
Appears in the Proceedings of CADE’02, LNCS. c©Springer-Verlag

Formal Verification of a
Combination Decision Procedure?

Jonathan Ford and Natarajan Shankar

Computer Science Laboratory
SRI International, Menlo Park CA 94025 USA

{ford, shankar}@csl.sri.com
Phone: (650)859-5272

Abstract. Decision procedures for combinations of theories are at the
core of many modern theorem provers such as ACL2, Ehdm, PVS, SIM-
PLIFY, the Stanford Pascal Verifier, STeP, SVC, and Z/Eves. Shostak, in
1984, published a decision procedure for the combination of canonizable
and solvable theories. Recently, Ruess and Shankar showed Shostak’s
method to be incomplete and nonterminating, and presented a correct
version of Shostak’s algorithm along with informal proofs of termination,
soundness, and completeness. We describe a formalization and mechan-
ical verification of these proofs using the PVS verification system. The
formalization itself posed significant challenges and the verification re-
vealed some gaps in the informal argument.

1 Introduction

Decision procedures play an important rôle in a number of areas such as auto-
mated deduction, computer-aided verification, and constraint solving. Since bugs
in decision procedures can lead to unsound inferences, it is natural to ask if such
verification tools can themselves be verified. We present here the first instance
of a verified decision procedure for a combination of theories based on Shostak’s
ideas. Shostak’s algorithm [Sho84] for building decision procedures for the union
of canonizable and solvable equational theories has been widely used despite
the lack of a convincing correctness proof. Recently, Ruess and Shankar [RS01]
showed that this algorithm (even with minor flaws corrected [CLS96]) was both
nonterminating and incomplete. They gave a corrected version of the algorithm
along with informal proofs for termination, soundness, and completeness. We
undertook the challenge of formalizing and verifying these informal arguments
using the PVS verification system [ORS92]. The results of our verification are
presented here along with observations regarding the challenges that we encoun-
tered in the formalization and verification process.
? This work was funded by NSF Grant CCR-0082560, DARPA/AFRL Contract

F33615-00-C-3043, and NASA Contract NAS1-00079. Sam Owre, Harald Rueß, and
John Rushby of SRI provided insightful comments on earlier drafts. We thank the
anonymous referees for their constructive criticism.

1



The correctness of decision procedures has been an important theme in au-
tomated reasoning. Several approaches have been developed for using decision
procedures to gain efficiency in proof construction without compromising sound-
ness. The LCF approach [GMW79] admits only those decision procedures that
can be introduced as tactics, which are metalanguage operations for reducing
proof goals to subgoals in a way that is justifiable in terms of the primitive infer-
ences of the object logic. Tactics can be hard to define (since they have to mimic
proof steps) and inefficient (since they have to generate low-level inference steps).
The generation of proof objects from finished proofs is another way of ensuring
that each proof can be constructed using only the primitive inference steps. The
construction of proof objects even from finished proofs can be inefficient in both
time and space.

In order to avoid the inefficiency of fully expansive proof generation, a num-
ber of researchers have advocated the verification of decision procedures. Boyer
and Moore [BM81] introduce a notion of metafunctions, i.e., function definitions
in the object logic that could be applied to object logic expressions. They use
computational reflection to capture the meanings of these expressions in the
object logic and verify the soundness of some simple derived inference rules in
this manner. Boyer and Moore [BM79] also verified the semantic correctness of
a tautology checker for conditional expressions. Shankar [Sha85] verified both
the semantic and proof-theoretic correctness of a tautology checker for proposi-
tional logic. Some recent examples of verified decision procedures include a Coq
verification of a Gröbner basis algorithm for membership in polynomial ideals
by Théry [Thé98], the verification of ordered binary decision diagram (OBDD)
operations using PVS by von Henke, Pfab, Pfeifer, and Ruess [vHPPR98], and a
similar Coq verification of OBDD operations by Verma and Goubault [VGL00].
Both the algorithm and the theory underlying the combination decision pro-
cedure considered here are significantly more complex than these previously
verified decision procedures.

The primary contribution of our work is in demonstrating the feasibility of for-
mally verifying complex decision procedures. The variant of Shostak’s algorithm
we have verified is quite recent and its foundations are not widely understood.
Our verification closely follows the published informal proof [RS01] so that we
could directly assess its validity. We also used details from an unpublished re-
port that included proofs of some of the lemmas that were given without proof
in the published paper. The verification exposed some gaps in the informal ar-
gument. We found a monotonicity claim in the informal argument to be false
without qualification, but only the qualified form was actually used. A step that
is hinted at as being routine, turned out to not be all that obvious. In the algo-
rithm, any solution returned by the solver must contain variables that are either
from the given equality or are “fresh”. Making the notion of freshness precise,
and working with this constraint proved to be one of the major challenges in the
formal verification. The verification makes very heavy use of the PVS type sys-
tem. Our use of PVS types exposed some of the weaknesses in a type propagation
feature of the language called typing judgements.

2



Since PVS itself employs Shostak’s method (with the incompleteness and non-
termination bugs), the validity of this verification might be called into question.
However, the Shostak procedure used in PVS is not known to be unsound. Fu-
ture versions of PVS will employ the ICS decision procedures [FORS01] that are
based on the theory verified here. Despite the circularity between the verifier
and the verified program, this kind of verification is still quite useful. An unsuc-
cessful proof attempt might reveal significant bugs. A successful verification of
the decision procedures could be certified through proof-object generation but
subsequently used without the supporting proof objects.

The decision procedure as verified here is not executable, but it is possible to
derive a verified, executable version that can be turned into efficient Common
Lisp code [Sha99]. The code generated from the verified decision procedure is
unlikely to be as efficient as the highly optimized ICS implementation, but it
could still be used as a reference procedure that can be invoked when certified
results are needed.

We verify both soundness and completeness. The completeness property is
crucial. Higher-level simplification routines might diverge or behave erroneously
if they incorrectly assume completeness. Due to its complexity and popularity,
the verification of Shostak’s algorithm is a good case-study for assessing the
feasibility of certifying decision procedures.

2 Shostak’s Algorithm

We focus here on the verification of a decision procedure for equational theo-
ries where terms are constructed from a combination of interpreted and uninter-
preted function symbols. There are two basic methods for building decision pro-
cedures for combinations of disjoint theories. Nelson and Oppen’s method [NO79]
combines decision procedures for the individual theories by allowing them to
share specific kinds of equality information. Shostak’s method [Sho84] extends
congruence closure to equational theories that are canonizable and solvable. Nel-
son and Oppen’s method is more generally applicable, but Shostak’s method has
certain advantages. It is an online algorithm, i.e., processes inputs incrementally,
so that the term universe for the input is not known in advance. It also yields
a useful function for computing a canonical form respecting the given input
equalities.

All formulas are equalities between terms which are constructed from vari-
ables by means of n-ary function application for n ≥ 0. Sequents of the form
T ` a = b assert the implication between the antecedent equalities in the set T
and the consequent equality a = b. The basic theory of equality with all func-
tion symbols uninterpreted, i.e., without any fixed interpretation, is decidable
by means of congruence closure. Shostak’s algorithm extends the congruence
closure decision procedure to handle interpreted operations from a canonizable
and solvable theory. Informally, a theory is canonizable if there is a canonizer
operation σ such that σ(a) ≡ σ(b) exactly when a = b is valid in the theory. It

3



is solvable if there is an operation solve such that solve(a = b) either returns ⊥
when a = b is unsatisfiable, or a solved form S that is equivalent to a = b.

Shostak’s procedure takes as parameters, a solver solve and canonizer σ for
a theory such as linear arithmetic. The algorithm verifies a sequent T ` a = b
by processing the equalities in T to build a solution set S of equalities in solved
form, or to return ⊥ indicating that a contradiction was found in T . If a solution
set S is returned, then one can use S and σ to define a canonizer can such that
can(S)(f(e)) returns σ(f(can(S)(e))) if f is interpreted. If f is uninterpreted,
can(S)(f(e)) returns c′ for some c equivalent to f(can(S)(e)) where c = c′ is
in S. The conclusion equality a = b can be tested for validity by checking if
can(S)(a) ≡ can(S)(b). The operation can(S) is also used for preprocessing
the input equalities from T . The preprocessed input equalities are solved and
the solution (if any) is composed with the existing value of S. The solution
set S is maintained in congruence-closed form so that the right-hand sides of
congruent left-hand side terms are merged by solving the equality between them
and merging the results into S.

The theory of linear arithmetic is a typical example of a canonizable and
solvable theory. A canonizer can be given by means of a function that returns an
ordered sum-of-products representation for a given linear polynomial by merging
monomials over the same variable into a single monomial. A solver can be given
by using algebraic manipulations to isolate a variable on the left-hand side. The
Shostak procedure of Ruess and Shankar [RS01] can be illustrated on the sequent

f(x− 1)− 1 = f(y) + 1, y − x+ 1 = 0 ` false,

where +, −, and the numerals are from the theory of linear arithmetic, false is
an abbreviation for 0 = 1, and f is an uninterpreted function symbol. Starting
with S ≡ ∅ in the base case, the preprocessing of f(x− 1)− 1 = f(y) + 1 causes
the equality to be placed into canonical form as −1 + f(−1 + x) = 1 + f(y).
The solution set S is initialized to contain reflexivity statements for the non-
interpreted subterms in the canonicalized input equality as {x = x, y = y, f(−1+
x) = f(−1 + x), f(y) = f(y)}. Solving −1 + f(−1 + x) = 1 + f(y) yields
f(−1+x) = 2+f(y), and S is set to {x = x, y = y, f(−1+x) = 2+f(y), f(y) =
f(y)}. No unmerged congruences are detected in S. Next, y − x + 1 = 0 is
canonized as 1− x+ y = 0, and solved as x = 1 + y. This solution is composed
with S to yield {x = y + 1, y = y, f(−1 + x) = 2 + f(y), f(y) = f(y)}. The
congruence between f(−1 + x) and f(y) is detected since the canonical form of
−1 + x is y when the solution for x is inserted and the result is canonized by σ.
The procedure then tries to merge the respective solutions of f(−1+x) and f(y)
by solving 2 + f(y) = f(y). The solver returns ⊥ so that the original sequent is
asserted to be valid.

As a second example, one can check that the sequent f(x−1)−1 = f(y)+1 `
g(f(x−1)−2) = g(f(y)) is valid by computing S to be {x = x, y = y, f(−1+x) =
2+f(y), f(y) = f(y)}, and verifying can(S)(g(f(x−1)−2)) ≡ can(S)(g(f(y))).

4



3 Formalizing Shostak’s Algorithm in PVS

A brief introduction to PVS is given in Appendix A. The formalization ex-
ploits several advanced features of the PVS language including recursive data-
types, predicate subtypes, dependent types, Hilbert’s choice operator, and in-
ductive relations. We describe the formalization in sufficient detail so that it
can be checked for conformity with the informal arguments [RS01] (abbreviated
below as RS) and reproduced using some other automated proof checker.1

Syntax. Terms are built from a given signature consisting of a set of variables X
and function symbols F . A term is either a variable x for x ∈ X or of the form
f(a1, . . . , an), where f ∈ F . A term of the form f(a1, . . . , an) is interpreted (re-
spectively, uninterpreted) if f is interpreted (respectively, uninterpreted). Terms
are formalized by means of a recursive datatype syntax consisting of a con-
structor v for variables with a natural number index field index, and an ap-
plication constructor app with a function symbol field func and an arguments
field args which is formalized as a dependent type [below(arity(func)) ->
syntax] which represents an array of syntax in the arity of the function sym-
bol of the term. The type below(num) for a natural number num is the (possibly
empty) subrange 0, . . . , num − 1.2 The function symbol type funsymbs is also
a datatype consisting of constructors ifn and ufn for interpreted and uninter-
preted function symbols, respectively, each with an index field and an arity
field, and a thry (theory) field for interpreted function symbols.

1funsymbs: DATATYPE

BEGIN

IMPORTING theories

ifn(index: nat, arity: nat, thry: TH): ifn?

ufn(index: nat, arity: nat): ufn?

END funsymbs

syntax: DATATYPE

BEGIN

IMPORTING funsymbs, max_lemmas

v(index: nat): v?

app(func: funsymbs,

args: [below(arity(func)) -> syntax]): app?

END syntax

Since we are admitting just one interpreted theory, we fix a theory th. The
predicate thry func checks that its argument is an interpreted function symbol
1 The complete PVS 2.4.1 dump file is available at ftp://ftp.csl.sri.com/pub/

users/shankar/shostak-verification-dump.
2 An application could also be formalized in terms of a list of arguments whose length

is the arity of the function symbol. The array-based formalization has some im-
portant advantages. Terms are well-formed by construction thus avoiding the need
for cumbersome proof obligations. Operations on terms can be defined by a simple
structural recursion without the use of mutual recursion on terms and lists of terms.

5



from theory th. The type thry func is the predicate subtype corresponding to
the predicate thry func.

2thry_func(ff:funsymbs): bool =

ifn?(ff) AND thry(ff) = th

The type of equalities is defined as a record type with fields lhs and rhs.

3equality: TYPE = [# lhs, rhs: syntax #]

The variables a, b, and c are declared to range over terms, aa, bb, and cc range
over equalities, and R, S, and T range over lists of equalities.

The set of variables in a term a is defined using datatype recursion as vars(a).
Sets are just predicates in the higher-order logic so that a variable x is in the
set vars(a) iff vars(a)(x) holds. The set vars(a) can be shown to be finite
by structural induction. A term a is well-typed in n for a natural number n, if
the index of any variable in a is below n. This is represented by the predicate
well typed?(n)(a) and the corresponding type typed(n). The operation of
collecting the set of subterms of a given term is represented by subterm(a).
The definitions of these operations are omitted.

Pure Terms. The canonizer and solver are defined for pure terms, i.e., terms
without uninterpreted function symbols, but then applied to arbitrary terms by
treating the uninterpreted subterms as variables. We formalize pure terms by
means of a datatype pure that has two classes of variables: v(i) for the ordi-
nary variables indexed by i, and u(a) corresponding to the uninterpreted term
a. Function applications for pure terms are typed to contain only interpreted
function symbols. It is easy to define an operation abs that converts a term to
the corresponding pure term, and its inverse gamma.

4pure[(IMPORTING theories) th: TH]: DATATYPE WITH SUBTYPES var?, func?

BEGIN

IMPORTING syntax_ops[th]

v(index: nat): v? : var?

u(a: uninterpreted): u? :var?

app(func: thry_func,

args: [below(arity(func)) -> pure]): app? : func?

END pure

Semantics. The semantics for a term a is given by M [[a]]ρ for an interpretation
M over a domain D such that M(f) yields a mapping from Dn to D for function
symbol f of arity n, and an assignment ρ mapping variables to values in D. For
variables, M [[x]]ρ = ρ(x), and M [[f(a1, . . . , an)]]ρ = M(f)(M [[a1]]ρ, . . . ,M [[an]]ρ).
We say that M,ρ |= a = b iff M [[a]]ρ = M [[b]]ρ, and M |= a = b iff M,ρ |= a = b
for all assignments ρ over vars(a = b). An equality is valid if for all D,M :
M |= a = b.

The concept of a valid equality requires quantification over all domains D and
interpretations M over D. In PVS, such a domain would have to be introduced

6



as the type parameter of a theory. Since PVS does not admit quantification over
types, the domain must be given as a subset or a subtype of a fixed type. We
take this fixed type to be the set of all terms.3 This type can be informally shown
to be adequate for representating any domain set D for the purposes of equality.
The assignment ρ is formalized as a mapping from the set of all variables to the
domain D.

In the semantics for pure terms, the domain type D is the type of pure terms
and a model is a dependent record type consisting of a domain field mdom that
is a subset of D, and a function interpretation field f that is a dependent type
mapping a function ff and an array of argument valuations to a valuation for
the application. The type arity(ff) is an abbreviation for below(arity(ff)).

5D: TYPE+ = pure

model: TYPE = [# mdom : setof[D],

f: [ff: thry_func ->

[[arity(ff) -> (mdom)] -> (mdom)]] #]

Solutions. The “state” of the algorithm is maintained in a solution set S that is
just a list of equalities of a special form. The operation apply(S)(a) (informally,
S(a)) is defined recursively to look up the solution for a (if any) in S.4

6apply(S)(a): RECURSIVE syntax =

CASES S OF

null: a,

cons(aa, R): IF lhs(aa) = a

THEN rhs(aa)

ELSE apply(R)(a)

ENDIF

ENDCASES

MEASURE length(S)

The operation replace vars(S)(d) (informally, S[d]) returns the result of re-
placing all occurrences of any left-hand side variable from S in a pure term
d, by the corresponding right-hand side. The replace vars operation is ex-
tended from pure terms to arbitrary terms as replace solvables. The oper-
ation subst(rho)(d) (used in 7 ) is similar to replace vars(S)(d) but rho
here is a substitution mapping variables to terms.

Canonizers. A canonizer σ for pure terms from a theory τ is a parameter to
the combination decision procedure. A valid canonizer is required to verify va-
lidities, i.e., |=τ a = b implies σ(a) ≡ σ(b), and additionally preserve variables,
σ(x) = x and vars(σ(a)) ⊆ vars(a), be idempotent, σ(σ(a)) = σ(a), and leave
3 The type of closed terms, when nonempty, is also a valid candidate for the domain.
4 The termination of the recursive definition is justified by the measure length(S)

which causes the typechecker to generate proof obligations verifying that the measure
decreases with each recursive call.

7



subterms canonical, σ(b) = b for any subterm b of σ(a). These conditions on a
valid canonizer are captured by the predicate canonizer?(sigma). The validity
condition is awkward since it uses an oracle |=τ for τ -validity. We found a way
to replace this condition by the sufficient pair of conditions on σ:

1. σ-substitutivity: σ(ρ[a]) ≡ σ(ρ[σ(a)]), for any substitution ρ, and
2. σ-distributivity: σ(f(σ(a1), . . . , σ(an))) ≡ σ(f(a1, . . . , an)).

canonical?(sigma)(a) is defined to hold when sigma(a) = a.

7canonizer?(sigma): bool =

( (FORALL d, rho: sigma(subst(rho)(d)) = sigma(subst(rho)(sigma(d))))

AND (FORALL d: app?(d) IMPLIES

sigma(app(func(d), LAMBDA (i:arity(func(d))): sigma(args(d)(i))))

= sigma(d))

AND (FORALL u : sigma(u) = u)

AND (FORALL d, u: vars(sigma(d))(u) IMPLIES vars(d)(u))

AND (FORALL d : sigma(sigma(d)) = sigma(d))

AND (FORALL d, f: sigma(d) = f IMPLIES

(FORALL (i:arity(func(f))): canonical?(sigma)(args(f)(i)))))

The adaptation of the canonizer from pure terms to terms is done through gamma

and abs. The canonizer for arbitrary terms, sig(a) (used in 9 and 10 ), is
defined as gamma(sigma(abs(a))), where sigma is the given canonizer for pure
terms. Model M is a σ-model if M |= σ(a) = a for all a, and a = b is σ-
unsatisfiable (formalized as the PVS predicate unsatisfiable) if M,ρ 6|= a = b
for all M and ρ.

Solver. A solver solve is another parameter to the algorithm. A valid solver
must be such that solve(a = b) either returns ⊥ when a = b is σ-unsatisfiable,
or returns a (possibly empty) list S of n equalities of the form xi = ti for
1 ≤ i ≤ n, where xi ∈ vars(a = b) xi 6≡ xj for i 6= j, xi 6∈ vars(tj), ti is canonical
(σ(ti) = ti), for 1 ≤ x, y ≤ n, and a = b and S are σ-equivalent: for all σ-models
M and assignments ρ over the variables in a and b, M,ρ |= a = b iff there is an
assignment ρ′ extending ρ, over the variables in S, a, and b, such that M,ρ′ |= S.

The notion of a solution for pure term equalities is formalized as the pred-
icate solve(n, dd, S) for an index n, an equality dd, and a solution list S.
The predicate checks that dd is satisfiable, the solution list of equalities S is
a well-formed solution that is σ-equivalent (formalized as the PVS predicate
sig equivalent?) to dd. Any variables in S not in dd must be of index above n.

8solve(n, dd, S): bool =

IF unsatisfiable(dd) THEN

FALSE

ELSE

new_vars_above(n, dd)(S) AND

check_solution(dd)(S) AND

sig_equivalent?(dd, S)

ENDIF

8



A pure term solver is easily extended to one that works on terms. A given
solver solv is typed so that solv(m, dd) returns a dependent record r with
fields n and s, where r‘n is an index that is at least m and r‘s is either bottom
or of the form up(S) for a solution list of equalities S that is well-typed in r‘n.

Canonical Forms. The operation norm(S)(a) (represented as norm(S)(a)) for
a canonizer sig, is informally defined as σ(S[a]). The definition of norm is used to
show that if solve(m, aa, S) holds, then norm(S)(lhs(aa)) = norm(S)(rhs(aa)),
and to define the composition of two equality lists R and S as R o S.

9norm(S)(a): syntax = sig(replace_solvables(S)(a))

o(R, S): RECURSIVE eqlist =

CASES R OF

null: S,

cons(aa, T): cons(eq(lhs(aa), norm(S)(rhs(aa))), T o S)

ENDCASES

MEASURE length(R)

Since composition is defined recursively, its definition includes a termination
measure length(R) that is used to generate termination proof obligations. The
definitions above are used to prove the associativity of composition and the
claim: norm(R o S)(a) = norm(S)(norm(R)(a)).

The operation lookup(S)(a) is defined so that if a is a variable, then it re-
turns apply(S)(a) which is the formalization of S(a). When a is an application,
then lookup is defined to scan S till it finds an equality whose left-hand side is
of the form f(a1, . . . , an), where f(norm(S)(a1), . . . ,norm(S)(an)) ≡ a.5

The canonizer can(S)(a) is then defined in terms of the lookup operation.

10can(S)(a): RECURSIVE syntax =

CASES a OF

v(i): apply(S)(a),

app(ff, args):

IF intheory?(a) THEN

sig(app(ff, LAMBDA (i:arity(ff)): can(S)(args(i))))

ELSE

lookup(S)(app(ff, LAMBDA (i:arity(ff)): can(S)(args(i))))

ENDIF

ENDCASES

MEASURE rank(a)

Congruence. Congruence with respect to a solution set S, f(a1, . . . , an) S∼
f(b1, . . . , bn), is defined to hold exactly when norm(S)(ai) ≡ norm(S)(bi) for
1 ≤ i ≤ n. This is captured formally by the predicate congruent(S)(a, b).
5 This definition of lookup is slightly different from that of RS which uses S(ai)

instead of norm(S)(ai). The RS definition requires keeping dom(S) subterm-closed,
whereas we only require closure under the uninterpreted subterms. Our definition is
executable in contrast to the RS definition which uses Hilbert’s epsilon operator.

9



11congruent(S)(a, b): bool =

app?(a) AND

app?(b) AND

func(a) = func(b) AND

(FORALL (i:arity(func(a))):

norm(S)(args(a)(i)) = norm(S)(args(b)(i)))

A solution set is congruence-closed when the right-hand sides corresponding to
any pair of congruent left-hand sides are identical.

12congruence_closed(S): bool =

(FORALL (a,b:(dom(S))): congruent(S)(a, b) IMPLIES

apply(S)(a) = apply(S)(b))

The solution set that forms the “state” of the algorithm is typed to satisfy
the invariants given by the predicate invariants(S). These invariants assert
that the left-hand sides of equalities in the solution set S must be variables or
uninterpreted terms, the uninterpreted subterms of any equality S must in the
domain of S, and any right-hand side term must be canonical, and S(a) and
norm(S)(a) must coincide for any a ∈ dom(S), among other conditions. The
predicate invariant(S) is used to define a type above tinvariants(n) which
ensures that the state is a record r consisting of an index r‘n and a solution set
r‘s which is either bottom or up(S), where S is well-typed in r‘n and satisfies
invariants(S).

The Main Procedure. The congruence closure operation cc(r) successively merges
the right-hand sides corresponding to chosen congruent pairs of left-hand side
terms in the solution set r‘s. The operation merge(m, aa, S) (used in 13
and 14 ) computes solv(m, aa) as a record r, returning bottom if r‘s is
bottom, and the record (# n := r‘n, s := S o down(r‘s)#), otherwise, where
down(up(R)) is R. The return type of cc ensures that cc(r)‘s is bottom when
r‘s is bottom and the cc(r)‘s satisfies the invariants spelled out above when it
is different from bottom. The termination of cc, a significant step in the proof, is
established by showing that the number of equivalence classes of uninterpreted
terms in the domain of r‘s decreases with each recursive call. The invariants on
the solution set play a crucial role in proving termination.

13cc(r): RECURSIVE {s : above_tinvariants(r‘n) | bottom?(r‘s)

IMPLIES bottom?(s‘s)} =

CASES r‘s OF

bottom: tbottom,

up(T) : IF (NOT congruence_closed(T))

THEN cc(merge(r‘n, apply(T)(choose(congruent_pair?(T))), T))

ELSE r

ENDIF

ENDCASES

MEASURE cc_rank(r)

The assert(r, aa) operation places aa in canonical form as aa’, then expands
r‘s (if r‘s is up(T)) with dummy identities for the new subterms in aa’ as

10



expand(T, aa’). It then merges aa’ into this expanded solution set and applies
congruence-closure cc to the result.

14assert((r:{r:tinvariants | up?(r‘s) IMPLIES

congruence_closed(down(r‘s))}),
(aa:typed_equality(r‘n))):

{s:above_tinvariants(r‘n) | up?(s‘s) IMPLIES

congruence_closed(down(s‘s))} =

CASES r‘s OF

bottom: tbottom,

up(T): cc(merge(r‘n, can(T)(aa), expand(T, can(T)(aa))))

ENDCASES

Finally, process(m, S) returns a record consisting of a number n and a well-
typed solution in n which may be bottom. The type of process(m, S) ensures
that any solution returned is congruence-closed.

15process(m, (S:typed_eqlist(m))): RECURSIVE

{r:above_tinvariants(m) | up?(r‘s) IMPLIES

congruence_closed(down(r‘s))} =

CASES S OF

null : (# n := m, s := up(null)#),

cons(aa, T): IF up?(process(m, T)‘s)

THEN assert(process(m, T), aa)

ELSE tbottom

ENDIF

ENDCASES

MEASURE length(S)

The type and termination proof obligations generated by the PVS typechecker
corresponding to the subtype constraints and measures given with the definitions
of process, cc, and other related definitions, ensure the well-typedness and
termination of process.

4 Verifying Shostak’s Algorithm in PVS

The algorithm verifies a sequent T ` a = b by computing S = process(T ).
The sequent is considered valid if either S = ⊥ or can(S)(a) ≡ can(S)(b). For
the soundness of the procedure is established relative to a proof system whose
inference rules characterize when a sequent T ` a = b is derivable. We prove
that the following are equivalent:

1. If process(T ) = S, then S = ⊥ or can(S)(a) ≡ can(S)(b).
2. T ` a = b is derivable.
3. T ` a = b is σ-valid, i.e., valid in all σ-models.

The implication from (1) to (2) is the soundness argument. The implication
from (2) to (3) validates the soundness of the proof system with respect to

11



σ-models. The implication from (3) to (1) establishes the completeness of the
decision procedure.

For verifying soundness, we first formally define the class of provable sequents
by means of an inductive definition of a predicate has proof?(m, T, aa) for
an index m, a list of equalities T, and an equality aa.

16has_proof?(m,

(T:typed_eqlist(m)),

(aa:typed_equality(m))): INDUCTIVE bool =

member(aa, T) OR % Axiom

lhs(aa) = rhs(aa) OR % Reflexivity

has_proof?(m, T, eq(rhs(aa), lhs(aa))) OR % Symmetry

(EXISTS (a:typed(m)): % Transitivity

has_proof?(m, T, eq(lhs(aa), a)) AND

has_proof?(m, T, eq(a, rhs(aa)))) OR

(LET a = lhs(aa), b = rhs(aa) IN % Congruency

app?(a) AND app?(b) AND

func(a) = func(b) AND

(FORALL (i:arity(func(a))):

has_proof?(m, T, eq(args(a)(i), args(b)(i))))) OR

(rhs(aa) = sig(lhs(aa))) OR % Canonization

(EXISTS (bb:typed_equality(m)), % Solve

(n:upfrom(m)), (S:typed_eqlist(n)):

solve(m, bb, S) AND

has_proof?(m, T, bb) AND

has_proof?(n, append(T, S), aa)) OR

(EXISTS (bb:typed_equality(m)): % Contradiction

unsatisfiable(bb) AND

has_proof?(m, T, bb))

The proof soundness theorem below captures the implication from (2) to
(3) above. It asserts that any provable sequent is σ-valid since the variable M
is declared to range over σ-models. It can be proved by the induction scheme
generated by the inductive definition of has proof?.

17proof_soundness: LEMMA

(FORALL m, (T:typed_eqlist(m)), (aa:typed_equality(m)):

has_proof?(m, T, aa) IMPLIES

(FORALL M, (rho:assign(M)): satisfies(M, rho)(T, aa)))

The following two theorems correspond to the implication between (1) and (2)
above. These theorems capture the respective cases of soundness when process(m,
S) returns a valid solution or a bottom value.

18soundness_1: THEOREM

(FORALL m, (S:typed_eqlist(m)), (a, b:typed(m)):

up?(process(m, S)‘s) AND

can(down(process(m, S)‘s))(a) = can(down(process(m, S)‘s))(b)

IMPLIES has_proof?(m, S, eq(a, b)))

12



19soundness_2: THEOREM

(FORALL m, (S:typed_eqlist(m)), (aa:typed_equality(m)):

bottom?(process(m, S)‘s) IMPLIES

has_proof?(m, S, aa))

Completeness is proved by constructing a canonical σ-model MR and assign-
ment ρR, where R = process(T ) 6= ⊥. The bulk of the proof involves showing
that this construction does in fact yield a σ-model satisfying the equalities in
T . A crucial property for demonstrating this is confluence which asserts that
can(S)(a) = norm(S)(a) when S is congruence-closed and the uninterpreted
terms of a are included in dom(S).

20confluence: LEMMA

invariants(S) AND

congruence_closed(S) AND

subset?(U(subterm(a)), dom(S)) IMPLIES

can(S)(a) = norm(S)(a)

Completeness is then proved as the theorem below which formalizes the im-
plication from (2) to (1) above, but it is verified via proof soundness and (3).
The theorem states that when the sequent S ` a = b is derivable, then either
process(S) = ⊥ or process(S) = T and can(T )(a) = can(T )(b).

21completeness: LEMMA

(FORALL m, (S:typed_eqlist(m)), T, (aa:typed_equality(m)):

up?(process(m, S)‘s) AND

down(process(m, S)‘s) = T AND

has_proof?(m, S, aa) IMPLIES

can(T)(lhs(aa)) = can(T)(rhs(aa)))

5 Concluding Observations

Both the formalization and the verification closely follow the informal presen-
tation RS [RS01]. There were some areas where RS was found to be inadequate
or incorrect and where PVS itself was deficient.6

RS is terse about the introduction of fresh variables by the solve operation.
These variables must be fresh with respect to the entire execution of the al-
gorithm or the construction of a proof. Proof transformations like weakening
and cut require the variables generated by solve to be invariant with respect
to a certain kind of renaming.7 The bookkeeping involved in tracking the well-
formedness of terms and equalities up to a given index, occupy a substantial
6 One minor problem was already noticed prior to this verification attempt. Several

of the lemmas in the informal proof regarding the composition of solutions were
qualified with the condition that R∪S be functional, where the appropriate condition
is that R ◦ S must be functional. This was immaterial for the verification since the
definition of composition is in terms of lists and not sets.

7 A similar renaming problem arises with alpha-renaming in the lambda-calculus and
eigenvariables in sequent proofs, but the renaming issue is far more complicated

13



fraction of the effort in both the formalization and proof. PVS has a judgement
mechanism that records certain typing relations for use in the typechecker, but
we were unable to use it for demonstrating that an expression well-typed in n is
also well-typed in any index above n.

Quantification over types, needed to define semantic validity, is not expressible
in PVS. We instead restricted the semantic domains to subtypes of the type of
terms since any model for terms and equalities is essentially characterized by a
partition of the term universe into equivalence classes.

A monotonicity lemma is stated in the informal proof (Lemma 3.12) as: If
R ∪ S is functional, then if R(a) ≡ R(b), then (R ◦ S)(a) ≡ (R ◦ S)(b), for any
a and b. In addition to the above-mentioned correction to the antecedent, this
lemma only holds when a and b are in dom(R). Fortunately, only the weak form
of this lemma is actually used.

In the RS proof of Lemma 5.11, it is claimed that it can also be shown that
can(S′+)(a) ≡ can(S′)(a), and similarly for b. This claim asserts that padding
the solution set S′ with reflexivity equalities on the subterms from can(S′)(a),
does not affect the value of can(S′)(a). The claim is in fact valid, but the proof
is not all that obvious.

Despite the flaws identified above, the RS proofs held up quite well to the
rigors of formal scrutiny. We were actually operating from a draft document
that contained proofs of lemmas that were given without proof in the published
version. Once the formalization challenges were overcome, it was possible to make
steady progress in the mechanical verification of the proofs. The procedure as
we have defined it is not executable since it uses a choice operator. Further work
is needed to derive efficiently executable versions of the verified algorithm while
preserving its correctness.

The formalization and proof occupied four months of work with PVS carried
out entirely by the first author.8 The proof involves 68 theories, 120 definitions,
192 TCCs (typing and termination proof obligations), 594 lemmas, and the proof
checking time is 2,265 seconds on a 1-Gigahertz Pentium 3. There are roughly
6,200 tokens in the detailed informal presentation as measured by a word count
of the text file generated from the LaTeX input. There are approximately 13,000
tokens in the PVS specification, and over 25,000 tokens in the PVS proofs. The
proof is highly interactive. We are currently working on improving the degree of
mechanization in various ways. The level of effort indicates that the certification
of complex decision procedures remains a tough challenge.

References

[BM79] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New
York, NY, 1979.

here. The variable indices affect the type and the well-typedness of equalities and
proofs so that renaming is not a local operation.

8 The first author already had prior experience with PVS having used it for two
substantial proof developments[FM01b,FM01a].

14



[BM81] R. S. Boyer and J S. Moore. Metafunctions: Proving them correct and
using them efficiently as new proof procedures. In R. S. Boyer and J S.
Moore, editors, The Correctness Problem in Computer Science. Academic
Press, London, 1981.

[CLS96] David Cyrluk, Patrick Lincoln, and N. Shankar. On Shostak’s decision pro-
cedure for combinations of theories. In M. A. McRobbie and J. K. Slaney,
editors, Automated Deduction—CADE-13, volume 1104 of Lecture Notes
in Artificial Intelligence, pages 463–477, New Brunswick, NJ, July/August
1996. Springer-Verlag.

[FM01a] J. Ford and I. A. Mason. Establishing a General Context Lemma in PVS.
In Proceedings of the 2nd Australasian Workshop on Computational Logic,
AWCL’01 , 2001. submitted.

[FM01b] J. Ford and I. A. Mason. Operational techniques in PVS—a preliminary
evaluation. In Proceedings of the Australasian Theory Symposium, CATS
’01, Gold Coast, Queensland, Australia, January–February 2001.

[FORS01] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Can-
onization and Solving. In G. Berry, H. Comon, and A. Finkel, editors,
Computer-Aided Verification, CAV ’2001, volume 2102 of Lecture Notes
in Computer Science, pages 246–249, Paris, France, July 2001. Springer-
Verlag.

[GMW79] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, 1979.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

[RS01] Harald Rueß and Natarajan Shankar. Deconstructing Shostak. In 16th An-
nual IEEE Symposium on Logic in Computer Science, pages 19–28, Boston,
MA, July 2001. IEEE Computer Society.

[Sha85] N. Shankar. Towards mechanical metamathematics. Journal of Automated
Reasoning, 1(4):407–434, 1985.

[Sha99] N. Shankar. Efficiently executing PVS. Project report, Computer Science
Laboratory, SRI International, Menlo Park, CA, November 1999. Available
at http://www.csl.sri.com/shankar/PVSeval.ps.gz.

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the
ACM, 31(1):1–12, January 1984.

[Thé98] Laurent Théry. A certified version of Buchberger’s algorithm. In H. Kirch-
ner and C. Kirchner, editors, Proceedings of CADE-15, number 1421 in
Lecture Notes in Artificial Intelligence, pages 349–364, Berlin, Germany,
July 1998. Springer-Verlag.

[VGL00] Kumar Neeraj Verma and Jean Goubault-Larrecq. Reflecting BDDs in
Coq. Technical Report 3859, INRIA, Rocquencourt, France, January 2000.

[vHPPR98] Friedrich W. von Henke, Stephan Pfab, Holger Pfeifer, and Harald Rueß.
Case studies in meta-level theorem proving. In Jim Grundy and Malcolm
Newey, editors, Proc. Intl. Conf. on Theorem Proving in Higher Order
Logics, number 1479 in Lecture Notes in Computer Science, pages 461–
478. Springer-Verlag, September 1998.

15



A Introduction to PVS

We give a very brief introduction to the PVS language and proof checker.
PVS specifications are a collection of theories. A theory can have type or in-
dividual parameters that are instantiated when the theory is imported within
another theory. A parameterized theory can include constraining assumptions
on the parameters. The instances of these assumptions corresponding to the ac-
tual parameters are generated as proof obligations when a theory instance is
imported.

A theory is a list of declarations of types, constants, and formulas. The expres-
sion language of PVS is based on simply typed higher-order logic extended with
predicate subtypes, dependent types, and recursive datatypes. PVS types consist
of the base types bool and real, and compound types constructed as tuples, as
in [bool, real], records, as in [#flag : bool, length : real#], or function types
of the form [A→B]. Predicates over a type A are of type [A→bool].

Predicate subtypes are a distinctive feature of the PVS higher-order logic.
Given a predicate p over A, {x : A | p(x)} (or, (p)) is a predicate subtype of
A consisting of those elements of A satisfying p. The type nzreal of nonzero
real can be defined as {x : real | x /= 0}. The type nat of natural numbers is
a predicate subtype of the type int of integers, which in turn is a subtype of
the subtype rat (of real) of rational numbers. Subranges can also be defined
as predicate subtypes, and arrays can be typed as functions with subranges as
domains, e.g., [below(N)→A]. The PVS typechecker generates proof obligations
(called TCCs) corresponding to predicate subtype constraints. Out-of-bounds
array accesses generate unprovable TCCs.

Dependent versions of tuple, record, and function types can be constructed
by introducing dependencies between different components of the type through
predicates. Dependent typing can be used to define a finite sequence (of arbitrary
length) as a dependent record consisting of a length and an array of the given
length [#length : nat, seq : [below(length)→T ]#].

PVS expressions include variables x, constants c, applications f(a), and ab-
stractions LAMBDA (x : T ) : a, conditionals IF a1 THEN a2 ELSE a3 ENDIF, tuple ex-
pressions (a1, . . . , an), tuple projections a‘i, record expressions (#l1:=a1, . . .#),
record projections a‘l, and (tuple, record, and function) updates e[a := v].

The definition of a recursive datatype can be illustrated with the list type
built from the constructors cons and null. Theories containing the relevant
axioms, induction schemes, and useful datatype operations are generated from
the datatype declaration.

1list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

16


