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We show how to decide the uniform word problem for a
number of equality theories including

This lecture ... \

e Linear arithmetic

Lists

Propositional logic

e Sets

e Coproducts

/ Recall: Word Problems \

The word problem.

Given an equality theory 7, the word problem for 7 is to
decide, for any two ¥ terms a and b, whether or not
TEa=0.

The uniform word problem. Given an equality theory 7
over signature X, the uniform word problem for 7 is to
decide, for any finite set E of X-equations and X-equation
a =b, of whether or not T EE = a=b.

Exercise. Give an example of a theory with an undecidable
WP. Give an example of a theory with decidable WP but
undecidable UWP.

In practice. For many theories, word problem and uniform

e Finite Sequences, Bitvectors, Arrays, ...

\vvord problem are efficiently decidable. /

/ Application: Compiler Validation \

Problem. Prove equivalence of source and target program

Example.

1. y:=1 1: y:=1

2:  if z = xkx*x 2: Rl :=x * x

3: then y := xxx + y 3! R2 := Rl * x

4: endif 4: jmpNE(z, R2, 6)
5. y :=R1 +1

Verification condition.

Y1 =1ANzo=xpgxx0*xx0 ANYs =To*xx0+y1 N\

Yy =1ARly = z(*xx(; AR23 = Rlaxx( A z), = R23 ANyl = Rlo+ 1A
o =2( AYo = Yo A z0 = 2,

= Y3 = Y5

Word problem in machine arithmetic. But wait, %, + can be
considered to be uninterpreted . ..

Qpen. Handle large programs, algebraic properties of ops./




/ Equational Linear Arithmetic \

Let Q (Z) be the structure of the rational (integer) numbers
with linear arithmetic and without the inequality predicates.

The signature of Q includes
e all rational numbers ¢ as constants,
e the binary addition operator +,

e for each rational number ¢, a unary operator ¢ * _
multiplying its argument by q.

Z is a subsignature of Q and includes only integer constants
and addition.

Examples.
e QF1/2%(z+1/3%(y—1/6)) =1/6xy
\o ZE3xx=4+T7xm; =3xx=4+12%xmy /

/ Lists \

Lists
Y, = {cons(.,.), car(.), cdr(.)}

Equational theory L of lists axiomatized by these (implicitly
universally quantified) equations

car(cons(z,y)) = =
cdr(cons(z,y)) = y
cons(car(x), cdr(z)) = =

Examples.

o L cons(car(x),y) ==

/ Canonizable Theories \

A theory 7 is canonizable if there is a computable function
oc: T(X,X)—T(X,X) with

e TEa=0biff o(a) =0(b)
e vars(o(a)) C vars(a)
e o(b) =b for every subterm b of o(a).

for all a,be T(X, X).
A term a € T(X, X) is said to be canonical if o(b) = b.

In particular, a canonizer o7 for theory 7T solves the word

o L Ex=cons(u,v) = cons(car(z),y) ==

\problem for 7. /

/ Examples for Canonizable Theories \
Canonizer for linear arithmetic as an ordered sum of
monomials; for example, og(y +z + ) =2z +y.

Exercise. WP for Q is solvable by Q-

ROBDDs as canonical forms for propositional logic

or is obtained by orienting the list axioms L as rewrite rules
from left to right. Induces canonical list model.

L = {a€T(ZL,X)log(a) =a}
L(cons(l1,l2)) = op(cons(ly,l2))
L(car(l)) = op(car(l))
L(cdr(l)) = og(cdr(l))

Exercise Convince youself that £ satisfies the list axioms.

An equational theory is canonizable if there is a
\corresponding strongly normalizing rewrite system. /




/ Equality Sets \

, Ap = bn}

E is functional if a =0by,a =0y, € E implies by = by

An equality set E is of the form {a; = by,...

Functional equality sets: read equations left-to-right.

Operations on functional equality sets

b : a=bek
Lookup E(a):=
a . otherwise
Apply: E[zx] = E(x)
E[f(alv-”van)] = E(f(E[aﬂ,,E[an}))

A solution set is a functional equality set of the form

{$1:b1,...

\With x; & vars(b;) for 1 <i,j <n /

y Ip = bn}

/ Preservation \
A variable assignment p’ extends p if
e dom(p) C dom(p’) and
e p(x) = p'(x) for all x € dom(p)
Let E, E' be equality sets; then: E’' T-preserves E if
e vars(E) C vars(E'")
e For any 7-interpretation M, p such that M,p = E there
is a p/ extending p such that M, p’ = E’, and conversely
whenever M, p' = E’, there is a p extending p’ such that
M,p = E.
chiscase:leEza:bifFT#E’:a:b /
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/ Solvable Theories \

A theory 7 is called solvable if there is a computable
function solve with

1. solve(a=0b) =1 iff a=0bis T-unsatisfiable
2. Otherwise, solve(a =b) =S, where S is a (functional)
solution set such that
o dom(S) C vars(a =10)
e S T-preserves a =1b
Notice that fresh variables, that is, variables never being

used before (gensym) might be introduced on right-hand
sides of solved forms.

\The notion of freshness can be made more precise . .. /

4 )

Integral Solver

Example:
solvez(3xx+5xy=1)={r=-3+5*xk,y=2-3xk}

where k is a fresh integral variable.

In general:
Solving a linear diophantine equation with nonzero, rational
coefficients ¢;, for e =1,...,n with n > 1.

co*xxTo+...cn*Ty, = b (%)

\_ /
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Integral Solver: Particular Solutions

The case n =1 is trivial

Let n > 2. Find, with the Euclidean GCD algorithm ¢ and
integers d, e satisfying

d = (co,c1) =co*xd+cy*e
Now solve (in n variables)
/
cxx+co*xro+...+c, %, = b (k)

If equation has no integral solution, then neither has (x).
Otherwise, if z,z9,...,2, is an integral solution of (xx) ,
then d*x,e*x,x2,...,z, gives an integral solution of (x).

\_ /

/ Integral Solver: General Solutions \

Compute the general solution of a linear Diophantine
equation with coefficients (cy...c,), the gcd d of (co...cp),
and a particular solution (pg...py).

In the case of four coeffients, compute, for example

(po 1 P2 p3)
+ k/d*(c1 —co 00)
+ I/dx(0ca —c1 0)
+ m/d*(00c3 —c2)

Here, [K], [I], and [m] are fresh variables.

Exercise 1 Demonstrate that this yields indeed a solver for

Z. Design a solver for Z/(3). /
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/ Deciding the UWP for Shostak Theories \
A canonizable and solvable theory is also called a Shostak
theory.

iFrom now on, let 7 be a Shostak theory with canonizer
o7 (.) and solver solve.

We consider the UWP 7 = E = a = b from a solution of the
WP 7 =a=b.

Template for decision procedure

1. Build a solution set S from E using a finite number of
T-preserving transformations.

2. Compute canonical forms a’ and b for a and b in S.

3. If ' =V then Yes else No.

\_ /

/ Deciding a Shostak Theory (Cont.) \

Canonization.
S{a)) := o (S[al)

Fusion.
S R:={a=R{b) | a=be S}

Composition.

Sol = L
loS = L
SoR = R U (SpR)

Fusion can be implemented using so-called use-lists, which
index occurrences of right-hand side variables.

\Exercise. For solved forms, SoS = S. /
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/ Deciding a Shostak Theory (Cont.) \

Configuration (S, E) consists of a pair consisting of the
unprocessed equalities E and solution sets S.

Building a solution set

{a =b}UE, S
E, SoT

with T := solve(S{{a)) = S{b)))

Termination is immediate.

assert

Starting with (E,0), let (§,S’) be a corresponding irreducible
configuration, then:
TEE=a=b
iff

\ either S’ = L or S§'{(a)) = S"{(b) /

4 )

Example
ZEQBxrx=44+T7+«miA3xx=4+12xmy)=0=1

({3xx=4+T%mq,3%xx=44+12xmy},

{ =2,m1 = mq1,ma =ma})

So
({32 =4+4+12%xma},

{r=-8+4+7xk,my =—4+43xk,my=ma})

(assert) ~

S1
(assert) ~ L

since S1{(3xx) =—24+21xk, Sol(4+12xmo)) =4+ 12 % mo
and solve z(21 x k — 12+ m = 28) yields L.

\_ /
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Soundness and Completeness

e S’ T-preserves E, since each of the steps canonization,
solving, composition, and assert is preserving.

Exercise. Spell out the details.
e Soundness of canonizer. If o (S'[a]) = o (5'[b]), then
M, p' S = a= 5 = o7 (5a]) = o (S']) = S'[b] =

Thus, M,pE E = a=b.

e Completeness of canonizer. Construct a model M, 0
such that M,0 = E but M,0 j=a =b.

/
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Soundness and Completeness (Cont.) \
When o (5[a]) # o7 (S'[b])
e there is a 7-model M, 6 s.t M, = S'[a] = S'[b]
e wlog x = S'(z) for variables x € dom(6).
e Extend # to an assignment ¢’ s.t
0'(z) == M[S"(x)]0 if x # 5" (x)
o
M0 =S
M0 = a=5a], S'b=0
e Since S’ T-preserves (E,0), M,0' = E but M,0" }a=b.
20



/ Adding Disequalities

Configuration (E, D, S) consists of triples with unprocessed
equalities F, disequalities D, and solution sets S.

a = y S i
! E,Ig,ui/oDT assert with T := solve(S{(a)) = S{b)))
E,{a 7;71)};1)’ Shot if S{(a) = S(b))

with T := solve(S{(a)) = S{b)))

Starting with (E, D, ), let (#,S’) be a corresponding
irreducible configuration, then: 7 |= E, D = false iff S’ = L.

Normalizing to variable dsiequalities D might be more
\efficient as cnconsistency test reduces to S(a) = S(b).

~
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/ Boolean Solver (Cont.)

Signature. X := {true, false, ite(., ., .)}

Canonizer op returns, e.g., a binary decision diagrams
(ordering on variables needed)

Solver. process a < b instead of a =15

true, S
Triv

false, SB
1
ite(z, p,n), S
pVn, So{z=(pA(n=09))}

ot

Sl

All terms assumed to be in canonical form op

\These rules induce Boolean solver solveB. /
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Boolean Solver (Cont.)

Termination immediate as the number of variables in
processed term is decreasing.

Correctness is based on the equivalence

ite(r, p,n) <= (pVn)ATd z=(pAn=17J)
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Example for Boolean Solver

Solve x Ay = —x.

This is represented by the ROBDD

ite(z, ite(y, false, true), false)

Derivation.
(ite(x, ite(y, false, true), false),{x =z, y=1y})

(ite)~ (ite(y, false, true), {x = true, y=y})
(ite)~ (true, {x = true, y = false})

(true)~  {x = true, y = false}
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