm,
then a contradiction is returned. Otherwise, the conjunction Di is satisfiable.

Linear arithmetic. A large fraction of the subgoals that arise in verification con-
dition generation, typechecking, array-bounds checking, and constraint solving
involve linear arithmetic constraints [BW01]. Linear arithmetic equalities in n
variables have the form c0+c1∗x1+. . .+cn∗xn = 0, where the coefficients ci range
over the rationals, and the variables xi range over the rationals or reals. It is easy
to isolate a single variable, say x1, as x1 = −c0/c1−(c2/c1)∗x2−. . .−(cn/c1)∗xn.
This solved form for x1 can then be substituted into the remaining linear equa-
tions thus eliminating the variable x1. Gaussian elimination is based on the same
idea where the set of linear equations is represented by A ∗X = B, and the ma-
trix representation of the linear equations is transformed into row echelon form
in order to solve for the variables.

Linear inequalities are of the form c0 + c1 ∗ x1 + . . . + cn ∗ xn # 0, where # is
either <, ≤, >, or ≥. Note that linear inequalities, unlike equalities, are closed
under negation. Any linear equality can also be easily transformed into a pair of
inequalities. As with linear equalities, linear inequalities can also be transformed
into a form where a single variable is isolated. A pair of inequalities, x ≤ a and
x ≥ b can be resolved to obtain b ≤ a thus eliminating x. This kind of Fourier-
Motzkin elimination [DE73] can be used as a quantifier elimination procedure
to decide the first-order theory of linear arithmetic by repeatedly reducing any
quantified formula of the form ∃x : P (x) where P (x) is a conjunction of inequal-
ities, into the form P ′, where x has been eliminated. By eliminating quantifiers

8

in an inside-out order while transforming universal quantification ∀x : A into
¬∃x : ¬A, we arrive at an equivalent variable-free formula that directly evalu-
ates to true or false. Linear programming techniques like Simplex [Nel81] can
also be used for solving linear arithmetic inequality constraints. Separation pred-
icates are linear inequalities of the form x−y ≤ c or x−y < c for some constant
c, and these can be decided with graph-theoretic techniques [Sho81]. This simple
class of linear inequalities is useful in model checking timed automata [ACD93].

Presburger arithmetic [Pre29] is the first-order theory of linear arithmetic over
the integers. Solving constraints over the integers is harder than over the ratio-
nals and reals. Cooper [Coo72,Opp78] gives an efficient quantifier elimination
algorithm for Presburger arithmetic. Once again, we need only consider quan-
tifiers of the form ∃x : P (x) where P (x) is a conjunction of inequalities. We
add divisibility assertions of the form k|a, where k is a positive integer. An in-
equality of the form c0 + c1 ∗ x1 + . . . + cn ∗ xn ≥ 0 can be transformed to
c1 ∗x1 ≥ −c0− c2 ∗xn− . . .− cn ∗xn, and similarly for other inequality relations.
Since we are dealing with integers, a nonstrict inequality like a ≤ b can be trans-
formed to a < b+ 1. Having isolated all occurrences of x1, we can compute the
least common multiple α1 of the coefficients corresponding to each occurrence
of xi. Now P (x1) is of the form P ′(α1 ∗ x1), and ∃x1 : P (x1) can be replaced by
∃x1 : P ′(x1)∧α1|x1. Here, P ′(x) is a conjunction of formulas of the forms: x < a,
x > b, k|x+d, and j 6 |x+e. Let A = {a | x < a ∈ P ′(x)}, B = {b | x > b ∈ P ′(x)},
K = {k | (k|x+d) ∈ P ′(x), and J = {j | (j 6 |x+ e) ∈ P ′(x)}. Let G be the least
common multiple of K∪J . If A is nonempty, then ∃x : P ′(x) can be transformed
to
∨
a∈A ∃x : a−G ≤ x < a∧P ′(x). The bounded existential quantification in the

latter formula can easily be eliminated. Essentially, if m satisfies the constraints
in K ∪ J , then so does m + r ∗ G for any integer r. Hence, if P ′(m) holds for
some m and A is nonempty, then there is an m in the interval [a−G, a) for some
a ∈ A such that P ′(m) holds. Similarly, if B is nonempty, ∃x : P ′(x) can also be
transformed to

∨
b∈B ∃x : b < x ≤ b+G∧P ′(x). If both A and B are empty, then

∃x : P ′(x) is transformed to ∃x : 0 < x ≤ G∧P ′(x). For example, the claim that
x is an even integer can be expressed as ∃u : 2 ∗u = x if we avoid the divisibility
predicate. The quantifier elimination transformation above would convert this
to u′ > x − 1 ∧ u′ < x + 1 ∧ (2|u′) which eventually yields (x > x − 1 ∧ x <
x+ 1∧2|x)∨ (x+ 1 > x−1∧x+ 1 < x+ 1∧ (2|x+ 1)). The latter formula easily
simplifies to (2|x). The claim that the sum of two even numbers is even then has
the form (∀x : ∀y : 2|x∧ 2|y ⊃ 2|(x+ y)). Converting universal quantification to
existential quantification yields ¬∃x : ∃y : 2|x∧ 2|y∧ 2 6 |(x+ y). Quantifier elim-
ination yields ¬∃x : 0 < x ≤ 2∧∃y : 0 < y ≤ 2∧ (2|x)∧ (2|y)∧ (2 6 |x+ y), which
is clearly valid. The decidability of Presburger arithmetic can also be reduced to
that of WS1S, and even though the latter theory has nonelementary complexity,
this reduction using MONA works quite efficiently in practice [SKR98].

By the unsolvability of Hilbert’s tenth problem, even the quantifier-free fragment
of nonlinear arithmetic over the integers or rationals is undecidable. However,
the first-order theory of nonlinear arithmetic over the reals and the complex

9

numbers is decidable. Tarski [Tar48] gave a decision procedure for this theory.
Collins [Col75] gave an improved quantifier elimination procedure that is the
basis for a popular package called QEPCAD [CH91]. These procedures have
been successfully used in proving theorems in algebraic geometry. Buchberger’s
Gröbner basis method for testing membership in polynomial ideals has also been
successful in computer algebra and geometry theorem proving [CG01,BW01].

Constraint solving and quantifier elimination methods in linear and nonlinear
arithmetic over integers, reals, and rationals, are central to a large number of
applications of theorem proving that involve numeric constraints.

4 The Combination Problem

The application of decision procedures for individual theories is constrained by
the fact that few natural problems fall exactly within a single theory. Many
of the proof obligations that arise out of extended typechecking or verifica-
tion condition generation involve arithmetic equalities and inequalities, tuples,
arrays, datatypes, and uninterpreted function symbols. There are two basic
techniques for constructing decision procedures for checking the satisfiability of
conjunctions of literals in combinations of disjoint theories: the Nelson–Oppen
method [NO79,TH96] and the Shostak method [Sho84].

Nelson and Oppen’s Method. The Nelson–Oppen method combines decision pro-
cedures for disjoint theories by using variable abstraction to purify a formula
containing operations from a union of theories, so that the formula can then be
partitioned into subgoals that can be handled by the individual decision proce-
dures. Let B represent the formula whose satisfiability is being checked in the
union of disjoint theories θ1 and θ2. First variable abstraction is used to convert
B into B′ ∧ V , where V contains equalities of the form x = t, where x is a
fresh variable and t contains function symbols exclusively from θ1 or from θ2,
and B′ contains x renaming t. In particular, if V [B′] is the result of replacing
each occurrence of x in B′ by the corresponding t for each x = t in V , then B
must the result of repeatedly applying V to B′ and eliminating all the newly
introduced variables. Next, V ∧ B′ can be partitioned as B1 ∧ B2, where each
Bi only contains function symbols from the theory θi. Let X be the free vari-
ables that are shared between B1 and B2. Guess a partition X1, . . . , Xm on the
variables in X. Let E be an arrangement corresponding to this partition so that
E contains x = y for each pair of distinct variables x, y in some Xj , and u 6= v
for each pair of variables u, v, such that u ∈ Xj , v ∈ Xk for j 6= k. Check if
E ∧B1 is satisfiable in θ1 and E ∧B2 is satisfiable in θ2. If that is the case, then
B is satisfiable in θ1 ∪ θ2, provided θ1 and θ2 are stably infinite. A theory θ is
stably infinite if whenever a formula is θ-satisfiable (satisfiable in a θ-model), it
is θ-satisfiable in an infinite model.

Shostak’s Method. The Nelson–Oppen combination is a way of combining black
box decision procedures. Shostak’s method is an optimization of the Nelson–

10

Oppen combination for a restricted class of equational theories. A theory θ is said
to be canonizable if there is a canonizer σ such that the equality a = b is valid in θ
iff σ(a) ≡ σ(b). A theory θ is said to be solvable if there is an operation solve such
that solve(a = b) returns a set S of equalities {x1 = t1, . . . , xn = tn} equivalent
in some sense to a = b, where each xi occurs in a = b but not in tj for 1 ≤ i, j ≤ n.
A Shostak theory is one that is canonizable and solvable. Shostak’s combination
method can be used to combine one or more Shostak theories with the theory of
equality over uninterpreted terms. The method essentially maintains a set S of
solutions S0, . . . , SN , where each set Si contains equalities of the form x = t for
some term t in θi. The theory θ0 is used for the uninterpreted function symbols.
Two variables x and y are said to be merged in Si if x = t and y = t are both in
Si. It is possible to define a global canonical form S[[a]] for a term a with respect
to the solution state S using the individual canonizers σi.

Shostak’s original algorithm [Sho84] and its proof were both incorrect. The al-
gorithm, as corrected by the author and Harald Ruess [RS01,SR02], checks the
validity of a sequent T ` c = d. It does this by processing each equality a = b
into its solved form. If S is the current solution state, then an unprocessed
equality a = b in T is processed by first transforming it to a′ = b′, where
a′ = S[[a]] and b′ = S[[b]]. The equality a′ = b′ is variable abstracted and the
variable abstraction equalities x = t are added to the solution Si, where t is a
term in the theory θi. The algorithm then repeatedly reconciles the solutions
Si so that whenever two variables x and y are merged in Si but not in Sj , for
i 6= j, then they are merged in Sj by solving tx = ty in θj , for x = tx and
y = ty in Sj , and composing the solution with Sj to obtain a new solution set
Sj . When all the input equalities from T have been processed and we have the
resulting solution state S, we check if S[[c]] = S[[d]]. A conjunction of literals∧m
i=1 ai = bi ∧

∧n
j=1 cj 6= dj is satisfiable iff S 6= ⊥ and S[[cj]] 6≡ S[[dj]], for each

j, 1 ≤ j ≤ n, where S = process({a1 = b1, . . . , am = bm}).

Ground Satisfiability. The Nelson–Oppen and Shostak decision procedures
check the satisfiability of conjunctions of literals drawn from a combination of
theories. These procedures can be extended to handle propositional combina-
tions of atomic formulas by transforming these formulas to disjunctive normal
form. This method can be inefficient when the propositional case analysis in-
volved is heavy. It is usually more efficient to combine a SAT solver with a
ground decision procedure [BDS02,dMRS02]. There are various ways in which
such a combination can be executed. Let φ be the formula whose satisfiability
is being checked. Let L be an injective map from fresh propositional variables
to the atomic subformulas of φ such that L−1[φ] is a propositional formula. We
can use a SAT solver to check that L−1[φ] is satisfiable, but the resulting truth
assignment, say l1∧. . .∧ln, might be spurious, that is L[l1∧. . .∧ln] might not be
ground-satisfiable. If that is the case, we can repeat the search with the added
lemma (¬l1 ∨ . . .∨¬ln) and invoke the SAT solver on (¬l1 ∨ . . .∨¬ln)∧L−1[φ].
This ensures that the next satisfying assignment returned is different from the
previous assignment that was found to be ground-unsatisfiable. The lemma that
is added can be minimized to find the minimal unsatisfiable set of literals li.

11

This means that the lemma that is added is smaller, and the pruning of spuri-
ous assignments is more effective. The ground decision procedure can be also be
used to precompute a set Λ of lemmas (clauses) of the form l1 ∨ . . . ∨ ln, where
¬L[l1] ∧ . . .¬L[ln] is unsatisfiable according to the ground decision procedures.
The SAT solver can then be reinvoked with Λ ∧ L−1[φ].

A tighter integration of SAT solvers and ground decision procedures would allow
the decision procedures to check the consistency of the case analysis during
an application of splitting in the SAT solver and avoid cases that are ground-
unsatisfiable. Through a tighter integration, it would also be possible to resume
the SAT solver with the added conflict information without starting the SAT
solving process from scratch. We address the challenge of integrating inference
procedures below.

Applications. Ground decision procedures, ground satisfiability, and quantifier
elimination have many applications.

Symbolic Execution: Given a transition system, symbolic execution is the
process of computing preconditions or postconditions of the transition sys-
tem with respect to an assertion. For example, the strongest postcondi-
tion of an assertion p with respect to a transition N is the assertion
λs : ∃s0 : p(s0) ∧ N(s0, s). For certain choices of p and N , this assertion
can be computed by means of a quantifier elimination. This is useful in
analyzing timed and hybrid systems [ACH+95].

Infinite-State Bounded Model Checking: Bounded model checking checks
for the existence of counterexamples of length upto a bound k for a given
temporal property. With respect to certain temporal properties, it is possible
to reduce the bounded model checking problem for such systems to a ground
satisfiability problem [dMRS02].

Abstraction and Model Checking: The early work on abstraction
in the context of model checking was on reducing finite-state sys-
tems to smaller finite-state systems, i.e., systems with fewer possible
states [Kur93,CGL92,LGS+95]. Graf and Säıdi [GS97] were the first to
consider the use of a theorem prover for reducing (possibly) infinite-state
systems to finite-state (hence, model-checkable) form. Their technique of
predicate abstraction constructs an abstract counterpart of a concrete tran-
sition system where the truth values of certain predicates over the con-
crete state space are simulated by boolean variables. Data abstraction
replaces a variable over an infinite state space by one over a finite do-
main. Predicate and data abstraction based on theorem proving are widely
used [BLO98b,CU98,DDP99,SS99,BBLS00,CDH+00,TK02,HJMS02,FQ02].
The finite-state abstraction can exhibit spurious counterexamples that are
not reproducible on the concrete system. Ground decision procedures are
also useful here for detecting spurious counterexamples and suggesting re-
finements to the abstraction predicates [BLO98a,SS99,DD01].

Software Engineering: Ground decision procedures are central to a number
of analysis tools for better engineered software including array-bounds check-

12

ing, extended static checking [DLNS98], typechecking [SO99], and static
analysis [BMMR01,Pug92].

5 Challenges

We have enumerated some of the progress in developing, integrating, and deploy-
ing various inference procedures. A great many challenges remain. We discuss a
few of these below.

The Complexity Challenge. Many decision procedures are of exponential, super-
exponential, or non-elementary complexity. However, this complexity often does
not manifest itself on practical examples. Modern SAT solvers can solve very
large practical problems, but they can also run aground on small instances of
simple challenges like the propositional pigeonhole principle. MONA deals with
a logic that is known to have a non-elementary lower bound, yet it performs
quite well in practice. The challenge here is to understand the ways in which one
can overcome complexity bounds on the problems that arise in practice through
heuristic or algorithmic means.

The Theory Challenge. Inference procedures are hard to build, extend, and main-
tain. The past experience has been that good theory leads to simpler decision
procedures with greater efficiency. A well-developed theory can also help devise
uniform design patterns for entire classes of decision procedures. Such design
patterns can contribute to both the efficiency and modularity of these proce-
dures. Methods derived by specializing general-purpose methods like resolution
and rewriting can also simplify the construction of decision procedures.

The Modularity Challenge. As we have already noted, inference procedures need
rich programmer interfaces (APIs) [BM86,FORS01]. Boyer and Moore [BM86]
write:

. . . the black box nature of the decision procedure is frequently destroyed
by the need to integrate it. The integration forces into the theorem prover
much knowledge of the inner workings of the procedure and forces into
the procedure many features that are unnecessary when the problem is
considered in isolation.

For example, a ground decision procedure can be used in an online manner
so that atomic formulas are added to a context incrementally, and claims are
tested against the context. The API should include operations for asserting and
retracting information, testing claims, and for creating, deleting, and browsing
contexts. The decision procedures might need to exchange information with other
inference procedures such as a rewriter, typechecker, or an external constraint
solver. We already saw how the desired interaction between ground decision
procedures and SAT solvers was such that neither of these could be treated as
a black box procedure.

13

The modularity challenge is a significant one. Butler Lampson has ar-
gued that software components have always failed at low levels of
granularity (see http://research.microsoft.com/users/blampson/Slides/
ReusableComponentsAbstract.htm). He says that successful software compo-
nents are those at the level of a database, a compiler, or a theorem prover,
but not decision procedures, constraint solvers, or unification procedures. For
interoperation between inference components, we also need compatible logics,
languages, and term and proof representations.

The Integration Challenge. The availability of good inference components is a
prerequisite for integration, but we also need to find effective ways of combining
these components in complementary ways. The combination of decision proce-
dures with model checking in predicate and data abstraction is a case where
such a complementary integration is remarkably effective. Other such examples
include the combination of unification/matching procedures and constraint solv-
ing, and typechecking and ground decision procedures.

The Verification Challenge. How do we know that our inference procedures
are sound? This question is often asked by those who wish to apply inference
procedures in contexts where a high level of manifest assurance is required. This
question has been addressed in a number of ways. The LCF approach [GMW79]
requires inference procedures to be constructed as tactics that generate a fully
expanded proof in terms of low level inferences when applied. Proof objects
have also been widely used as a way of validating inference procedures and
securing mobile code [Nec97]. Reflection [Wey80,BM81] is a way of reasoning
about the metatheory of a theory within the theory itself. The difficult tradeoff
with reflection is that the theory has to be simple in order to be reasoned about,
but rich enough to reason with. The verification of decision procedures is actually
well within the realm of feasible, and recently, there have been several successful
attempts in this direction [Thé98,FS02].

6 Conclusions

We have argued for a reappraisal of Hao Wang’s programme [Wan60b,Wan60a]
of inferential analysis as a paradigm for automated reasoning. The key element
of this paradigm is the use of problem-driven combinations of sophisticated and
efficient low-level decision procedures. Such an approach runs counter to the
traditional thinking in automated reasoning which is centered around uniform
proof search procedures. Similar ideas are also central to the automated reason-
ing schools of Bledsoe [Ble77] and Boyer and Moore [BM79,BM86].

The active use of decision procedures in automated reasoning began with the
west-coast theorem proving approach pioneered by Boyer and Moore [BM79],
Shostak [SSMS82], and Nelson and Oppen [LGvH+79,NO79]. The PVS system
is in this tradition [ORS92,Sha01], as are STeP [MT96], SIMPLIFY [DLNS98],
and SVC [BDS00].

14

In recent years there has been a flurry of interest in the development of verifica-
tion tools that rely quite heavily on sophisticated decision procedures. The qual-
ity and efficiency of many of these decision procedures is impressive. The underly-
ing theory is also advancing rapidly [Bjø99,Tiw00]. Such theoretical advances will
make it easier to construct correct decision procedures and integrate them more
easily with other inference mechanisms. Contrary to the impression that decision
procedures are black boxes, they need rich interfaces [BM86,FORS01,GNTV02]
in order to be deployed most efficiently. The theory, construction, integration,
verification, and deployment of inference procedures is likely to be a fertile source
of challenges for automated reasoning in mathematically rich domains.

References

[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense
real-time. Information and Computation, 104(1):2–34, May 1993.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138(1):3–34, 6 February
1995.

[BBLS00] Kai Baukus, Saddek Bensalem, Yassine Lakhnech, and Karsten Stahl. Ab-
stracting WS1S systems to verify parameterized networks. In Susanne
Graf and Michael Schwartzbach, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2000), number 1785 in Lecture
Notes in Computer Science, pages 188–203, Berlin, Germany, March 2000.
Springer-Verlag.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Com-
putation, 98(2):142–170, June 1992.

[BDS00] Clark W. Barrett, David L. Dill, and Aaron Stump. A framework for
cooperating decision procedures. In David McAllester, editor, Automated
Deduction—CADE-17, volume 1831 of Lecture Notes in Artificial Intelli-
gence, pages 79–98, Pittsburgh, PA, June 2000. Springer-Verlag.

[BDS02] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability
of first-order formulas by incremental translation to SAT. In Computer-
Aided Verification, CAV ’02, Lecture Notes in Computer Science. Springer-
Verlag, July 2002.

[BG01] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In
Robinson and Voronkov [RV01], pages 19–99.

[BGG97] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision
Problem. Perspectives in Mathematical Logic. Springer, 1997.

[Bjø99] Nikolaj Bjørner. Integrating Decision Procedures for Temporal Verification.
PhD thesis, Stanford University, 1999.

[Ble77] W. W. Bledsoe. Non-resolution theorem proving. Artificial Intelligence,
9:1–36, 1977.

[BLO98a] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstrac-
tions of infinite state systems compositionally and automatically. In Hu
and Vardi [HV98], pages 319–331.

15

[BLO98b] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. InVeSt: A tool for
the verification of invariants. In Hu and Vardi [HV98], pages 505–510.

[BM79] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New
York, NY, 1979.

[BM81] R. S. Boyer and J S. Moore. Metafunctions: Proving them correct and
using them efficiently as new proof procedures. In R. S. Boyer and J S.
Moore, editors, The Correctness Problem in Computer Science. Academic
Press, London, 1981.

[BM86] R. S. Boyer and J S. Moore. Integrating decision procedures into heuristic
theorem provers: A case study with linear arithmetic. In Machine Intelli-
gence, volume 11. Oxford University Press, 1986.

[BMMR01] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate
abstraction of C programs. In Proceedings of the SIGPLAN ’01 Conference
on Programming Language Design and Implementation, 2001, pages 203–
313. ACM Press, 2001.

[Bry86] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[BW01] Alexander Bockmayr and Volker Weispfenning. Solving numerical con-
straints. In Robinson and Voronkov [RV01], pages 751–742.

[CDH+00] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby,
Shawn Laubach, and Hongjun Zheng. Bandera: Extracting finite-state
models from Java source code. In 22nd International Conference on Soft-
ware Engineering, pages 439–448, Limerick, Ireland, June 2000. IEEE Com-
puter Society.

[CG01] Shang-Ching Chou and Xiao-Shan Gao. Automated reasoning in geometry.
In Robinson and Voronkov [RV01], pages 707–749.

[CGL92] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstrac-
tion. In Nineteenth Annual ACM Symposium on Principles of Programming
Languages, pages 343–354, 1992.

[CGP99] E. M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, 1999.

[CH91] G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition.
Journal of Symbolic Computation, 12(3):299–328, 1991.

[Col75] G. E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In Second GI Conference on Automata Theory
and Formal Languages, number 33 in Lecture Notes in Computer Science,
pages 134–183, Berlin, 1975. Springer-Verlag.

[Coo72] D. C. Cooper. Theorem proving in arithmetic without multiplication. In
Machine Intelligence 7, pages 91–99. Edinburgh University Press, 1972.

[CU98] M. A. Colón and T. E. Uribe. Generating finite-state abstractions of re-
active systems using decidion procedures. In Hu and Vardi [HV98], pages
293–304.

[Dav57] M. Davis. A computer program for Presburger’s algorithm. In Sum-
maries of Talks Presented at the Summer Institute for Symbolic Logic, 1957.
Reprinted in Siekmann and Wrightson [SW83], pages 41–48.

[Dav83] M. Davis. The prehistory and early history of automated deduction. In
Siekmann and Wrightson [SW83], pages 1–28.

[DD01] Satyaki Das and David L. Dill. Successive approximation of abstract tran-
sition relations. In Annual IEEE Symposium on Logic in Computer Sci-
ence01, pages 51–60. The Institute of Electrical and Electronics Engineers,
2001.

16

[DDP99] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate
abstraction. In Nicolas Halbwachs and Doron Peled, editors, Computer-
Aided Verification, CAV ’99, volume 1633 of Lecture Notes in Computer
Science, pages 160–171, Trento, Italy, July 1999. Springer-Verlag.

[DE73] George B. Dantzig and B. Curtis Eaves. Fourier-Motzkin elimination and
its dual. Journal of Combinatorial Theory (A), 14:288–297, 1973.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, July 1962. Reprinted
in Siekmann and Wrightson [SW83], pages 267–270, 1983.

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
Extended static checking. Technical Report 159, COMPAQ Systems Re-
search Center, 1998.

[dMRS02] Leonardo de Moura, Harald Rueß, and Maria Sorea. Lazy theorem proving
for bounded model checking over infinite domains. In A. Voronkov, editor,
International Conference on Automated Deduction (CADE’02), Lecture
Notes in Computer Science, Copenhagen, Denmark, July 2002. Springer-
Verlag.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory.
JACM, 7(3):201–215, 1960.

[EKM98] Jacob Elgaard, Nils Klarlund, and Anders Möller. Mona 1.x: New tech-
niques for WS1S and WS2S. In Hu and Vardi [HV98], pages 516–520.

[FORS01] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Can-
onization and Solving. In G. Berry, H. Comon, and A. Finkel, editors,
Computer-Aided Verification, CAV ’2001, volume 2102 of Lecture Notes
in Computer Science, pages 246–249, Paris, France, July 2001. Springer-
Verlag.

[FQ02] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software ver-
ification. In ACM Symposium on Principles of Programming Languages02,
pages 191–202. Association for Computing Machinery, January 2002.

[FS02] Jonathan Ford and Natarajan Shankar. Formal verification of a combina-
tion decision procedure. In A. Voronkov, editor, Proceedings of CADE-19,
Berlin, Germany, 2002. Springer-Verlag.

[Gil60] P. C. Gilmore. A proof method for quantification theory: Its justification
and realization. IBM Journal of Research and Development, 4:28–35, 1960.
Reprinted in Siekmann and Wrightson [SW83], pages 151–161, 1983.

[GMW79] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[GNTV02] Enrico Giunchiglia, Massimo Narizzano, Armando Tacchella, and Moshe Y.
Vardi. Towards an efficient library for SAT: a manifesto. To appear, 2002.

[GS97] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In
Conference on Computer Aided Verification CAV’97, LNCS 1254, Springer
Verlag, 1997.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre.
Lazy abstraction. In ACM Symposium on Principles of Programming Lan-
guages02, pages 58–70. Association for Computing Machinery, January
2002.

[HO80] G. Huet and D. C. Oppen. Equations and rewrite rules: a survey. In
R. Book, editor, Formal Language Theory: Perspectives and Open Prob-
lems, pages 349–405. Academic Press, ny, 1980.

17

[HV98] Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Verification,
CAV ’98, volume 1427 of Lecture Notes in Computer Science, Vancouver,
Canada, June 1998. Springer-Verlag.

[KMM00] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-
Aided Reasoning: An Approach, volume 3 of Advances in Formal Methods.
Kluwer, 2000.

[Kur93] R.P. Kurshan. Automata-Theoretic Verification of Coordinating Processes.
Princeton University Press, Princeton, NJ, 1993.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6:11–44, 1995.

[LGvH+79] D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne,
D. C. Oppen, W. Polak, and W. L. Scherlis. Stanford Pascal Verifier user
manual. CSD Report STAN-CS-79-731, Stanford University, Stanford, CA,
March 1979.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Boston, 1993.

[Min63] Marvin Minsky. Steps toward artificial intelligence. In E. A. Feigenbaum
and J. Feldman, editors, Computers and Thought. McGraw-Hill Book Com-
pany, New York, 1963.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In Design
Automation Conference, pages 530–535, 2001.

[MSS99] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May
1999.

[MT96] Zohar Manna and The STeP Group. STeP: Deductive-algorithmic verifi-
cation of reactive and real-time systems. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided Verification, CAV ’96, volume 1102 of
Lecture Notes in Computer Science, pages 415–418, New Brunswick, NJ,
July/August 1996. Springer-Verlag.

[Nec97] George C. Necula. Proof-carrying code. In 24th ACM Symposium on Prin-
ciples of Programming Languages, pages 106–119, Paris, France, January
1997. Association for Computing Machinery.

[Nel81] G. Nelson. Techniques for program verification. Technical Report CSL-81-
10, Xerox Palo Alto Research Center, Palo Alto, Ca., 1981.

[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, 1979.

[NSS57] A. Newell, J. C. Shaw, and H. A. Simon. Empirical explorations with the
logic theory machine: A case study in heuristics. In Proc. West. Joint
Comp. Conf., pages 218–239, 1957. Reprinted in Siekmann and Wright-
son [SW83], pages 49–73, 1983.

[Opp78] Derek C. Oppen. A 222pn

upper bound on the complexity of Presburger
arithmetic. Journal of Computer and System Sciences, 16:323–332, 1978.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

18

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke.
Formal verification for fault-tolerant architectures: Prolegomena to the de-
sign of PVS. IEEE Transactions on Software Engineering, 21(2):107–125,
February 1995.

[Pos21] E. L. Post. Introduction to a general theory of elementary propositions.
American Journal of Mathematics, 43:163–185, 1921. Reprinted in [vH67,
pages 264–283].

[Pra60] D. Prawitz. An improved proof procedure. Theoria, 26:102–139, 1960.
Reprinted in Siekmann and Wrightson [SW83], pages 162–201, 1983.

[Pre29] M. Presburger. Uber die vollständigkeit eines gewissen systems der arith-
metik ganzer zahlen, in welchem die addition als einzige operation hervor-
tritt. Compte Rendus du congrés Mathématiciens des Pays Slaves, pages
92–101, 1929.

[Pug92] W. Pugh. A practical algorithm for exact array dependence analysis. Com-
munications of the ACM, 35(8):102–114, 1992.

[Rab78] Michael O. Rabin. Decidable theories. In Jon Barwise, editor, Handbook
of Mathematical Logic, volume 90 of Studies in Logic and the Foundations
of Mathematics, chapter C8, pages 595–629. North-Holland, Amsterdam,
Holland, 1978.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle.
JACM, 12(1):23–41, 1965. Reprinted in Siekmann and Wrightson [SW83],
pages 397–415.

[RS01] Harald Rueß and Natarajan Shankar. Deconstructing Shostak. In 16th An-
nual IEEE Symposium on Logic in Computer Science, pages 19–28, Boston,
MA, July 2001. IEEE Computer Society.

[RV01] A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning.
Elsevier Science, 2001.

[Sha01] Natarajan Shankar. Using decision procedures with a higher-order logic. In
Theorem Proving in Higher Order Logics: 14th International Conference,
TPHOLs 2001, volume 2152 of Lecture Notes in Computer Science, pages
5–26, Edinburgh, Scotland, September 2001. Springer-Verlag. Available at
ftp://ftp.csl.sri.com/pub/users/shankar/tphols2001.ps.gz.

[Sho81] Robert E. Shostak. Deciding linear inequalities by computing loop residues.
Journal of the ACM, 28(4):769–779, October 1981.

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,
31(1):1–12, January 1984.

[SKR98] T. R. Shiple, J. H. Kukula, and R. K. Ranjan. A comparison of Presburger
engines for EFSM reachability. In Hu and Vardi [HV98], pages 280–292.

[SO99] Natarajan Shankar and Sam Owre. Principles and pragmatics of subtyping
in PVS. In D. Bert, C. Choppy, and P. D. Mosses, editors, Recent Trends
in Algebraic Development Techniques, WADT ’99, volume 1827 of Lec-
ture Notes in Computer Science, pages 37–52, Toulouse, France, September
1999. Springer-Verlag.

[SR02] N. Shankar and H. Rueß. Combining Shostak theories. In International
Conference on Rewriting Techniques and Applications (RTA ‘02), Lecture
Notes in Computer Science. Springer-Verlag, July 2002. Invited Paper.

[SS99] Hassen Säıdi and Natarajan Shankar. Abstract and model check while you
prove. In Computer-Aided Verification, CAV ’99, Trento, Italy, July 1999.

[SS00] Mary Sheeran and Gunnar St̊almarck. A tutorial on St̊almarck’s proof
procedure for propositional logic. Formal Methods in Systems Design,
16(1):23–58, January 2000.

19

[SSMS82] R. E. Shostak, R. Schwartz, and P. M. Melliar-Smith. STP: A mechanized
logic for specification and verification. In D. Loveland, editor, 6th Interna-
tional Conference on Automated Deduction (CADE), volume 138 of Lecture
Notes in Computer Science, New York, NY, 1982. Springer-Verlag.

[SW83] J. Siekmann and G. Wrightson, editors. Automation of Reasoning: Classical
Papers on Computational Logic, Volumes 1 & 2. Springer-Verlag, 1983.

[Tar48] A. Tarski. A Decision Method for Elementary Algebra and Geometry. Uni-
versity of California Press, 1948.

[TH96] Cesare Tinelli and Mehdi Harandi. A new correctness proof of the Nelson-
Oppen combination procedure. In Frans Baader and Klaus U. Schulz,
editors, Frontiers of Combining Systems: First International Workshop,
volume 3 of Applied Logic Series, pages 103–119, Munich, Germany, March
1996. Kluwer.

[Thé98] Laurent Théry. A certified version of Buchberger’s algorithm. In H. Kirch-
ner and C. Kirchner, editors, Proceedings of CADE-15, number 1421 in
Lecture Notes in Artificial Intelligence, pages 349–364, Berlin, Germany,
July 1998. Springer-Verlag.

[Tiw00] Ashish Tiwari. Decision Procedures in Automated Deduction. PhD thesis,
State University of New York at Stony Brook, 2000.

[TK02] Ashish Tiwari and Gaurav Khanna. Series of abstractions for hybrid au-
tomata. In C.J. Tomlin and M.R. Greenstreet, editors, Hybrid Systems:
Computation and Control, 5th International Workshop, HSCC 2002, vol-
ume 2289 of Lecture Notes in Computer Science, pages 465–478, Stanford,
CA, March 2002. Springer-Verlag.

[vH67] J. van Heijenoort, editor. From Frege to Gödel: A Sourcebook of Math-
ematical Logic, 1879–1931. Harvard University Press, Cambridge, MA,
1967.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification (preliminary report). In Proceedings 1st
Annual IEEE Symp. on Logic in Computer Science, pages 332–344. IEEE
Computer Society Press, 1986.

[Wan60a] H. Wang. Proving theorems by pattern recognition — I. Communica-
tions of the ACM, 3(4):220–234, 1960. Reprinted in Siekmann and Wright-
son [SW83], pages 229–243, 1983.

[Wan60b] Hao Wang. Toward mechanical mathematics. IBM Journal, 4:2–22, 1960.
[Wan63] H. Wang. Mechanical mathematics and inferential analysis. In P. Braffort

and D. Hershberg, editors, Computer Programming and Formal Systems.
North-Holland, 1963.

[Wey80] Richard W. Weyhrauch. Prolegomena to a theory of mechanized formal
reasoning. Artificial Intelligence, 13(1 and 2):133–170, April 1980.

[Zha97] Hantao Zhang. SATO: An efficient propositional prover. In Conference on
Automated Deduction, pages 272–275, 1997.

20

