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Abstract. Rewriting is a form of inference, and one that interacts in several ways
with other forms of inference such as decision procedures and proof search. We
discuss a range of issues at the intersection of rewriting and inference. How can
other inference procedures be combined with rewriting? Can rewriting be used to
describe inference procedures? What are some of the theoretical challenges and
practical applications of combining rewriting and inference? How can rewriters,
decision procedures, and their combination be certified? We discuss these prob-
lems in the context of our ongoing effort to use PVS as a metatheoretic framework
to construct a proof kernel for justifying the claims of theorem provers, rewriters,
model checkers, and satisfiability solvers.

Rewriting is a versatile framework that can be used as a programming notation,
a modeling formalism, and as an inference method. It is a crucial component of any
effective interactive theorem prover. Rewriting can also be used as framework for pro-
totyping and reasoning about inference procedures. A rewriter is itself a very powerful
inference procedure and certifying the claims made by rewriters can be quite challeng-
ing. We explore several themes centered around rewriting, inference, and proof. We
describe the combination of rewriting and decision procedures employed by SRI’s Pro-
totype Verification System (PVS) [ORSvH95] in its simplifier. This inference rule is
built into PVS and hence its soundness cannot be taken for granted. We present an
architecture for justifying the soundness of such complex inference procedures based
on the use of verified reference checkers. We review some of the progress in develop-
ing this architecture. We also show how rewriting can be used to define such reference
checkers.

There is a long history of work in rewriting in the context of theorem proving.
Woody Bledsoe [Ble77] advocated it as a human-oriented method for automated proof
search. The Boyer-Moore family of theorem provers [BM79,BM88,KMM00] are well
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known for induction, but rewriting is one of its big strengths. The Rewrite Rule Lab-
oratory [KZ88] supports both explicit and implicit induction within a rewriting frame-
work. The OBJ family of systems [GW88,GKM+87] employed rewriting as an alge-
braic specification language. Maude [CDE+99] and ELAN [BKK+96] are descendants
of OBJ that support extremely fast rewriting within an expressive rewriting logic frame-
work.

Rewriting also plays a crucial role in the interactive proof assistant of PVS. It is
used within the PVS simplifier in conjunction with decision procedures and simplifi-
cation rules. The simplifier is around 4000 lines of Common Lisp code, and it relies
on decision procedures that also run to nearly 4000 lines of code. PVS uses external
decision procedures including a BDD package and the Yices SMT solver, but the sim-
plifier is easily the most complicated of the built-in inference procedures. We describe
this procedure and examine the challenge of certifying results that are claimed by the
simplifier.

Our approach to certifying the results of untrusted inference procedures is devel-
oped within the Kernel of Truth (KoT) project at SRI. The approach is captured by
Figure 1. At the bottom, there is a small, trusted proof kernel, and at the top, we have
the untrusted inference procedures. We rely on verified reference checkers to check the
claims made by untrusted inference procedures [Sha08] relative to the trusted proof
kernel. In the KoT approach, we do not verify the verifier, but we instead check verifi-
cation claims with a verified checker. The approach is driven by the idea that checking
is always easier than solving, and checkers are usually easier to verify than solvers.
Furthermore, the certificates that are checked by the checkers need not be formal proofs
and can be customized to specific classes of problems. The verification of the checker
demonstrates the existence of a formal proof corresponding to a valid certificate, but the
actual proof need not be explicitly constructed. By using verified checkers, the untrusted
procedures can be optimized for speed while avoiding the overhead of proof instrumen-
tation and generation. The untrusted procedures can provide hints or certificates to the
verified checkers. The verified checkers are expected to be simple and might therefore
perform slower than the untrusted procedures, but this is acceptable since the validation
of untrusted results and certificates is done offline. The hints provided by the untrusted
procedures should also make it more efficient to check the resulting claims. The verifi-
cation of the checkers can be performed by the untrusted inference tools, since for these
specific claims, we can break the circular dependency by generating and checking the
kernel-level formal proofs.

Our KoT approach should be contrasted with existing techniques for building
trusted inference tools. The LCF approach used by systems such as Coq [The09],
HOL [GM93], Isabelle [Pau94], and Nuprl [CAB+86], relies on proof generation as a
way of validating claims. Though proofs are constructed using tactics that generate sub-
goals from goals, the application of these tactics are valid only when there is a proof of
the goal from the subgoals. Proof generation imposes an engineering and performance
overhead. Some SAT solvers have been instrumented to generate resolution proofs, and
though these proofs can get quite large, the overhead of generating and checking them is
quite modest at about 2 to 12% for generation with a checking time that is significantly
smaller than the solving time [ZM03]. However, it should be noted that these resolution



Certificates

Proof generation

Hints

Proofs

Verified Verifiers

Offline

Trusted

Verifier

Verified

Untrusted

Frontline

Kernel

Verifier

Proof 

Verified

Checker

Fig. 1. The Kernel of Truth Architecture

proofs are actually certificates and not formal proofs, and not all inference procedures
are similarly amenable to proof generation.

Some systems use reflection to verify and apply decision procedures. In computa-
tional reflection [BM81], the logic is used to formalize a syntactic fragment such as
arithmetic or propositional logic and to verify an inference procedure on this repre-
sentation. A meaning function is used to connect this syntax to formulas in the logic.
Computational reflection does not require any external devices, but it does require that
the inference procedure be executable. It is also possible to verify inference procedures
non-reflectively using a different trusted or untrusted inference tool.

Recently, Davis [Dav09] has completed a dissertation where he has verified a fairly
sophisticated theorem prover, a simplified version of ACL2, in a reflective manner, by
defining 11 layers of proof checkers of increasing sophistication. The most sophisti-
cated of these, level 11, includes mechanisms for induction, rewriting, and simplifica-
tion. This level 11 proof checker is used to define proof checkers at levels 1 to 11, and
to show that proofs at level i + 1 can be justified by proofs at level i, for 1 ≤ i ≤ 10.
These correctness proofs at level 11 can then be translated to level 1 proofs.

Our KoT approach has some similarities to the approach used by Davis, but we
focus on building verified checkers for certificates and not on verifying the inference
procedures themselves. The main reason for this is that high-end inference tools evolve
rapidly. Even if verification were feasible, it would be hard to keep up with the changes
to these tools. In contrast, the certificates generated by these tools can be fairly stable.
Checking these certificates can be much more efficient than solving the original infer-
ence problem. Many different verification tools can share the same certificate format so
that the investment in verifying the checkers can be amortized over these multiple uses.



Our KoT approach smoothly accomodates the entire spectrum from proof generation
to verification so that some inference procedures can be justified by generating proofs
corresponding to their claims, and others by verification, but in most cases we would
use the middle option of generating certificates that are checked by verified checkers.

In Section 1, we present a brief overview of PVS. Section 2 describes the PVS sim-
plifier which combines rewriting, simplification, and decision procedures. In Section 3,
we describe the concept of inference systems as an abstract framework for proving the
soundness and completeness of inference procedures. The Kernel of Truth framework is
outlined in Section 4 where we describe a kernel proof checker that is being developed
within PVS to serve as a reference proof system to justify the correctness of various
specialized checkers. Checkers for rewriting and resolution are presented in Section 5,
and the current status of the project and future work are covered in Section 6.

1 Brief Background on PVS

The Prototype Verification System (PVS) is a comprehensive framework for interactive
and automated verification based on higher-order logic [ORSvH95] where variables can
range not only over individuals, as in first-order logic, but also over functions, functions
of functions, and so on. Higher-order logic uses types to avoid paradoxes due to self-
application. Types are built from base types such as the Booleans bool and the real
numbers real. The type [A→B] represents the type of functions with domain type A
and range type B. For example, [A→bool] represents the type of predicates over the
type A, and we abbreviate this as PRED[A] or as set[A]. The type [A1, . . . , An]
represents the type of n-tuples where the i’th element has type Ai for 1 ≤ i ≤ n. In
addition, PVS has predicate subtypes which are of the form {x : T |e} which contains
the elements x of T satisfying e. With this, we can define subtypes for subranges, ra-
tional numbers, integers, even numbers, prime numbers, ordering relations, and order-
preserving maps. For example, the subtype of even numbers can be defined as {i :
int | EXISTS (j : int) 2*j = i}. With predicate subtypes, typechecking
and theorem proving become interdependent since the demonstration that an expres-
sion like 6+4 is an even number now requires a proof. The PVS typechecker generates
proof obligations corresponding to predicate subtypes called type correctness condi-
tions (TCCs). It also makes use of typing judgements to incorporate forward chaining
rules such as the assertion that the sum of even numbers is an even number. PVS also has
dependent types such as [x : A→B], where the range typeB can depend on the domain
element x. For example, if B is the type multiples(x) containing the integer multiples
of x, then the dependent type [x : int→multiples(x)] contains those functions on the
integers that map each integer x to some multiple of x. Arrays are just functions. Update
expressions can be applied to update the value of a function, record, or tuple at a specific
index, field, or position, respectively. The PVS language has other features like para-
metric theories and recursive and corecursive datatypes. The PVS language and its type
system can be used to embed other methodologies that require the generation of proof
obligations, for example, Hoare logic [Hoa69,HJ00] or the B method [Abr96,Muñ99].

Almost all of the PVS language is executable. The only non-executable parts are
equality on infinite higher-order types, which includes quantification on infinite do-



mains. The PVS code generator detects when it is safe to evaluate updates destructively
and is able to generate efficient code in these cases.

PVS also has an interactive proof checker that builds on various automated proce-
dures for decision procedures, binary decision diagrams, satisfiability modulo theories,
and rewriting. The proof checker uses a sequent representation for proof goals such that
each proof step either completes the proof of a subgoal or generates new subgoals. Proof
strategies are built from primitive inference steps using a strategy language. Strategies
can be defined to execute complex patterns of proof steps, like induction followed by
simpification and rewriting. The PVS simplifier which combines rewriting, simplifica-
tion, and the use of decision procedures is described in the next section.

2 Combining Rewriting, Simplification, and Decision Procedures

A simplifier is a crucial part of an interactive proof assistant. It must ensure that the
formula as presented to the user should have the expected simplifications applied. Many
simplifications such as eliminating multiplication by 0, cancelling common factors in a
fraction, and applying distributive laws, are quite natural. Others, such as beta reduction,
are usually, but not always, a good idea. Decision procedures need to be employed
during simplification. They can be used to propagate known information so that an
expression of the form i = j ⇒ A[i := v](j) 6= v can be simplified to FALSE. With
decision procedures, simplification now becomes contextual. For example, the context
i = j is used in simplifying the expression A[i := v](j) 6= v. It also makes sense
to integrate rewriting into the simplifier. Many simplifications can be expressed using
rewriting. Conversely, rewriting also exploits simplification since we can assume that
the expression being rewritten is in simplified form. Also, conditions in the application
of conditional rewrite rules can often be discharged by simplification.

The PVS simplifier employs an inside-out strategy where sub-expressions are sim-
plified before the expression is analyzed. The simplifier also carries a context for the
decision procedure that is incrementally extended with new assertions. For example,
when simplifying the branches of a conditional expression, the condition is asserted
positively in the THEN branch, and negatively in the ELSE branch. The ground deci-
sion procedures can be used to decide if a given formula (that is, a boolean expression)
is true or false (or not known to be either) with respect to the current context and rela-
tive to theories such as those of equality over uninterpreted function symbols and linear
arithmetic. In a sequent of the form a1 . . . am ` b1 . . . bn, the ai are simplified and
recorded as being true, and the bi are simplified and recorded as being false. The sim-
plifications are described below. The recording process can yield a refutation in which
case the sequent has been proved. The ground decision procedure is a Shostak combina-
tion [Sho84,RS01,SR02] of the theory of equality with uninterpreted function symbols,
quantifier-free integer and real linear arithmetic equalities and inequalities, array and
function updates, and tuples and records.

The simplifier performs a range of simplifications. One set of simplifications
applies to redexes as in the following examples (drawn from the PVS Prover
Guide [SORSC99]).

1. Lambda redex: (lambda x : x * x)(2) −→ 2 * 2



2. Record redex : b((# a:= 1, b:= 2, c:= 3 #)) −→ 2
3. Tuple redex : proj 2((1, 2, 3)) −→ 2
4. Function update redex: For function f,

(f WITH [(i) := 3])(i) =⇒ 3

(f WITH [(0) := 3])(1) =⇒ f(1)

5. Record update redex: For record r,

a(r WITH [(a) := 3]) =⇒ 3

a(r WITH [(b) := 2]) =⇒ a(r)

6. Cotuple redex:

in 2(out 2(x)) =⇒ x

out 2(in 2(x)) =⇒ x

in 2?(in 2(x)) =⇒ TRUE

in 1?(in 2(x)) =⇒ FALSE

7. Datatype redex: car(cons(1, null)) =⇒ 1
8. Recognizer redex:

cons?(null) =⇒ FALSE

cons?(cons(1, null)) =⇒ TRUE

9. Subtype redex: even?(i) =⇒ TRUE, if even? is one of the subtype predicates
in the type of i.

Several of the above simplifications can be expressed as rewrite rules, but some like
record and tuple reduction are generic across records and tuple types and require a fam-
ily of rewrite rules depending on the actual type of the record or tuple. The second of
the function update reductions requires a disequality to be established in the general
case, and is therefore not directly representable as a rewrite rule. The remaining sim-
plifications are summarized in brief. The PVS prover guide [SORSC99] contains more
details.

A second set of simplifications addresses arithmetic expressions which are placed
into an ordered sum-of-products form while grouping similar monomials and eliminat-
ing multiplication by 0 or 1. These simplifications yield a normal form for polynomials.

A third set of simplifications applies to Boolean expressions involving conjunction,
disjunction, implication, equivalence, and negation.

A fourth set of simplifications applies to conditional and case expressions to prune
infeasible branches and merge equivalent branches. For conditional expressions, the test
is added to the context when simplifying the THEN branch, and its negation is added
when simplifying the ELSE branch.

A final set of simplifications applies to quantified expressions. Note that when the
body of a lambda-expression or a quantified expression is simplified, the type con-
straints on the bound variables are assumed, i.e., added to the context. Examples of
simplifications applied to quantified expressions are



(EXISTS x: x = 5) =⇒ TRUE
(EXISTS x, y, z: x = y + z AND f(x, y, z))

=⇒ (EXISTS y, z: f(y + z, y, z))
(EXISTS (x: T): TRUE) =⇒ TRUE

(FORALL (x: T): FALSE) =⇒ FALSE
The last two simplifications only happen when the type T is known to be nonempty.

Rewriting. The PVS simplifier uses conditional rewriting to simplify expressions with
respect to definitions and lemmas that have been installed by the user. A conditional
rewrite rule triggers only when the conditions simplify to TRUE. Some rewrite rules
such as recursive definition might loop if applied unconditionally. Therefore, if the
right-hand side expression of a recursive definition is a conditional expression, then
the top-level condition must simplify to TRUE or FALSE in order for the rewrite to
occur. This mix of decision procedures and rewriting means that context comes into
play in simplifying these conditions. Since the instantiable variables in a rewrite rule
can have type constraints, proof obligations are generated corresponding to these type
constraints on the actual instantiation for these variables. These proof obligations must
also be discharged by the simplifier. The type constraints on the instantiable variables
are therefore treated as conditions. Matching on the left-hand side of the rewrite rules
also uses decision procedures to, for example, match a term a with i + 3, where i is
a natural number, when it is possible to demonstrate that a is at least 3 in the given
context. Decision procedures can also be used to check if a pattern of the form f(x, x)
matches an instance of the form f(a, b) where a = b is known in the context. Pattern
matching is also lifted to the higher-order level through the use of Miller’s higher-order
patterns [Mil90] which turns out to be very useful for rewrite rules involving higher-
order operations such as map and reduce.

3 Rewriting and Inference Systems

We now present inference systems as an abstract framework for presenting and reason-
ing about inference procedures [SR02,Sha05,dMDS07,Sha09]. Inference systems can
be represented using rewriting logic. An inference system is a triple 〈Ψ,Λ,`〉 consist-
ing of a set Ψ of inference states, a mapping Λ from an inference state to a formula, and
a binary inference relation ` between inference states. For each formula φ, there must
be at least one state ψ such that Λ(ψ) = φ. There is a special unsatisfiable inference
state ⊥. Given an input formula, the inference system is used to construct a sequence
of logical states ψ0 ` . . . ` ⊥ where the input formula is represented by the first state.
The inference relation ` must be

1. Conservative: If ψ ` ψ′, then Λ(ψ) and Λ(ψ′) must be equisatisfiable.
2. Progressive: For any subset S of Ψ , there is a state ψ ∈ S such that there is no
ψ′ ∈ S where ψ ` ψ′.

3. Canonizing: If ψ ∈ Ψ is irreducible, that is, there is no ψ′ such that ψ ` ψ′, then
either ψ ≡ ⊥ or Λ(ψ) is satisfiable.



Res
K, k ∨ κ1, k ∨ κ2

K, k ∨ κ1, k ∨ κ2, κ1 ∨ κ2

κ1 ∨ κ2 6∈ K
κ1 ∨ κ2 is not tautological

Contrad
K

⊥ if p,¬p ∈ K for some p

Fig. 2. Inference System for Ordered Resolution

Inference systems are presented in the form of inference rules. For example, the
inference system for ordered resolution on a set of ordered clauses (deleting tautologies,
i.e., clauses containing a literal and its negation) is given in Figure 2.

In a number of cases, inference rules can be given as rewrite rules. In the case of
resolution, the rewrite rules operate on an inference state that is a set of clauses. One
rewrite rule adds a new clause obtained by resolving two clauses, and the other rewrite
rule detects a contradiction.

Inference systems can be given for a variety of decision procedures including SAT
and SMT solvers. These inference systems can also be used to construct satisfying
assignments when the input formulas are satisfiable, and proofs when the input formulas
are unsatisfiable. Theory solvers for theories such as equality, arithmetic, and arrays can
also be expressed as inference systems. While some of these require specialized data
structures like hash tables and linked pointer structures, it is possible to prototype such
solvers within a rewriting system like Maude.

4 A Kernel of Truth

Some applications, particularly safety-critical and security-critical ones, need the claims
made using complex inference tools to be certified. For inference, the expected standard
for certification is that of a proof. We have already noted that it is possible to construct
inference procedures that are proof generating. In many cases, the overhead of proof
generation is not significant, although the representation of these proofs can become
large. State-of-the-art inference tools are constantly being modified and improved, and
proof generation is an added burden. For example, in the case of the PVS simplifier
described in Section 2, we would have to combine proofs from many different sources.

We outline a lighter approach to certifying inference claims. In our approach, we use
a kernel proof checker as the reference standard. In our case, we use PVS to define a
proof checker for first-order logic with the axioms of ZFC. Such a proof checker can be
defined in about 500 lines of PVS. Though this proof checker is executable, we mostly
use it to demonstrate the existence of proofs that are, in the usual case, not explicitly
constructed. The point of the reference proof checker is to demonstrate the correctness
of other checkers. These checkers can range from reference implementations of infer-
ence procedures to those that check certificates for specific classes of problems. We
illustrate this with checkers for resolution proofs and certificates from rewriting.

The reference proof checker has some notable features. One, it uses one-sided se-
quents. This is mainly to reduce the size and complexity of the proof calculus. The
kernel itself could be used to justify the correctness of a two-sided sequent calculus.



The system we use is quite similar to the one given in Shoenfield [Sho67]. Second, it
uses two kinds of function and predicate symbols. Interpreted function and predicate
symbols are used for defined operations such as those for equality, set membership,
and arithmetic. Uninterpreted function and predicate symbols are used as schematic
operations. These can be substituted by lambda-expressions of the appropriate arity.
Such lambda-expressions do not have a first-class status in the logic, but are merely
used to instantiate the schematic operators. Schematic operators have several uses. They
can be used to introduce eigenvariables corresponding to the sequent rule for universal
quantification as schematic constants. Uninterpreted predicates of arity 0 can serve as
propositional atoms. Uninterpreted functions and predicate can also be used to capture
schematic axioms and theorems. For example, the comprehension axiom scheme of set
theory can be written as

∀y.∃z.∀x.(x ∈ z ⇐⇒ x ∈ y ∧ p(x)),

where p is a schematic predicate. Here, p can be replaced by a lambda-expression of
the form λw.A, that contains no free variables (but may contain schematic function and
predicate symbols) to yield ∀y.∃z.∀x.x ∈ z ⇐⇒ x ∈ y ∧ A[x/w]. Similarly, the
replacement axiom scheme can be written as

∀w.(∀x ∈ w.∃!y.q(x, y, w))⇒ ∃z.∀y.(y ∈ z ⇐⇒ ∃x ∈ w.q(x, y, w)),

where q is a schematic predicate.
With this proof checker, we can also define the concept of an LCF-style tactic. A

theorem is a sequent that has a proof. A tactic then is an operation that maps a conclu-
sion sequent ` ∆ to a list of premise sequents ` ∆1, . . . ,` ∆n such that the conclusion
is a theorem if the premise sequents are theorems. This concept of a tactic can be given
as a type in PVS.

The basic judgement is given by a one-sided sequent of the form ` A1, . . . , An.
We have a contraction rule that allows ` Γ to be derived from ` ∆ when ∆ ⊆ Γ .
The basic propositional connectives are negation and disjunction, and these are used to
define the other connectives. The propositional proof rules are shown in Figure 3 and
the quantifier rules are shown in Figure 4.

As noted earlier, the language admits schematic function and predicate symbols
that can be instantiated. For n-ary uninterpreted function symbol f , let ∆[λx.s/f ],
where x represents the sequence x1, . . . , xn, be the result of replacing each sub-
term f(t1, . . . , tn) in ∆ with s[t1/x1, . . . , tn/xn]. Similarly, for n-ary uninterpreted
predicate symbol p, let ∆[p ← λx.A] be the result of replacing each subformula
p(t1, . . . , tn) by A[t1/x1, . . . , tn/xn] while renaming bound variables in A as needed
to avoid variable capture. We then have a function instantiation rule that allows
` ∆[λx.s/f ] to be derived from ` ∆, and the predicate instantiation rule allows
` ∆[λx.s/f ] to be derived from ` ∆.

For equality, we have inference rules corresponding to reflexivity and congruence.
The rules for transitivity and symmetry can be derived from reflexivity and predicate
instantiation.



Ax ` A,¬A, ∆

¬¬ ` A, ∆

` ¬¬A, ∆

∨ ` A, B, ∆

` A ∨B, ∆

¬∨ ` ¬A, ∆ ` ¬B, ∆

` ¬(A ∨B), ∆

Cut
` A, ∆ ` ¬A, ∆

` ∆

Fig. 3. A Sequent Calculus for Propositional Logic

∃ ` A[t/x], ∆

` ∃x.A, ∆

¬∃ ` ¬A[c/x], ∆

¬∃x.A, ∆

Fig. 4. Sequent proof rules for quantification. The schematic constant c must not occur in ∆.

5 A Verified Checker for Rewriting and other Inference
Procedures

We now describe some ongoing work on building a certified checker for rewriting.
Here, we rely only on the first-order logic part of the kernel checker. A proof system
for certifying rewriting is given by Rosu, Eker, Lincoln, and Meseguer [RELM03].
We describe a checker for rewriting that we are currently verifying. A term is either a
variable or an n-ary function symbol, with 0 ≤ n, applied to a sequence of n terms.
The free variables vars(s) of a term s is the set of all the variables that occur in the
term. A path π is a a finite sequence of natural numbers. Given a term s and a path π,
the subterm s|π of s at π is defined as s itself, when π is empty, and as si|π′ , where
π ≡ i, π′ and s ≡ f(s1, . . . , sn). The result of replacing the subterm s|π by a term t
is represented by s|π←t. We restrict our attention to unconditional rewrite rules of the
form ∀x.l = r, where x is a sequence of distinct variables that contains all and only the
variables in vars(l) and vars(r) ⊆ vars(l). The rewriter takes a set of rewrite rules and
applies them to rewrite an expression e to e′. We represent the certificate as a sequence
of triples 〈τ1, . . . , τm〉, where each triple τi of the form 〈Ri, πi, σi〉 consists of a rewrite
rule Ri, a path πi, and a substitution σi. Such a sequence of triples is a valid certificate
for the claim e = e′ if there is a sequence of terms e0, . . . , em such that e ≡ e0 and
e′ ≡ em, and ei+1 ≡ ei|πi+1←σi+1(ri+1), where li+1 and ri+1 are the left-hand and
right-hand sides of the rewrite rule Ri+1 and ei|πi+1 ≡ σi+1(li+1) for 0 ≤ i < m.

The checker for such a certificate has to check the validity conditions above. We
define rwcheck(R, 〈τ1, . . . , τm〉, e, e′) to check that 〈τ1, . . . , τm〉 yields a sequence of
replacements from e to e′ using the rewrite rules in R. We then have to prove the



metatheorem that whenever rwcheck(R, 〈τ1, . . . , τm〉, e, e′) holds, there is a formal
proof of ` ¬R, e = e′, where ¬R is the formula-wise negation of each element of
R. Once this metatheorem is proved, there is no need to actually generate this proof.
For a rewrite step from ei to ei+1, the formal justification goes as follows. First, we es-
tablish the instantiation rule where we can derive ` σ(l = r) from ` ∀x.l = r, where σ
maps each variable in x is mapped to a ground term, i.e., a term with no free variables.
The proof of e = e′ then follows by applying congruence to ` σi+1(li+1 = ri+1) to
derive ` ei = ei+1, and then transitivity to establish ` e0 = em from the sequents
` ei = ei+1, for 0 ≤ i < m.

In the more general situation of proof development in first-order and higher-order
logic, rewriting can occur within the body of a quantification. The validity checker
for certificates requires a more powerful metatheorem that uses the equality theo-
rem [Sho67] that justifies the replacement of one term by a provably equal one within a
formula.

Other specialized proof calculi can be similarly justified using certificate formats
that are validated by verified checkers. For example, the proof system for resolution
can be justified as follows. We have to show that when a set of clauses K yields a
refutation, then the negation of the formula corresponding to K is provable. For some
applications, we have to represent the derivation of clauses and not just refutational
proofs. Each resolution step where a clause κ is derived from the clauses κ1 and κ2 is
represented by the proof of the sequent ` ¬κ1,¬κ2, κ. This sequent is easily proved
from Ax, ∨, and ¬∨ steps. A complete resolution refutation from a set of clauses K is
represented by the proof of the sequent ` ¬K. Such a proof is constructed from those
of the individual resolution inferences using the Cut rule. The resolution calculus is
used as a kernel for justifying a SAT solver as a verified checker.

In addition to certificates and proof formats, the KoT kernel can also be used as a
foundation for other logics. For example, a proof calculus for a modal logic or a higher-
order logic can be justified in terms of its set-theoretic semantics. Once this is done, we
can use the proof checker for the new logic as a kernel for other checkers. We plan to
use this to justify proof calculi for various higher-order logics (including PVS) as well
as modal, temporal, and program logics. We also plan to develop certificate checkers
for SAT and SMT solvers, model checkers, and program analyzers.

6 Conclusions

Modern implementations of inference procedures like rewriting and propositional and
theory satisfiability are extremely sophisticated and not easily amenable to formal veri-
fication. This makes it difficult to certify the results obtained by these procedures. It is
even more difficult to certify results that are obtained by a combination of these tools.
We address the challenge of certifying results from untrusted tools by relying on ver-
ified checkers that can be used to validate certificates generated by these tools. Our
Kernel of Truth approach takes a middle ground between proof generation, where the
untrusted tools are required to generate formal proofs, and verification, where only ver-
ified inference tools are used. Both these extreme cases are feasible within the KoT
framework, but we also allow the more practical alternative of verifying checkers that



use other logics or representations of certificates. Our approach is also similar to trans-
lation validation [PSS98] where each source-to-binary translation by a compiler is ver-
ified. These individual translations are often easily verified, whereas the verification of
an entire compiler is a monumental task [SC98]. The KoT approach similarly avoids
directly verifying inference procedures in favor of the checking the individual claims
made by them.

The idea of verifying the inference steps of PVS within PVS itself might seem cir-
cular and vacuous. However, this is the one instance where we exploit the availability of
explicit formal proofs to break the circularity. This is done by using the KoT framework
itself to generate the complete formal proof for the verification of the correctness of any
checkers. This proof can be checked by the kernel proof checker so that we need not
trust the inference procedures used by PVS.

As mentioned at the beginning, the work we have described is still at a very early
stage. We have defined the kernel proof checker for first-order logic described in Sec-
tion 4 and have used it to prove some basic metatheorems. In earlier work from 2007
with Marc Vaucher, we also verified a sophisticated SAT solver using PVS. With An-
drei Dan and Antoine Toubhans, we have developed a verified certificate checker for
the proof traces generated by PicoSAT [Bie08]. A similar verified checker has been de-
veloped by Darbari, Fischer, and Marques-Silva [DFMS10]. We are working toward
verified certificate checkers for rewriting, satisfiability modulo theories (SMT), and
simplifiers. We hope to eventually develop a range of certificate checkers so that in-
ference tools like PVS, Yices [DdM06], and SAL [dMOR+04] can be instrumented to
generate checkable certificates.

The approach of checking the results of a computation with a verified checker is not
restricted to inference tools. Result checking can be applied to a wide range of compu-
tations where there is a specific correctness claim associated with the output. Such an
approach has been already been advocated by Mehlhorn [Meh03] in what he calls the
Reliable Algorithmic Software Challenge. Generating efficiently checkable certificates
both for inference and non-inference procedures is itself an interesting challenge. At the
Workshop on Rewriting Logic and Applications, José Meseguer posed the challenge of
certifying that a unifier is the most general unifier. It is easy to certify that a substitution
is in fact a unifier, but it is often important to know that it is in fact the most general
one. There are many ways to approach such challenges. One approach is to verify a
unification algorithm[Pau84]. Another approach is to demonstrate that no generaliza-
tion of the unifier is a valid unifier. A third approach is for the unification procedure
to generate a trace that demonstrates how any solution to the unification problem can
be transformed into an instance of the unifier, but generating and checking such traces
is still a problem. A similar challenge arises with graph algorithms where we must
demonstrate that a path is indeed the shortest path or that a target vertex is unreachable.
In earlier work [Sha10], we showed how fixpoints can be used to construct efficient cer-
tificates for such graph search algorithms. The KoT project is a response to Mehlhorn’s
challenge for the specific case of inference procedures but we are also interested in ex-
tending it to a larger class of computations. Compared to the goal of verifying software,
the Kernel of Truth framework has the more limited ambition of checking computations
in a verifiable manner.
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