
'

&

$

%

Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/LEP.html

Computer Science Laboratory

SRI International

Menlo Park, CA

1

'

&

$

%

In Today’s Lecture

I Equality over constants, no boolean structure:

II Equality over constants, with boolean structure

III Equality over ground terms, no boolean structure:

Special Strategies

IV Equality over ground terms, with boolean structure

V Equality over ground terms, with MORE “special”

function symbols

2

'

&

$

%

A Note About Equational Theories

E: set of equations (ground or nonground)

T (Σ): set of all ground terms over Σ

T (Σ)/↔∗

E
: equivalence classes modulo ↔∗

E

Initial Model of E: (T (Σ)
↔

∗

E

, I) s.t. I(f([s1], . . . , [sk]) = [fs1 . . . sk]

E |= (s = t) iff (T (Σ)
↔

∗

E

, I) |= s = t iff E ` s = t

Satisfiability procedure rules: enable to compute over the

initial model

Completeness: The final state can be used to read off the

initial model

3

'

&

$

%

III. Abstract Congruence Closure: Strategies

Some popular congruence closure algorithms are

• Downey-Sethi-Tarjan (DST)

• Nelson-Oppen (NO)

• Shostak (Sho)

DST and Sho can be described as specific strategies over

the ACC inference rules

NO uses a slightly different deduction mechanism

4



'

&

$

%

III. Abstract Congruence Closure: Shostak

Dynamic congruence closure algorithm:

[(Sim
∗;Ext?)∗; (Del ∪ Ori); (Col;Sup∗)∗]∗

General principle: Eager simplification

New equations can be added at any time

How to identify where Col and then Sup are applied? Use

additional indexing mechanisms

Called use lists by Shostak

Shostak did not use the n log(n) trick

5

'

&

$

%

III. Shostak’s Congruence Closure: Example

a = fab, f(fab)b = b

c1 = fab, f(fab)b = b a→ c1

c1 = fc1b, f(fab)b = b a→ c1

c1 = fc1c2, f(fab)b = b a→ c1, b→ c2

c1 = c3, f(fab)b = b a→ c1, b→ c2, fc1c2 → c3

c1→c3, f(fab)b = b a→ c1, b→ c2, fc1c2 → c3

c1 → c3, f(fab)b = b a→ c1, b→ c2, fc3c2 → c3

...
...

6

'

&

$

%

III. Shostak’s Congruence Closure: Example

c1 → c3, f(fab)b = b a→ c1, b→ c2, fc3c2 → c3

c1 → c3, f(fc3c2)b = b a→ c1, b→ c2, fc3c2 → c3

c1 → c3, fc3b = b a→ c1, b→ c2, fc3c2 → c3

c1 → c3, fc3c2 = c2 a→ c1, b→ c2, fc3c2 → c3

c1 → c3, c3 = c2 a→ c1, b→ c2, fc3c2 → c3

c1 → c3, c3→c2 a→ c1, b→ c2, fc3c2 → c3

c1 → c3, c3 → c2 a→ c1, b→ c2, fc2c2 → c3

Note: We needed only 3 constants, c1, c2, c3

Note: Compose is not used.

7

'

&

$

%

III. Abstract Congruence Closure: DST

Downey, Sethi, and Tarjan’s congruence closure algorithm:

[(Col; (Sup ∪ {ε}))∗; (Sim
∗; (Del ∪ Ori))∗]∗

Offline algorithm, all input equations are preprocessed into

DAG form

Data structures (signature-table) for effective application of

these rules

First described the n log(n) trick

8



'

&

$

%

III. Downey-Sethi-Tarjan Congruence Closure:

Example

a = fab, f(fab)b = b

c1 = c3, c4 = c2 a→ c1, b→ c2, fc1c2 → c3, fc3c2 → c4

c1→c3, c4 = c2 a→ c1, b→ c2, fc1c2 → c3, fc3c2 → c4

c1 → c3, c4 = c2 a→ c1, b→ c2, fc3c2 → c3, fc3c2 → c4

c1 → c3, c4 = c2, c3 = c4 a→ c1, b→ c2, fc3c2 → c4

c1 → c3, c4→c2, c3 = c4 a→ c1, b→ c2, fc3c2 → c4

c1 → c3, c4 → c2, c3 = c2 a→ c1, b→ c2, fc3c2 → c4

c1 → c3, c4 → c2, c3→c2 a→ c1, b→ c2, fc3c2 → c4

c1 → c3, c4 → c2, c3 → c2 a→ c1, b→ c2, fc2c2 → c4

9

'

&

$

%

III. Abstract Congruence Closure: NO

[(Sim
∗; (Ori ∪ Del);NOSup∗]∗

NOSup: modified rule for superposing modulo C-rules

NOSup
fc1 . . . ck → c, fd1 . . . dk → d, Γ

fc1 . . . ck → c, fd1 . . . dk → d, c = d, Γ
if ci ↔

∗

Γ di

Motivation: Original DAG not modified (cf. not changing

clause database in Davis-Putnam)

Quadratic time

How to avoid redundant inferences?

10

'

&

$

%

III. Nelson-Oppen Congruence Closure: Example

a = fab, f(fab)b = b

c1 = c3, c4 = c2 a→ c1, b→ c2, fc1c2 → c3, fc3c2 → c4

c1→c3, c4 = c2 a→ c1, b→ c2, fc1c2 → c3, fc3c2 → c4

c1 → c3, c4 = c2 a→ c1, b→ c2, fc1c2 → c3, fc3c2 → c4

c1 → c3, c4 = c2, c3 = c4 a→ c1, b→ c2, fc1c2 → c3, fc3c2 → c4

c1 → c3, c4→c2, c3 = c4 a→ c1, b→ c2, fc1c2 → c3, fc3c2 → c4

c1 → c3, c4 → c2, c3 = c2 a→ c1, b→ c2, fc1c2 → c3, fc3c2 → c4

c1 → c3, c4 → c2, c3→c2 a→ c1, b→ c2, fc1c2 → c3, fc3c2 → c4

Note: Term DAG does not change

Note: Nontrivial NODed rule tested after each Orient

Note: Do not get a canonizer in the end

11

'

&

$

%

III. Abstract Congruence Closure: Exercises

Ex: Show that E induces finite equivalence classes iff

corresponding congruence-closed DAG is acyclic

Ex: Design a linear time algorithm for computing

congruence closure for sets E that induce finite equivalence

classes

Ex: Develop a method to eliminate all the new constants

from the final state so that the resulting rewrite system

over the original signature is terminating and confluent?

Ex: Design a correct inference system for conjunctions of

equations and disequations over ground terms containing a

commutative function symbol

Ex: R is locally confluent if ←R ◦ →R ⊆ →
∗

R
◦ ←∗

R
. Prove

that termination and local confluence implies confluence.

12



'

&

$

%

IV. Ground Equality: With Boolean Structure

φ : ((l1 ∨ l2 ∨ · · · ∨ lk) ∧ (· · · ∨ · · ·) ∧ · · ·)

Method 1: Convert φ to CNF + Congruence-Closure

Method 2: Transform to the “equality on constants” case

Ackerman Transformation:

Extend
φ[fc1 . . . ck], D

φ[c], D ∪ {fc1 . . . ck = c}
if c is new

ElimD
φ, D ∪ {fc1 . . . ck = c, fd1 . . . dk = d}

φ ∧ (c1 = d1 ∧ · · · ∧ ck = dk ⇒ c = d), D ∪ {. . .}

Terminate
φ, D

φ, ∅
if all ElimD inferences are redundant

Ex: Any FAIR derivation using above rules terminates.

13

'

&

$

%

IV. Ground Equality: With Boolean Structure

Exercises:

Ex: Show that there exists a finite set of sufficient

interpretation for “Ground equations and disequations with

boolean structure”

Ex: Translate to propositional SAT using the above result

Define: A clause is horn if it has atmost one positive literal

Ex: Show that if all clauses in φ are horn, then satisfiability

of φ can be efficiently decided

Define: A clause is nhorn if it has atmost one negative

literal

Ex: Show that if all clauses in φ are nhorn, then

satisfiability of φ can be efficiently decided

14

'

&

$

%

IV. Ground Equality: With Boolean Structure

Recall II.Method4: Lifted Ordered-Transitive-Closure to

Clauses

The same calculus works here too: Basic Superposition:

Superpose Right
s→ t ∨ C, w[s]→ u ∨D, Γ

w[t] = u ∨ C ∨D, . . .
if w = u � s = t

Superpose Left
s→ t ∨ C, w[s] 6= u ∨D, Γ

w[t] 6= u ∨ C ∨D, . . .
if w � u, w 6= u � Max (D)

EqResolution
s 6= s ∨ C, Γ

C, Γ
if s 6= s � Max (D)

EqFactoring
s→ t ∨ s→ u ∨ C, Γ

t 6= u ∨ s→ u ∨ C, . . .
if t � u

Note: ⊥ is the empty clause

15

'

&

$

%

IV. Superposition Calculi: Remarks

Ordering: � is a total reduction ordering on terms

Define: Measure(s = t) = {{s}, {t}}; Measure(s 6= t) = {{s, t}}

Literal Ordering: L1 � L2 iff Measure(L1) �
m Measure(L2)

Clause Ordering: multiset extension of the ordering on

literals

Notation: s→ t means s = t and s � t

Notation: s = t ∨ C means s = t � C

Ex: Show that the inference system is sound.

16



'

&

$

%

IV. Superposition Calculi: Completeness

Suppose clause set is unsatisfiable, but final state Γ is not ⊥

Initial Model M0 = (T (Σ), I), I maps f to syntactic f

Clauses in Γ would be false in M0. We will fix M0

In each step: Current Model = M

1. Pick the least false clause s→ t ∨ C in Γ,

2. Set s = t in M to get new M

Claim: The final model M is a model for Γ

17

'

&

$

%

IV. Superposition Calculi: Completeness

Each successive model M :
T (Σ)
↔

∗

E

for some E

Monotonically adding equations in E (governed by �)

Imagine M is represented by a convergent rewrite system R

s.t. s→ t iff t is the equivalence class representative for s

18

'

&

$

%

IV. Superposition Calculi: Problem1

Problem: We can make smaller clauses false as we proceed.

Example: Γ = {b 6= c, a = c, a = b}, with a � b � c

• First you make a = c in the model and then a = b

• But you have now contradicted a smaller clause b 6= c

Problem: We picked s→ t ∨ C from Γ, but s was already

assigned in a previous round

Solution: Γ is saturated under Superpose Right

Example: a = c and a = b means we also have b = c in Γ

If s→ t ∨ C is selected from Γ, then s is in its own

equivalence class, ∴ free to be assigned

19

'

&

$

%

IV. Superposition Calculi: Problem2

Problem: We may make a larger clause unsatisfiable

Example: Γ = {b = c, a = c, a 6= b}

• After making b = c and a = c, we can’t claim that a 6= b

Solution: Γ is saturated under Superpose Left

Example: a = c and a 6= b means we also have c 6= b in Γ

When s→ t ∨ C is selected from Γ, all facts about

equivalence classes of terms smaller than s has been

asserted

20



'

&

$

%

IV. Superposition Calculi: Problem3

The above informal argument can be formalized using

• a refined definition of iterative candidate model

construction

• so that if there is a clause which is false in a candidate

model

• then using BS we can get a smaller clause which is also

false

When completeness proof is formalized this way, we also

need EqFactoring

Example: Γ = {b = c, a = b ∨ a = c, a 6= b ∨ a 6= c}

21

'

&

$

%

Candidate model: {b = c}

Minimal counter example: a = b ∨ a = c

Reduced counter example: b 6= c ∨ a = c

Candidate model: {b = c, a = b}

Minimal counter example: a 6= b ∨ a 6= c

Reduced “counter example”: b 6= b ∨ a 6= c ∨ a = c

Modified Candidate model construction:

In each step: Current Model = M

1. Pick the least false clause s→ t ∨ C in Γ,

2. C is a also false in M ∪ {s = t}

22

'

&

$

%

IV. Superposition Calculi: Example

Candidate Model: In blue

Minimal Conflict Clause: In red

C1 : a 6= b ∨ a 6= c, C2 : a = b ∨ a = c, C3 : b = c

C1, C2, C4 : b 6= c ∨ a = c, C3

C1, C5 : c 6= b ∨ a 6= c ∨ b 6= c, C2, C4, C3

C1, C5, C6 : c 6= b ∨ c 6= c ∨ b 6= c ∨ b 6= c, C2, C4, C3

C1, C5, C6 : c 6= c ∨ c 6= c ∨ c 6= c ∨ c 6= c, C2, C4, C3

C1, C5, C6 : false, C2, C4, C3

⊥

Ex: Derive ⊥ without using EqFactoring, but allowing for

tautologies.

23


