Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari shankar@csl.sri.com URL: http://www.csl.sri.com/~shankar/LEP.html

> Computer Science Laboratory SRI International Menlo Park, CA

A Note About Equational Theories

E: set of equations (ground or nonground) $T(\Sigma)$: set of all ground terms over Σ $T(\Sigma)/\leftrightarrow_E^*$: equivalence classes modulo \leftrightarrow_E^* Initial Model of *E*: $(\frac{T(\Sigma)}{\leftrightarrow_E^*}, I)$ s.t. $I(f([s_1], \dots, [s_k]) = [fs_1 \dots s_k]$ $E \models (s = t)$ iff $(\frac{T(\Sigma)}{\leftrightarrow_E^*}, I) \models s = t$ iff $E \vdash s = t$ Satisfiability procedure rules: enable to compute over the initial model

Completeness: The final state can be used to read off the initial model

1

In Today's Lecture

- I Equality over constants, no boolean structure:
- II Equality over constants, with boolean structure
- III Equality over ground terms, no boolean structure: Special Strategies
- IV Equality over ground terms, with boolean structure
- V Equality over ground terms, with MORE "special" function symbols

III. Abstract Congruence Closure: Strategies

Some popular congruence closure algorithms are

- Downey-Sethi-Tarjan (DST)
- Nelson-Oppen (NO)
- Shostak (Sho)

DST and Sho can be described as specific strategies over the ACC inference rules

NO uses a slightly different deduction mechanism

III. Abstract Congruence Closure: Shostak
Dynamic congruence closure algorithm:
$[(\mathbf{Sim}^*;\mathbf{Ext}^?)^*;(\mathbf{Del}\ \cup\ \mathbf{Ori});(\mathbf{Col};\mathbf{Sup}^*)^*]^*$
General principle: Eager simplification
New equations can be added at any time
How to identify where \mathbf{Col} and then \mathbf{Sup} are applied? Use additional indexing mechanisms
Called use lists by Shostak
Shostak did not use the $n\log(n)$ trick

III. Shostak's Congruence Closure: Example

$c_1 \to c_3, \ f(fab)b = b$	$a \rightarrow c_1, b \rightarrow c_2, fc_3c_2 \rightarrow c_3$
$c_1 \rightarrow c_3, \ f(f c_3 c_2) b = b$	$a \rightarrow c_1, b \rightarrow c_2, fc_3c_2 \rightarrow c_3$
$c_1 \rightarrow c_3, \ f c_3 b = b$	$a \rightarrow c_1, b \rightarrow c_2, fc_3c_2 \rightarrow c_3$
$c_1 \rightarrow c_3, \ fc_3c_2 = c_2$	$a \rightarrow c_1, b \rightarrow c_2, fc_3c_2 \rightarrow c_3$
$c_1 \rightarrow c_3, \ c_3 = c_2$	$a \to c_1, b \to c_2, fc_3c_2 \to c_3$
$c_1 \rightarrow c_3, \ c_3 \rightarrow c_2$	$a \to c_1, b \to c_2, fc_3c_2 \to c_3$
$c_1 \rightarrow c_3, \ c_3 \rightarrow c_2$	$a \to c_1, b \to c_2, f c_2 c_2 \to c_3$

Note: We needed only 3 constants, c_1, c_2, c_3

Note: Compose is not used.

5

III. Shostak's Congru	ence Closure: Example
$a = fab, \ f(fab)b = b$	
$c_1 = fab, \ f(fab)b = b$	$a \rightarrow c_1$
$c_1 = f c_1 b, \ f(fab)b = b$	$a \rightarrow c_1$
$c_1 = fc_1 c_2, \ f(fab)b = b$	$a \rightarrow c_1, b \rightarrow c_2$
$c_1 = c_3, f(fab)b = b$	$a \to c_1, b \to c_2, fc_1c_2 \to c_3$
$c_1 \rightarrow c_3, \ f(fab)b = b$	$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3$
$c_1 \rightarrow c_3, \ f(fab)b = b$	$a \rightarrow c_1, b \rightarrow c_2, f_{\mathbf{C}_3}c_2 \rightarrow c_3$
÷	:

III. Abstract Congruence Closure: DST

Downey, Sethi, and Tarjan's congruence closure algorithm:

 $[(\mathbf{Col}; (\mathbf{Sup} \ \cup \{\epsilon\}))^*; (\mathbf{Sim}^*; (\mathbf{Del} \ \cup \ \mathbf{Ori}))^*]^*$

Offline algorithm, all input equations are preprocessed into DAG form

Data structures (signature-table) for effective application of these rules

First described the $n \log(n)$ trick

	Example
$a = fab, \ f(fab)b = b$	
$c_1 = c_3, c_4 = c_2$	$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, fc_3c_2 \rightarrow c_4$
$c_1 \rightarrow c_3, c_4 = c_2$	$a \to c_1, b \to c_2, fc_1c_2 \to c_3, fc_3c_2 \to c_4$
$c_1 \to c_3, c_4 = c_2$	$a \rightarrow c_1, b \rightarrow c_2, f c_3 c_2 \rightarrow c_3, f c_3 c_2 \rightarrow c_4$
$c_1 \rightarrow c_3, c_4 = c_2, \mathbf{c_3} = \mathbf{c_4}$	$a \to c_1, b \to c_2, fc_3c_2 \to c_4$
$c_1 \to c_3, c_4 \to c_2, c_3 = c_4$	$a \rightarrow c_1, b \rightarrow c_2, fc_3c_2 \rightarrow c_4$
$c_1 \rightarrow c_3, c_4 \rightarrow c_2, c_3 = c_2$	$a \to c_1, b \to c_2, fc_3c_2 \to c_4$
$c_1 \to c_3, c_4 \to c_2, c_3 \to c_2$	$a \to c_1, b \to c_2, fc_3c_2 \to c_4$
$c_1 \to c_3, c_4 \to c_2, c_3 \to c_2$	$a \to c_1, b \to c_2, fc_2c_2 \to c_4$

III. Nelson-Oppen Congruence Closure: Example

a = fab, f(fab)b = b

$c_1 = c_3, c_4 = c_2$	$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, fc_3c_2 \rightarrow c_4$	
$c_1 \rightarrow c_3, c_4 = c_2$	$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, fc_3c_2 \rightarrow c_4$	
$c_1 \to c_3, c_4 = c_2$	$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, fc_3c_2 \rightarrow c_4$	
$c_1 \rightarrow c_3, c_4 = c_2, c_3 = c_4$	$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, fc_3c_2 \rightarrow c_4$	
$c_1 \to c_3, c_4 \to c_2, c_3 = c_4$	$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, fc_3c_2 \rightarrow c_4$	
$c_1 \to c_3, c_4 \to c_2, c_3 = \mathbf{c_2}$	$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, fc_3c_2 \rightarrow c_4$	
$c_1 \rightarrow c_3, c_4 \rightarrow c_2, c_3 \rightarrow c_2$	$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, fc_3c_2 \rightarrow c_4$	
Note: Term DAG does not change		
Note: Nontrivial NODec	rule tested after each Orient	
Note: Do not get a can	onizer in the end	

9

III. Abstract Congruence Closure: NO $[(Sim^*; (Ori \cup Del); NOSup^*]^*$ NOSup: modified rule for superposing modulo *C*-rules

NOSup $\frac{fc_1 \dots c_k \to c, fd_1 \dots d_k \to d, \Gamma}{fc_1 \dots c_k \to c, fd_1 \dots d_k \to d, c = d, \Gamma} \text{ if } c_i \leftrightarrow_{\Gamma}^* d_i$

Motivation: Original DAG not modified (cf. not changing clause database in Davis-Putnam)

Quadratic time

How to avoid redundant inferences?

III. Abstract Congruence Closure: Exercises

Ex: Show that E induces finite equivalence classes iff corresponding congruence-closed DAG is acyclic

Ex: Design a linear time algorithm for computing congruence closure for sets E that induce finite equivalence classes

Ex: Develop a method to eliminate all the new constants from the final state so that the resulting rewrite system over the original signature is terminating and confluent?

Ex: Design a correct inference system for conjunctions of equations and disequations over ground terms containing a commutative function symbol

Ex: R is locally confluent if $\leftarrow_R \circ \rightarrow_R \subseteq \rightarrow_R^* \circ \leftarrow_R^*$. Prove that termination and local confluence implies confluence.

IV. Ground Equality: With Boolean Structure

$\phi: ((l_1 \lor l_2 \lor \cdots \lor l_k) \land (\cdots \lor \cdots) \land \cdots)$

Method 1: Convert ϕ to CNF + Congruence-Closure

Method 2: Transform to the "equality on constants" case

Ackerman Transformation:

Extend $\frac{\phi[fc_1 \dots c_k], D}{\phi[c], D \cup \{fc_1 \dots c_k = c\}}$ if c is new $\phi, D \cup \{fc_1 \dots c_k = c, fd_1 \dots d_k = d\}$ ElimD - $\phi \land (c_1 = d_1 \land \dots \land c_k = d_k \Rightarrow c = d), D \cup \{\dots\}$ $\frac{\phi, D}{\phi, \emptyset}$ if all ElimD inferences are redundant Terminate $\frac{\gamma}{-}$

Ex: Any FAIR derivation using above rules terminates.

13

IV. Ground Equality: With Boolean Structure

Exercises:

Ex: Show that there exists a finite set of sufficient interpretation for "Ground equations and disequations with boolean structure"

Ex: Translate to propositional SAT using the above result

Define: A clause is horn if it has atmost one positive literal

Ex: Show that if all clauses in ϕ are horn, then satisfiability of ϕ can be efficiently decided

Define: A clause is nhorn if it has atmost one negative literal

Ex: Show that if all clauses in ϕ are nhorn, then satisfiability of ϕ can be efficiently decided

IV. Ground Equality: With Boolean Structure

Recall II.Method4: Lifted Ordered-Transitive-Closure to Clauses

The same calculus works here too: Basic Superposition:

IV. Superposition Calculi: Remarks

Ordering: \succ is a total reduction ordering on terms Define: $Measure(s = t) = \{\{s\}, \{t\}\}; Measure(s \neq t) = \{\{s, t\}\}$ Literal Ordering: $L_1 \succ L_2$ iff $Measure(L_1) \succ^m Measure(L_2)$ Clause Ordering: multiset extension of the ordering on literals Notation: $s \to t$ means s = t and $s \succ t$ Notation: $s = t \lor C$ means $s = t \succ C$ Ex: Show that the inference system is sound.

IV. Superposition Calculi: Completeness

Suppose clause set is unsatisfiable, but final state Γ is not \bot Initial Model $M_0 = (T(\Sigma), I)$, I maps f to syntactic fClauses in Γ would be false in M_0 . We will fix M_0

In each step: Current Model = M

- 1. Pick the least false clause $\underline{s \to t} \lor C$ in Γ ,
- 2. Set s = t in M to get new M

Claim: The final model M is a model for Γ

IV. Superposition Calculi: Problem1

Problem: We can make smaller clauses false as we proceed. Example: $\Gamma = \{b \neq c, a = c, a = b\}$, with $a \succ b \succ c$

- First you make a = c in the model and then a = b
- But you have now contradicted a smaller clause $b \neq c$

Problem: We picked $\underline{s \rightarrow t} \lor C$ from Γ , but s was already assigned in a previous round

Solution: Γ is saturated under Superpose Right

Example: a = c and a = b means we also have b = c in Γ

If $\underline{s \to t} \lor C$ is selected from Γ , then s is in its own equivalence class, \therefore free to be assigned

17

IV. Superposition Calculi: Completeness Each successive model M: $\frac{T(\Sigma)}{\leftrightarrow_E^*}$ for some EMonotonically adding equations in E (governed by \succ) Imagine M is represented by a convergent rewrite system R

s.t. $s \rightarrow t$ iff t is the equivalence class representative for s

IV. Superposition Calculi: Problem2

Problem: We may make a larger clause unsatisfiable

Example: $\Gamma = \{b = c, a = c, a \neq b\}$

• After making b = c and a = c, we can't claim that $a \neq b$

Solution: Γ is saturated under Superpose Left

Example: a = c and $a \neq b$ means we also have $c \neq b$ in Γ

When $\underline{s \to t} \lor C$ is selected from Γ , all facts about equivalence classes of terms smaller than s has been asserted

IV. Superposition Calculi: Problem3

The above informal argument can be formalized using

- a refined definition of iterative candidate model construction
- so that if there is a clause which is false in a candidate model
- then using BS we can get a smaller clause which is also false

When completeness proof is formalized this way, we also need EqFactoring

Example: $\Gamma = \{b = c, a = b \lor a = c, a \neq b \lor a \neq c\}$

21

Candidate model: $\{b = c\}$ Minimal counter example: $a = b \lor a = c$ Reduced counter example: $b \neq c \lor a = c$ Candidate model: $\{b = c, a = b\}$ Minimal counter example: $a \neq b \lor a \neq c$ Reduced "counter example": $b \neq b \lor a \neq c \lor a = c$ Modified Candidate model construction: In each step: Current Model = M1. Pick the least false clause $\underline{s \rightarrow t} \lor C$ in Γ , 2. C is a also false in $M \cup \{s = t\}$