Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari shankar@csl.sri.com URL: http://www.csl.sri.com/~shankar/LEP.html

> Computer Science Laboratory SRI International Menlo Park, CA

III. STC Inference System: Completeness-1

Partition ϕ into E and DE. TPT: If E, DE is unsatisfiable, then $E, DE \vdash_{STC} \perp$ TPT: If $E \models s = t$ and $s \neq t \in DE$, then $E, DE \vdash_{STC} s = t$ Theorem: $E \models s = t$ iff $E \vdash s = t$ Define: $\rightarrow_R = \{C[l] \rightarrow C[r] : l \rightarrow r \in R\}$ Define: $\leftrightarrow_R = \leftarrow_R \cup \rightarrow_R$ Define: $\leftrightarrow_R^* = \leftrightarrow_R \circ \leftrightarrow_R \circ \ldots \leftrightarrow_R$ Theorem: $E \vdash s = t$ iff $s \leftrightarrow_E^* t$ Ex: Prove this. TPT: If $s \leftrightarrow_E^* t$ and $s \neq t \in DE$, then $E, DE \vdash_{STC} s = t$ $s = s_0 \leftrightarrow_E s_1 \leftrightarrow_E s_2 \leftrightarrow_E \cdots \leftrightarrow_E s_n = t$

III. Equality over Ground Terms: No Boolean Structure

$$s_1 = t_1 \land s_2 = t_2 \land \cdots \land s_n = t_n \land s'_1 \neq t'_1 \land \cdots \land s'_m \neq t'_m$$

Relevant equality axioms: 3 equivalence axioms + congruence

Closure under axioms does not terminate. Why?

Symmetric-Transitive-Congruence (STC) closure

 $\label{eq:constraint} \begin{array}{|c|c|c|c|} \hline & & \mbox{Transitivity} & \frac{s=t,t=u,\Gamma}{s=t,t=u,s=u,\Gamma} \mbox{ if } s=u \not\in \Gamma \\ \hline & & \mbox{Contradiction} & \frac{s=t,s \neq t,\Gamma}{\bot} & & \mbox{Contradiction} & \frac{s\neq s,\Gamma}{\bot} \\ \hline & & \mbox{Congruence} & \frac{s=t,\Gamma}{s=t,C[s]=C[t],\Gamma} \mbox{ if } C[s],C[t] \mbox{ occur in } \Gamma,s=t,\dots \end{array}$

III. STC Inference System: Completeness-2 TPT: If $s \leftrightarrow_E^* t$ and s, t occur in E, DE, then $E, DE \vdash_{STC} s = t$ Prove by well-founded induction on pairs $\{s, t\}$ Ordering: multiset extension of depth ordering $s = s_0 \leftrightarrow s_1 \leftrightarrow s_2 \leftrightarrow \cdots \leftrightarrow s_n = t$ Break proof at all TOP applications of E

 $s = s_0 \leftrightarrow^* s_i \leftrightarrow^{top} s_{i+1} \leftrightarrow^* s_i \leftrightarrow^{top} s_{i+1} \leftrightarrow^* s_n = t$

If $t = ft_1t_2...t_k$, let $(t)_p$ denote t_p By induction hypothesis, $E, DE \vdash_{STC} (s_0)_p = (s_i)_p$ for all pSimilarly, $E, DE \vdash_{STC} (s_{i+1})_p = (s_j)_p$ for all p, and so on $\therefore E, DE \vdash_{STC} s_0 = s_i$ and $E, DE \vdash_{STC} s_{i+1} = s_j$, and so on $\therefore E, DE \vdash_{STC} s = t$

1

III. STC inference system: Exercises

Ex: Show that the STC system is sound and terminating.

Ex: Write up the completeness proof is full detail.

Ex: Show that the STC inference rules can be applied exponentially many times before terminating.

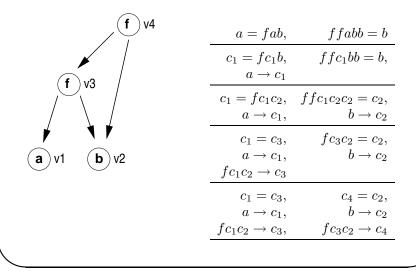
Ex: Show that the size of the final state can be exponentially large.

View the unordered STC calculus as an ordered calculus instantiated with the trivial (empty) ordering

Ex*: Optimize the STC rules using a well-founded ordering on terms. Is the worst case behavior, using a total ordering, any better than the worst case of STC?

Corresponds to DAG Representation

Example. Let $E_0 = \{a = fab \land f(fab, b) = b\}.$



5

Simplifying the Term Structure

Terms over Σ can be simplified by introducing new names from K.

Extend
$$\frac{s[fc_1 \dots c_k] = t, \Gamma}{s[c] = t, fc_1 \dots c_k \to c, \Gamma} \text{ if } f \in \Sigma, \ c \in K$$

Simplify
$$\frac{s[u] = t, u \to c, \Gamma}{s[c] = t, u \to c, \Gamma}$$

If we apply Extend and Simplify exhaustively, then the final configuration will look like

$$c_1 = d_1, \ldots, c_n = d_n, c'_1 \neq d'_1, \ldots, c'_m \neq d'_m,$$

$$fe_1 \ldots e_k \rightarrow e, \ldots$$

III. Completing the Rules

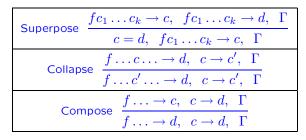
Now, ϕ can be partitioned as $\phi_1 \wedge \phi_2$

 ϕ_1 : conjunction of D-equations of the form $fc_1 \dots c_k = c$

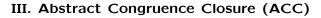
 ϕ_2 : conjunction of C-equations c = d and $c \neq d$

Handling ϕ_2 : Recall Ordered-Transitive closure rules: Orient, Simplify, Collapse, Compose (Union-Find)

But we are still missing the congruence axiom



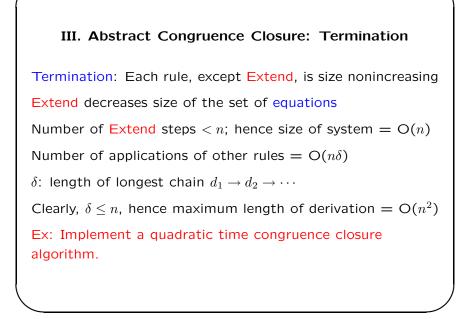
7



Extend + Simplify +

Delete $\displaystyle rac{c=c,\Gamma}{\Gamma}$
$\label{eq:simplify} \begin{array}{l} c \neq d, c \rightarrow d', \Gamma \\ \overline{d' \neq d, c \rightarrow d', \Gamma} \end{array}$
$\frac{fc_1 \dots c_k \to d, \ \Gamma}{\dots c_k \to c, \ \Gamma}$
Collapse $\frac{c \rightarrow d, c \rightarrow c', \Gamma}{c' = d, c \rightarrow c', \Gamma}$
Compose $\frac{c' \rightarrow c, c \rightarrow d, \Gamma}{c' \rightarrow d, c \rightarrow d, \Gamma}$
$\frac{c,\Gamma}{L}$

9



III. Abstract Congruence Closure: Basic Strategies

Union-Find strategy on $C\text{-equations guarantees }\delta < \log(n)$

Efficient congruence closure: $O(n \log(n))$ inference steps

Certain strategies can make certain rules inapplicable

Ex: Which ACC inference rules are optional in this sense?

Ex: Implement a $O(n \log(n))$ congruence closure algorithm using the above inference rules.

Ex: Can you interpret your strategy as suitable manipulations on the term DAG data-structure?

III. Abstract Congruence Closure: Example

a = fab, f(fab)b = b
$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, fc_3c_2 \rightarrow c_4, c_1 = c_3, c_4 = c_2$
$a \to c_1, b \to c_2, fc_1c_2 \to c_3, fc_3c_2 \to c_4, c_3 \to c_1, c_4 \to c_2$
$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, fc_1c_2 \rightarrow c_4, c_3 \rightarrow c_1, c_4 \rightarrow c_2$
$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, c_4 = c_3, c_3 \rightarrow c_1, c_4 \rightarrow c_2$
$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, c_2 = c_1, c_3 \rightarrow c_1, c_4 \rightarrow c_2$
$a \rightarrow c_1, b \rightarrow c_2, fc_1c_2 \rightarrow c_3, c_2 \rightarrow c_1, c_3 \rightarrow c_1, c_4 \rightarrow c_2$
$a ightarrow c_1, b ightarrow c_2, {\it fc_1c_1} ightarrow {\it c_3}, c_2 ightarrow c_1, c_3 ightarrow c_1, c_4 ightarrow c_2$
$a \rightarrow c_1, b \rightarrow c_1, fc_1c_1 \rightarrow c_3, c_2 \rightarrow c_1, c_3 \rightarrow c_1, c_4 \rightarrow c_1$

11

III. Abstract Congruence Closure: Soundness

Soundness: Each inference rule preserves satisfiability

Ignore disequations presently

If $E \vdash_{ACC} E'$, then \leftrightarrow_E^* is identical to $\leftrightarrow_{E'}^*$ restricted to the terms over the original signature

Ex: Prove!

If $E \vdash_{ACC}^{*} E'$ and E' is a final state, then $s \leftrightarrow_{E}^{*} t$ iff $s \leftrightarrow_{E'}^{*} t$, for all terms s, t over Σ

There are no equations in the final state, only rules

Final state R: contains D-rules and C-rules

III. Abstract Congruence Closure: Completeness-2 $s \leftrightarrow_R \circ \leftrightarrow_R \cdots \leftrightarrow_R t$ \rightarrow_R is terminating The following patterns cannot occur: • Pattern $d \leftarrow_R f \dots c \dots \rightarrow_R f \dots c' \dots$ (Collapse)

- Pattern $d \leftarrow_R f \ldots \rightarrow_R c$ where $c \not\equiv d$ (Superpose)
- Pattern $d \leftarrow_R c \rightarrow_R c'$ where $c' \not\equiv d$ (Collapse)

Local confluence of R: If $s \leftarrow_R u \rightarrow_R t$, then $s \rightarrow^*_R v \leftarrow^*_R t$

(Get new proof by commuting the two steps)

Therefore, R is terminating and locally confluent

13

III. Abstract Congruence Closure: Completeness-1 TPT: If E, DE is unsatisfiable, then $E, DE \vdash_{ACC}^* \bot$ TPT: If $E \models (s = t)$ and $s \neq t \in DE$, then $E, DE \vdash_{ACC}^* s = t$ Suppose: $E, DE \vdash_{ACC}^* R, DE'$, where R, DE' is a final state WPT: whenever $s \leftrightarrow_E^* t$, then $s \rightarrow_R^* \circ \leftarrow_R^* t$ We have $s \leftrightarrow_E \circ \leftrightarrow_E \cdots \leftrightarrow_E t$ Therefore, there is a proof of the form

 $s \leftrightarrow_R \circ \leftrightarrow_R \cdots \leftrightarrow_R t$

III. Abstract Congruence Closure: Completeness-3

Confluence of R: If $s \leftarrow_R^* u \rightarrow_R^* t$, then $s \rightarrow_R^* v \leftarrow_R^* t$ Newman's Lemma: If R is terminating and locally confluent, then R is confluent Hence, R is confluent We had $s \leftrightarrow_R \circ \leftrightarrow_R \cdots \leftrightarrow_R t$ By repeated applications of confluence, we get $s \rightarrow_R^* \circ \leftarrow_R^* t$ Convergent: confluence + termination Normal Form of s is s' where $s \rightarrow_R^* s'$ and $s' \not\rightarrow_R$ R is convergent. Convergent R induce unique normal forms

and all reductions lead to it.

