
'

&

$

%

Little Engines of Proof: Lecture 9

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/LEP.html

Computer Science Laboratory

SRI International

Menlo Park, CA

1

'

&

$

%

This lecture . . .

We show how to decide the uniform word problem for a

number of equality theories including

• Linear arithmetic

• Lists

• Propositional logic

• Sets

• Coproducts

• Finite Sequences, Bitvectors, Arrays, . . .

2

'

&

$

%

Recall: Word Problems

The word problem.

Given an equality theory T , the word problem for T is to

decide, for any two Σ terms a and b, whether or not

T |= a = b.

The uniform word problem. Given an equality theory T

over signature Σ, the uniform word problem for T is to

decide, for any finite set E of Σ-equations and Σ-equation

a = b, of whether or not T |= E ⇒ a = b.

Exercise. Give an example of a theory with an undecidable

WP. Give an example of a theory with decidable WP but

undecidable UWP.

In practice. For many theories, word problem and uniform

word problem are efficiently decidable.

3

'

&

$

%

Application: Compiler Validation

Problem. Prove equivalence of source and target program

Example.

1: y := 1 1: y := 1
2: if z = x*x*x 2: R1 := x * x
3: then y := x*x + y 3: R2 := R1 * x
4: endif 4: jmpNE(z, R2, 6)

5: y := R1 + 1
Verification condition.

y1 = 1 ∧ z2 = x0 ∗ x0 ∗ x0 ∧ y3 = x0 ∗ x0 + y1 ∧

y′
1

= 1∧R12 = x′
0
∗x′

0
∧R23 = R12 ∗x′

0
∧ z′

0
= R23 ∧ y′

5
= R12 +1∧

x0 = x′
0
∧ y0 = y′

0
∧ z0 = z′

0

⇒ y3 = y′
5

Word problem in machine arithmetic. But wait, ∗, + can be

considered to be uninterpreted . . .

Open. Handle large programs, algebraic properties of ops.

4

'

&

$

%

Equational Linear Arithmetic

Let Q (Z) be the structure of the rational (integer) numbers

with linear arithmetic and without the inequality predicates.

The signature of Q includes

• all rational numbers q as constants,

• the binary addition operator +,

• for each rational number q, a unary operator q ∗

multiplying its argument by q.

Z is a subsignature of Q and includes only integer constants

and addition.

Examples.

• Q |= 1/2 ∗ (x + 1/3 ∗ (y − 1/6)) = 1/6 ∗ y

• Z |= 3 ∗ x = 4 + 7 ∗ m1 ⇒ 3 ∗ x = 4 + 12 ∗ m2

5

'

&

$

%

Lists

Lists

ΣL = {cons(., .), car(.), cdr(.)}

Equational theory L of lists axiomatized by these (implicitly

universally quantified) equations

car(cons(x, y)) = x

cdr(cons(x, y)) = y

cons(car(x), cdr(x)) = x

Examples.

• L |= cons(car(x), y) = x

• L |= x = cons(u, v) ⇒ cons(car(x), y) = x

6

'

&

$

%

Canonizable Theories

A theory T is canonizable if there is a computable function

σ : T (Σ, X) → T (Σ, X) with

• T |= a = b iff σ(a) ≡ σ(b)

• vars(σ(a)) ⊆ vars(a)

• σ(b) ≡ b for every subterm b of σ(a).

for all a, b ∈ T (Σ, X).

A term a ∈ T (Σ, X) is said to be canonical if σ(b) ≡ b.

In particular, a canonizer σT for theory T solves the word

problem for T .

7

'

&

$

%

Examples for Canonizable Theories

Canonizer for linear arithmetic as an ordered sum of

monomials; for example, σQ(y + x + x) ≡ 2x + y.

Exercise. WP for Q is solvable by σQ.

ROBDDs as canonical forms for propositional logic

σL is obtained by orienting the list axioms L as rewrite rules
from left to right. Induces canonical list model.

L := {a ∈ T (ΣL, X)|σL(a) ≡ a}

L(cons(l1, l2)) := σL(cons(l1, l2))

L(car(l)) := σL(car(l))

L(cdr(l)) := σL(cdr(l))

Exercise Convince youself that L satisfies the list axioms.

An equational theory is canonizable if there is a

corresponding strongly normalizing rewrite system.

8

'

&

$

%

Equality Sets

An equality set E is of the form {a1 = b1, . . . , an = bn}

E is functional if a = b1, a = b2 ∈ E implies b1 ≡ b2

Functional equality sets: read equations left-to-right.

Operations on functional equality sets

Lookup E(a) :=







b : a = b ∈ E

a : otherwise

Apply: E[x] := E(x)

E[f(a1, . . . , an)] := E(f(E[a1], . . . , E[an]))

A solution set is a functional equality set of the form

{x1 = b1, . . . , xn = bn}

with xi 6∈ vars(bj) for 1 ≤ i, j ≤ n

9

'

&

$

%

Preservation

A variable assignment ρ′ extends ρ if

• dom(ρ) ⊆ dom(ρ′) and

• ρ(x) = ρ′(x) for all x ∈ dom(ρ)

Let E, E′ be equality sets; then: E′ T -preserves E if

• vars(E) ⊆ vars(E′)

• For any T -interpretation M, ρ such that M, ρ |= E there

is a ρ′ extending ρ such that M, ρ′ |= E′, and conversely

whenever M, ρ′ |= E′, there is a ρ extending ρ′ such that

M, ρ′ |= E.

In this case: T |= E ⇒ a = b iff T |= E ′ ⇒ a = b

10

'

&

$

%

Solvable Theories

A theory T is called solvable if there is a computable

function solve with

1. solve(a = b) = ⊥ iff a = b is T -unsatisfiable

2. Otherwise, solve(a = b) = S, where S is a (functional)

solution set such that

• dom(S) ⊆ vars(a = b)

• S T -preserves a = b

Notice that fresh variables, that is, variables never being

used before (gensym) might be introduced on right-hand

sides of solved forms.

The notion of freshness can be made more precise . . .

11

'

&

$

%

Integral Solver

Example:

solveZ (3 ∗ x + 5 ∗ y = 1) = {x = −3 + 5 ∗ k, y = 2 − 3 ∗ k}

where k is a fresh integral variable.

In general:

Solving a linear diophantine equation with nonzero, rational

coefficients ci, for i = 1, . . . , n with n ≥ 1.

c0 ∗ x0 + . . . cn ∗ xn = b (∗)

12

'

&

$

%

Integral Solver: Particular Solutions

The case n = 1 is trivial

Let n ≥ 2. Find, with the Euclidean GCD algorithm c′ and

integers d, e satisfying

c′ = (c0, c1) = c0 ∗ d + c1 ∗ e

Now solve (in n variables)

c′ ∗ x + c2 ∗ x2 + . . . + cn ∗ xn = b (∗∗)

If equation has no integral solution, then neither has (∗).

Otherwise, if x, x2, . . . , xn is an integral solution of (∗∗) ,

then d ∗ x, e ∗ x, x2, . . . , xn gives an integral solution of (∗).

13

'

&

$

%

Integral Solver: General Solutions

Compute the general solution of a linear Diophantine

equation with coefficients (c0 . . . cn), the gcd d of (c0 . . . cn),

and a particular solution (p0 . . . pn).

In the case of four coeffients, compute, for example

(p0 p1 p2 p3)

+ k/d ∗ (c1 − c0 0 0)

+ l/d ∗ (0 c2 − c1 0)

+ m/d ∗ (0 0 c3 − c2)

Here, [k], [l], and [m] are fresh variables.

Exercise 1 Demonstrate that this yields indeed a solver for

Z. Design a solver for Z/(3).

14

'

&

$

%

Deciding the UWP for Shostak Theories

A canonizable and solvable theory is also called a Shostak

theory .

¿From now on, let T be a Shostak theory with canonizer

σT (.) and solver solveT .

We consider the UWP T |= E ⇒ a = b from a solution of the

WP T |= a = b.

Template for decision procedure

1. Build a solution set S from E using a finite number of

T -preserving transformations.

2. Compute canonical forms a′ and b′ for a and b in S.

3. If a′ ≡ b′ then Yes else No.

15

'

&

$

%

Deciding a Shostak Theory (Cont.)

Canonization.

S〈〈a〉〉 :=σT (S[a])

Fusion.

S . R := {a = R〈〈b〉〉 | a = b ∈ S}

Composition.

S ◦ ⊥ := ⊥

⊥ ◦ S := ⊥

S ◦ R := R ∪ (S . R)

Fusion can be implemented using so-called use-lists, which

index occurrences of right-hand side variables.

Exercise. For solved forms, S ◦ S = S.

16

'

&

$

%

Deciding a Shostak Theory (Cont.)

Configuration (S, E) consists of a pair consisting of the

unprocessed equalities E and solution sets S.

Building a solution set

{a = b}∪E, S

E, S ◦ T
assert

with T := solve(S〈〈a〉〉 = S〈〈b〉〉)

Termination is immediate.

Starting with (E, ∅), let (∅, S ′) be a corresponding irreducible

configuration, then:

T |= E ⇒ a = b

iff

either S′ = ⊥ or S′〈〈a〉〉 ≡ S′〈〈b〉〉

17

'

&

$

%

Example

Z |= (3 ∗ x = 4 + 7 ∗ m1 ∧ 3 ∗ x = 4 + 12 ∗ m2) ⇒ 0 = 1

({3 ∗ x = 4 + 7 ∗ m1, 3 ∗ x = 4 + 12 ∗ m2},

{x = x, m1 = m1, m2 = m2}
︸ ︷︷ ︸

S0

)

(assert) ; ({3 ∗ x = 4 + 12 ∗ m2},

{x = −8 + 7 ∗ k, m1 = −4 + 3 ∗ k, m2 = m2}
︸ ︷︷ ︸

S1

)

(assert) ; ⊥

since S1〈〈3 ∗ x〉〉 ≡ −24 + 21 ∗ k, S2〈〈4 + 12 ∗ m2〉〉 ≡ 4 + 12 ∗ m2

and solveZ (21 ∗ k − 12 ∗ m = 28) yields ⊥.

18

'

&

$

%

Soundness and Completeness

• S′ T -preserves E, since each of the steps canonization,

solving, composition, and assert is preserving.

Exercise. Spell out the details.

• Soundness of canonizer. If σT (S′[a]) ≡ σT (S′[b]), then

M, ρ′ |= S′ ⇒ a = S′[a] = σT (S′[a]) = σT (S′[b]) = S′[b] = b

Thus, M, ρ |= E ⇒ a = b.

• Completeness of canonizer. Construct a model M, θ

such that M, θ |= E but M, θ 6|= a = b.

19

'

&

$

%

Soundness and Completeness (Cont.)

When σT (S′[a]) 6≡ σT (S′[b])

• there is a T -model M, θ s.t M, θ 6|= S ′[a] = S′[b]

• wlog x ≡ S′(x) for variables x ∈ dom(θ).

• Extend θ to an assignment θ′ s.t

θ′(x) :=M[[S′(x)]]θ if x 6= S′(x)

•

M, θ′ |= S′

M, θ′ |= a = S′[a], S′[b] = b

• Since S′ T -preserves (E, ∅), M, θ′ |= E but M, θ′ 6|= a = b.

20

'

&

$

%

Adding Disequalities

Configuration (E, D, S) consists of triples with unprocessed

equalities E, disequalities D, and solution sets S.

{a = b}∪E, D, S

E, D, S ◦ T
assert with T := solve(S〈〈a〉〉 = S〈〈b〉〉)

E, {a 6= b}∪D, S

E, S
bot if S〈〈a〉〉 ≡ S〈〈b〉〉

with T := solve(S〈〈a〉〉 = S〈〈b〉〉)

Starting with (E, D, ∅), let (∅, S ′) be a corresponding

irreducible configuration, then: T |= E, D ⇒ false iff S ′ = ⊥.

Normalizing to variable dsiequalities D might be more

efficient as cnconsistency test reduces to S(a) ≡ S(b).

21

'

&

$

%

Boolean Solver (Cont.)

Signature. ΣB := {true, false, ite(., ., .)}

Canonizer σB returns, e.g., a binary decision diagrams

(ordering on variables needed)

Solver. process a ⇐⇒ b instead of a = b

true, S

S
Triv

false, S

⊥
Bot

ite(x, p, n), S

p ∨ n, S ◦ {x = (p ∧ (n ⇒ δ))}
Slv

All terms assumed to be in canonical form σB

These rules induce Boolean solver solveB.

22

'

&

$

%

Boolean Solver (Cont.)

Termination immediate as the number of variables in

processed term is decreasing.

Correctness is based on the equivalence

ite(x, p, n) ⇐⇒ (p ∨ n) ∧ ∃δ. x = (p ∧ (n ⇒ δ))

23

'

&

$

%

Example for Boolean Solver

Solve x ∧ y = ¬x.

This is represented by the ROBDD

ite(x, ite(y, false, true), false)

Derivation.

(ite(x, ite(y, false, true), false), {x = x, y = y})

(ite); (ite(y, false, true), {x = true, y = y})

(ite); (true, {x = true, y = false})

(true); {x = true, y = false}

24

