Little Engines of Proof: Lecture 9

N. Shankar, L. de Moura, H. Ruess, A. Tiwari shankar@csl.sri.com URL: http://www.csl.sri.com/~shankar/LEP.html

> Computer Science Laboratory SRI International Menlo Park, CA

Recall: Word Problems

The word problem.

Given an equality theory \mathcal{T} , the word problem for \mathcal{T} is to decide, for any two Σ terms a and b, whether or not $\mathcal{T} \models a = b$.

The uniform word problem. Given an equality theory \mathcal{T} over signature Σ , the uniform word problem for \mathcal{T} is to decide, for any finite set E of Σ -equations and Σ -equation a = b, of whether or not $\mathcal{T} \models E \Rightarrow a = b$.

Exercise. Give an example of a theory with an undecidable WP. Give an example of a theory with decidable WP but undecidable UWP.

In practice. For many theories, word problem and uniform word problem are efficiently decidable.

1

This lecture ...

We show how to decide the *uniform word problem* for a number of equality theories including

- Linear arithmetic
- Lists
- Propositional logic
- Sets
- Coproducts
- Finite Sequences, Bitvectors, Arrays, ...

Application: Compiler ValidationProblem. Prove equivalence of source and target programExample.1:y := 11:y := 1

2: if z = x*x*x 2: R1 := x * x 3: then y := x*x + y 3: R2 := R1 * x 4: endif 4: jmpNE(z, R2, 6) 5: y := R1 + 1

Verification condition.

 $y_{1} = 1 \land z_{2} = x_{0} * x_{0} * x_{0} \land y_{3} = x_{0} * x_{0} + y_{1} \land$ $y'_{1} = 1 \land R1_{2} = x'_{0} * x'_{0} \land R2_{3} = R1_{2} * x'_{0} \land z'_{0} = R2_{3} \land y'_{5} = R1_{2} + 1 \land$ $x_{0} = x'_{0} \land y_{0} = y'_{0} \land z_{0} = z'_{0}$ $\Rightarrow y_{3} = y'_{5}$

Word problem in machine arithmetic. But wait, *, + can be considered to be uninterpreted ...

Open. Handle large programs, algebraic properties of ops.

3

Equational Linear Arithmetic

Let $\mathcal{Q}(\mathcal{Z})$ be the structure of the rational (integer) numbers with linear arithmetic and without the inequality predicates.

The signature of Q includes

- all rational numbers q as constants,
- the binary addition operator +.
- for each rational number q, a unary operator q *multiplying its argument by q.

 \mathcal{Z} is a subsignature of \mathcal{Q} and includes only integer constants and addition.

Examples.

- $\mathcal{Q} \models 1/2 * (x + 1/3 * (y 1/6)) = 1/6 * y$
- $\mathcal{Z} \models 3 * x = 4 + 7 * m_1 \Rightarrow 3 * x = 4 + 12 * m_2$

5

Canonizable Theories

A theory \mathcal{T} is canonizable if there is a computable function $\sigma: T(\Sigma, X) \to T(\Sigma, X)$ with

- $\mathcal{T} \models a = b$ iff $\sigma(a) \equiv \sigma(b)$
- $vars(\sigma(a)) \subseteq vars(a)$
- $\sigma(b) \equiv b$ for every subterm b of $\sigma(a)$.

for all $a, b \in T(\Sigma, X)$.

A term $a \in T(\Sigma, X)$ is said to be canonical if $\sigma(b) \equiv b$.

In particular, a canonizer $\sigma_{\mathcal{T}}$ for theory \mathcal{T} solves the word problem for \mathcal{T} .

Examples for Canonizable Theories

Canonizer for linear arithmetic as an ordered sum of *monomials*; for example, $\sigma_{\mathcal{O}}(y + x + x) \equiv 2x + y$.

Exercise. WP for Q is solvable by σ_Q .

ROBDDs as canonical forms for propositional logic

 σ_{ℓ} is obtained by orienting the list axioms \mathcal{L} as rewrite rules from left to right. Induces canonical list model.

> $\mathcal{L} := \{a \in T(\Sigma_L, X) | \sigma_L(a) \equiv a\}$ $\mathcal{L}(cons(l_1, l_2)) := \sigma_{\mathcal{L}}(cons(l_1, l_2))$ $\mathcal{L}(car(l)) := \sigma_{\mathcal{L}}(car(l))$ $\mathcal{L}(cdr(l)) := \sigma_{\mathcal{L}}(cdr(l))$

Exercise Convince youself that \mathcal{L} satisfies the list axioms.

An equational theory is canonizable if there is a corresponding strongly normalizing rewrite system.

Lists

Lists

$$\Sigma_L = \{ cons(.,.), car(.), cdr(.) \}$$

Equational theory \mathcal{L} of lists axiomatized by these (implicitly universally quantified) equations

$$car(cons(x, y)) = x$$
$$cdr(cons(x, y)) = y$$
$$cons(car(x), cdr(x)) = x$$

Examples.

- $\mathcal{L} \models cons(car(x), y) = x$
- $\mathcal{L} \models x = cons(u, v) \Rightarrow cons(car(x), y) = x$

7

Equality Sets

An equality set *E* is of the form $\{a_1 = b_1, \dots, a_n = b_n\}$ *E* is functional if $a = b_1, a = b_2 \in E$ implies $b_1 \equiv b_2$ Functional equality sets: read equations left-to-right. **Operations** on functional equality sets Lookup $E(a) := \begin{cases} b : a = b \in E \\ a : \text{ otherwise} \end{cases}$ Apply: $E[x] := E(x) \\ E[f(a_1, \dots, a_n)] := E(f(E[a_1], \dots, E[a_n]))$ A solution set is a functional equality set of the form $\{x_1 = b_1, \dots, x_n = b_n\}$ with $x_i \notin vars(b_j)$ for $1 \le i, j \le n$

Solvable Theories

A theory $\ensuremath{\mathcal{T}}$ is called solvable if there is a computable function solve with

- 1. $solve(a = b) = \bot$ iff a = b is *T*-unsatisfiable
- 2. Otherwise, solve(a = b) = S, where S is a (functional) solution set such that
 - $dom(S) \subseteq vars(a = b)$
 - $S \mathcal{T}$ -preserves a = b

Notice that fresh variables, that is, variables never being used before (gensym) might be introduced on right-hand sides of solved forms.

The notion of freshness can be made more precise

9

Preservation

A variable assignment ρ' extends ρ if

- $dom(\rho) \subseteq dom(\rho')$ and
- $\rho(x) = \rho'(x)$ for all $x \in dom(\rho)$
- Let E, E' be equality sets; then: $E' \mathcal{T}$ -preserves E if
 - $vars(E) \subseteq vars(E')$
 - For any \mathcal{T} -interpretation \mathcal{M}, ρ such that $\mathcal{M}, \rho \models E$ there is a ρ' extending ρ such that $\mathcal{M}, \rho' \models E'$, and conversely whenever $\mathcal{M}, \rho' \models E'$, there is a ρ extending ρ' such that $\mathcal{M}, \rho' \models E$.

In this case: $\mathcal{T} \models E \Rightarrow a = b$ iff $\mathcal{T} \models E' \Rightarrow a = b$

Integral Solver

Example:

$$solve_{\mathcal{Z}}(3 * x + 5 * y = 1) = \{x = -3 + 5 * k, y = 2 - 3 * k\}$$

where k is a *fresh* integral variable.

In general:

Solving a linear diophantine equation with nonzero, rational coefficients c_i , for i = 1, ..., n with $n \ge 1$.

$$c_0 * x_0 + \dots + c_n * x_n = b \qquad (*)$$

11

Integral Solver: Particular Solutions

The case n = 1 is trivial

Let $n \geq 2$. Find, with the Euclidean GCD algorithm c' and integers d, e satisfying

$$c' = (c_0, c_1) = c_0 * d + c_1 * e_0$$

Now solve (in n variables)

 $c' * x + c_2 * x_2 + \ldots + c_n * x_n = b \qquad (**)$

If equation has no integral solution, then neither has (*). Otherwise, if x, x_2, \ldots, x_n is an integral solution of (**), then $d * x, e * x, x_2, \ldots, x_n$ gives an integral solution of (*).

13

Integral Solver: General Solutions

Compute the general solution of a linear Diophantine equation with coefficients $(c_0 \ldots c_n)$, the gcd d of $(c_0 \ldots c_n)$, and a particular solution $(p_0 \ldots p_n)$.

In the case of four coeffients, compute, for example

$$(p_0 \ p_1 \ p_2 \ p_3) + k/d * (c_1 \ -c_0 \ 0 \ 0) + l/d * (0 \ c_2 \ -c_1 \ 0) + m/d * (0 \ 0 \ c_3 \ -c_2)$$

Here, [k], [l], and [m] are fresh variables.

Exercise 1 Demonstrate that this yields indeed a solver for \mathcal{Z} . Design a solver for $\mathcal{Z}/(3)$.

Deciding the UWP for Shostak Theories

A *canonizable* and *solvable* theory is also called a *Shostak theory*.

¿From now on, let \mathcal{T} be a *Shostak theory* with canonizer $\sigma_{\mathcal{T}}(.)$ and solver $solve_{\mathcal{T}}$.

We consider the UWP $\mathcal{T} \models E \Rightarrow a = b$ from a solution of the WP $\mathcal{T} \models a = b$.

Template for decision procedure

- 1. Build a solution set S from E using a finite number of \mathcal{T} -preserving transformations.
- 2. Compute canonical forms a' and b' for a and b in S.
- 3. If $a' \equiv b'$ then Yes else No.

Deciding a Shostak Theory (Cont.) Canonization. $S\langle\langle a \rangle\rangle := \sigma_T(S[a])$ Fusion. $S \triangleright R := \{a = R\langle\langle b \rangle\rangle \mid a = b \in S\}$ Composition. $S \circ \bot := \bot$ $\bot \circ S := \bot$ $S \circ R := R \cup (S \triangleright R)$ Fusion can be implemented using so-called *use*-lists, which index occurrences of right-hand side variables.

Exercise. For solved forms, $S \circ S = S$.

Deciding a Shostak Theory (Cont.)

Configuration (S, E) consists of a pair consisting of the unprocessed equalities E and solution sets S.

Building a solution set

$$\frac{\{a=b\}\cup E, S}{E, S \circ T} assert$$

with $T := solve(S\langle\!\langle a \rangle\!\rangle = S\langle\!\langle b \rangle\!\rangle)$

Termination is immediate.

Starting with (E, \emptyset) , let (\emptyset, S') be a corresponding irreducible configuration, then:

$$\begin{split} \mathcal{T} \models E \Rightarrow a = b \\ \text{iff} \\ \text{either } S' = \bot \text{ or } S' \langle\!\langle a \rangle\!\rangle \equiv S' \langle\!\langle b \rangle\!\rangle \end{split}$$

17

 $\begin{array}{l} \textbf{Example} \\ \mathcal{Z} \models (3 * x = 4 + 7 * m_1 \land 3 * x = 4 + 12 * m_2) \Rightarrow 0 = 1 \\ & \quad (\{3 * x = 4 + 7 * m_1, 3 * x = 4 + 12 * m_2\}, \\ & \quad \underbrace{\{x = x, m_1 = m_1, m_2 = m_2\})}_{S_0} \\ \textbf{(assert)} \rightsquigarrow \quad (\{3 * x = 4 + 12 * m_2\}, \\ & \quad \underbrace{\{x = -8 + 7 * k, m_1 = -4 + 3 * k, m_2 = m_2\})}_{S_1} \\ \textbf{(assert)} \rightsquigarrow \quad \bot \\ \textbf{since } S_1 \langle\!\langle 3 * x \rangle\!\rangle \equiv -24 + 21 * k, \ S_2 \langle\!\langle 4 + 12 * m_2 \rangle\!\rangle \equiv 4 + 12 * m_2 \\ \textbf{and } solve_{\mathcal{Z}}(21 * k - 12 * m = 28) \text{ yields } \bot. \end{array}$

Soundness and Completeness

- S' T-preserves E, since each of the steps canonization, solving, composition, and assert is preserving.
 Exercise. Spell out the details.
- Soundness of canonizer. If $\sigma_{\mathcal{T}}(S'[a]) \equiv \sigma_{\mathcal{T}}(S'[b])$, then

 $\mathcal{M}, \rho' \models S' \Rightarrow a = S'[a] = \sigma_{\mathcal{T}}(S'[a]) = \sigma_{\mathcal{T}}(S'[b]) = S'[b] = b$

Thus, $\mathcal{M}, \rho \models E \Rightarrow a = b$.

• Completeness of canonizer. Construct a model \mathcal{M} , θ such that $\mathcal{M}, \theta \models E$ but $\mathcal{M}, \theta \not\models a = b$.

19

Soundness and Completeness (Cont.) When $\sigma_T(S'[a]) \not\equiv \sigma_T(S'[b])$ • there is a \mathcal{T} -model \mathcal{M} , θ s.t \mathcal{M} , $\theta \not\models S'[a] = S'[b]$ • wlog $x \equiv S'(x)$ for variables $x \in dom(\theta)$. • Extend θ to an assignment θ' s.t $\theta'(x) := \mathcal{M}[S'(x)]\theta$ if $x \neq S'(x)$ • $\mathcal{M}, \theta' \models S'$ $\mathcal{M}, \theta' \models a = S'[a], S'[b] = b$ • Since $S' \mathcal{T}$ -preserves $(E, \emptyset), \mathcal{M}, \theta' \models E$ but $\mathcal{M}, \theta' \not\models a = b$.

Adding Disequalities

Configuration (E, D, S) consists of triples with unprocessed equalities E, disequalities D, and solution sets S.

$$\begin{split} \frac{\{a=b\}\cup E, D, \ S}{E, D, \ S \circ T} & \text{with } T := solve(S\langle\!\langle a \rangle\!\rangle = S\langle\!\langle b \rangle\!\rangle) \\ \\ \frac{E, \{a \neq b\} \cup D, \ S}{E, \ S} & \text{bot} & \text{if } S\langle\!\langle a \rangle\!\rangle \equiv S\langle\!\langle b \rangle\!\rangle \end{split}$$

with $T := solve(S\langle\!\langle a \rangle\!\rangle = S\langle\!\langle b \rangle\!\rangle)$

Starting with (E, D, \emptyset) , let (\emptyset, S') be a corresponding irreducible configuration, then: $\mathcal{T} \models E, D \Rightarrow false$ iff $S' = \bot$. Normalizing to variable dsiegualities D might be more

efficient as cnconsistency test reduces to $S(a) \equiv S(b)$.

21

Boolean Solver (Cont.) Signature. $\Sigma_{\mathcal{B}} := \{true, false, ite(., ., .)\}$ Canonizer $\sigma_{\mathcal{B}}$ returns, e.g., a binary decision diagrams (ordering on variables needed) Solver. process $a \iff b$ instead of a = b $\frac{true, S}{S} Triv$ $\frac{false, S}{L} Bot$ $\frac{ite(x, p, n), S}{p \lor n, S \circ \{x = (p \land (n \Rightarrow \delta))\}} Slv$

All terms assumed to be in canonical form $\sigma_{\mathcal{B}}$

These rules induce Boolean solver $solve_{\mathcal{B}}$.

Boolean Solver (Cont.)

Termination immediate as the number of variables in processed term is decreasing.

Correctness is based on the equivalence

$$ite(x, p, n) \iff (p \lor n) \land \exists \delta. \ x = (p \land (n \Rightarrow \delta))$$

23

Example for Boolean Solver Solve $x \land y = \neg x$. This is represented by the ROBDD ite(x, ite(y, false, true), false)Derivation. $(ite(x, ite(y, false, true), false), \{x = x, y = y\})$ (ite) \rightarrow $(ite(y, false, true), \{x = true, y = y\})$ (ite) \rightarrow $(true, \{x = true, y = false\})$ (true) \rightarrow $\{x = true, y = false\}$