
'

&

$

%

Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/LEP.html

Computer Science Laboratory

SRI International

Menlo Park, CA

1

'

&

$

%

III. Equality over Ground Terms: No Boolean

Structure

s1 = t1 ∧ s2 = t2 ∧ · · · ∧ sn = tn ∧ s′1 6= t′1 ∧ · · · ∧ s′m 6= t′m

Relevant equality axioms: 3 equivalence axioms +

congruence

Closure under axioms does not terminate. Why?

Symmetric-Transitive-Congruence (STC) closure

Transitivity
s = t, t = u, Γ

s = t, t = u, s = u, Γ
if s = u 6∈ Γ

Contradiction
s = t, s 6= t, Γ

⊥
Contradiction

s 6= s, Γ

⊥

Congruence
s = t, Γ

s = t, C[s] = C[t], Γ
if C[s], C[t] occur in Γ, s = t, . . .

2

'

&

$

%

III. STC Inference System: Completeness-1

Partition φ into E and DE.

TPT: If E, DE is unsatisfiable, then E, DE `STC ⊥

TPT: If E |= s = t and s 6= t ∈ DE, then E, DE `STC s = t

Theorem: E |= s = t iff E ` s = t

Define: →R = {C[l]→ C[r] : l→ r ∈ R}

Define: ↔R = ←R ∪ →R

Define: ↔∗

R = ↔R ◦ ↔R ◦ . . .↔R

Theorem: E ` s = t iff s↔∗

E t Ex: Prove this.

TPT: If s↔∗

E t and s 6= t ∈ DE, then E, DE `STC s = t

s = s0 ↔E s1 ↔E s2 ↔E · · · ↔E sn = t

3

'

&

$

%

III. STC Inference System: Completeness-2

TPT: If s↔∗

E t and s, t occur in E, DE, then E, DE `STC s = t

Prove by well-founded induction on pairs {s, t}

Ordering: multiset extension of depth ordering

s = s0 ↔ s1 ↔ s2 ↔ · · · ↔ sn = t

Break proof at all TOP applications of E

s = s0 ↔
∗ si ↔

top si+1 ↔
∗ sj ↔

top sj+1 ↔
∗ sn = t

If t = ft1t2 . . . tk, let (t)p denote tp

By induction hypothesis, E, DE `STC (s0)p = (si)p for all p

Similarly, E, DE `STC (si+1)p = (sj)p for all p, and so on

∴ E, DE `STC s0 = si and E, DE `STC si+1 = sj, and so on

∴ E, DE `STC s = t

4



'

&

$

%

III. STC inference system: Exercises

Ex: Show that the STC system is sound and terminating.

Ex: Write up the completeness proof is full detail.

Ex: Show that the STC inference rules can be applied

exponentially many times before terminating.

Ex: Show that the size of the final state can be

exponentially large.

View the unordered STC calculus as an ordered calculus

instantiated with the trivial (empty) ordering

Ex*: Optimize the STC rules using a well-founded ordering

on terms. Is the worst case behavior, using a total ordering,

any better than the worst case of STC?

5

'

&

$

%

Simplifying the Term Structure

Terms over Σ can be simplified by introducing new names

from K.

Extend
s[fc1 . . . ck] = t, Γ

s[c] = t, fc1 . . . ck → c, Γ
if f ∈ Σ, c ∈ K

Simplify
s[u] = t, u→ c, Γ

s[c] = t, u→ c, Γ

If we apply Extend and Simplify exhaustively, then the final

configuration will look like

c1 = d1, . . . , cn = dn, c′1 6= d′

1, . . . , c′m 6= d′

m,

fe1 . . . ek → e, . . .

6

'

&

$

%

Corresponds to DAG Representation

Example. Let E0 = {a = fab ∧ f(fab, b) = b}.

f

f

a b

v4

v3

v1 v2

a = fab, ffabb = b

c1 = fc1b, ffc1bb = b,

a→ c1

c1 = fc1c2, ffc1c2c2 = c2,

a→ c1, b→ c2

c1 = c3, fc3c2 = c2,

a→ c1, b→ c2

fc1c2 → c3

c1 = c3, c4 = c2,

a→ c1, b→ c2

fc1c2 → c3, fc3c2 → c4

7

'

&

$

%

III. Completing the Rules

Now, φ can be partitioned as φ1 ∧ φ2

φ1: conjunction of D-equations of the form fc1 . . . ck = c

φ2: conjunction of C-equations c = d and c 6= d

Handling φ2: Recall Ordered-Transitive closure rules:

Orient, Simplify, Collapse, Compose (Union-Find)

But we are still missing the congruence axiom

Superpose
fc1 . . . ck → c, fc1 . . . ck → d, Γ

c = d, fc1 . . . ck → c, Γ

Collapse
f . . . c . . .→ d, c→ c′, Γ

f . . . c′ . . .→ d, c→ c′, Γ

Compose
f . . .→ c, c→ d, Γ

f . . .→ d, c→ d, Γ

8



'

&

$

%

III. Abstract Congruence Closure (ACC)

Extend + Simplify +

Orient
c = d, Γ

c→ d, Γ
if c � d Delete

c = c, Γ

Γ

Simplify
c = d, c→ d′, Γ

d′ = d, c→ d′, Γ
Simplify

c 6= d, c→ d′, Γ

d′ 6= d, c→ d′, Γ

Superpose
fc1 . . . ck → c, fc1 . . . ck → d, Γ

c = d, fc1 . . . ck → c, Γ

Collapse
f . . . c . . .→ d, c→ c′, Γ

f . . . c′ . . .→ d, c→ c′, Γ
Collapse

c→ d, c→ c′, Γ

c′ = d, c→ c′, Γ

Compose
f . . .→ c, c→ d, Γ

f . . .→ d, c→ d, Γ
Compose

c′ → c, c→ d, Γ

c′ → d, c→ d, Γ

Contradict
c 6= c, Γ

⊥

9

'

&

$

%

III. Abstract Congruence Closure: Termination

Termination: Each rule, except Extend, is size nonincreasing

Extend decreases size of the set of equations

Number of Extend steps < n; hence size of system = O(n)

Number of applications of other rules = O(nδ)

δ: length of longest chain d1 → d2 → · · ·

Clearly, δ ≤ n, hence maximum length of derivation = O(n2)

Ex: Implement a quadratic time congruence closure

algorithm.

10

'

&

$

%

III. Abstract Congruence Closure: Basic Strategies

Union-Find strategy on C-equations guarantees δ < log(n)

Efficient congruence closure: O(n log(n)) inference steps

Certain strategies can make certain rules inapplicable

Ex: Which ACC inference rules are optional in this sense?

Ex: Implement a O(n log(n)) congruence closure algorithm

using the above inference rules.

Ex: Can you interpret your strategy as suitable

manipulations on the term DAG data-structure?

11

'

&

$

%

III. Abstract Congruence Closure: Example

a = fab, f(fab)b = b

a→ c1, b→ c2, fc1c2 → c3, fc3c2 → c4, c1 = c3, c4 = c2

a→ c1, b→ c2, fc1c2 → c3, fc3c2 → c4, c3 → c1, c4 → c2

a→ c1, b→ c2, fc1c2 → c3, fc1c2 → c4, c3 → c1, c4 → c2

a→ c1, b→ c2, fc1c2 → c3, c4 = c3, c3 → c1, c4 → c2

a→ c1, b→ c2, fc1c2 → c3, c2 = c1, c3 → c1, c4 → c2

a→ c1, b→ c2, fc1c2 → c3, c2 → c1, c3 → c1, c4 → c2

a→ c1, b→ c2, fc1c1 → c3, c2 → c1, c3 → c1, c4 → c2

a→ c1, b→ c1, fc1c1 → c3, c2 → c1, c3 → c1, c4 → c1

12



'

&

$

%

III. Abstract Congruence Closure: Soundness

Soundness: Each inference rule preserves satisfiability

Ignore disequations presently

If E `ACC E′, then ↔∗

E is identical to ↔∗

E′ restricted to the

terms over the original signature

Ex: Prove!

If E `∗ACC E′ and E′ is a final state, then s↔∗

E t iff s↔∗

E′ t,

for all terms s, t over Σ

There are no equations in the final state, only rules

Final state R: contains D-rules and C-rules

13

'

&

$

%

III. Abstract Congruence Closure: Completeness-1

TPT: If E, DE is unsatisfiable, then E, DE `∗ACC ⊥

TPT: If E |= (s = t) and s 6= t ∈ DE, then E, DE `∗ACC s = t

Suppose: E, DE `∗ACC R, DE′, where R, DE′ is a final state

WPT: whenever s↔∗

E t, then s→∗

R ◦ ←
∗

R t

We have

s↔E ◦ ↔E · · · ↔E t

Therefore, there is a proof of the form

s↔R ◦ ↔R · · · ↔R t

14

'

&

$

%

III. Abstract Congruence Closure: Completeness-2

s↔R ◦ ↔R · · · ↔R t

→R is terminating

The following patterns cannot occur:

• Pattern d←R f . . . c . . .→R f . . . c′ . . . (Collapse)

• Pattern d←R f . . .→R c where c 6≡ d (Superpose)

• Pattern d←R c→R c′ where c′ 6≡ d (Collapse)

Local confluence of R: If s←R u→R t, then s→∗

R v ←∗

R t

(Get new proof by commuting the two steps)

Therefore, R is terminating and locally confluent

15

'

&

$

%

III. Abstract Congruence Closure: Completeness-3

Confluence of R: If s←∗

R u→∗

R t, then s→∗

R v ←∗

R t

Newman’s Lemma: If R is terminating and locally

confluent, then R is confluent

Hence, R is confluent

We had s↔R ◦ ↔R · · · ↔R t

By repeated applications of confluence, we get s→∗

R ◦ ←
∗

R t

Convergent: confluence + termination

Normal Form of s is s′ where s→∗

R s′ and s′ 6→R

R is convergent. Convergent R induce unique normal forms

and all reductions lead to it.

16



'

&

$

%

III. Abstract Congruence Closure: Completeness

Summary

Started with equations E

The ACC rules transformed E into R such that

• (for all terms s, t over Σ,) E |= s = t iff s→∗

R ◦ ←
∗

R t

• →R is terminating

I.e., equal terms w.r.t E have the same normal form w.r.t R

Hence, inconsistency of any s 6= t can be detected by

normalizing s and t by R to get u 6= u

The process of transforming E to R is called

(Knuth-Bendix) completion

This was a very special case: Only ground equations

And we had one unusual rule: Extend

17

'

&

$

%

III. Completion: Illustration

ffabb

fab b

a

fc3c2

fc1c2 c4 b

a c3 c2

c1

fc1c2 c4 b

a c3 c2

c1

b

a c2

c1

18


